To apply for this exceptional PhD please visit:
http://cie-deakin.com/2013/07/19/phd-position-quantitative-movement-analysis-tracking-sea-turtles-seals-and-marine-birds-in-the-global-ocean/

For further details please contact: g.h...@deakin.edu.au

Quantitative movement analysis: tracking sea turtles, seals and marine
birds in the global ocean Professor Graeme Hays, Dr Daniel Ierodiaconou, Dr
Rebecca Lester, Dr John Arnould and Professor Gerry Quinn School of Life
and Environmental Sciences Deakin University (Warrnambool) Australia.

The last decade has seen the development of reliable satellite tracking
equipment that has allowed routine long-term (months to years) tracking of
a range of marine vertebrates including turtles, seals and sea birds. This
project will focus on examining a number of cutting-edge questions related
to patterns of movement and habitat use
including both ?blue skies? questions on animal orientation as well as more
applied questions on marine conservation planning.

This studentship will suit candidates with interests in quantitative
ecology, statistics and ecological or mathematical modelling or computer
science, given its focus on quantitative movement analysis, GIS data
analysis and data mining techniques. It may also suit students with
interests in marine vertebrate ecology, as it will involve some targeted
deployment of tracking equipment onto marine vertebrates at sites around
the world.

Some of the contemporary questions that will be addressed include:

Orientation of sea turtles travelling across the open ocean: Using
data-sets emerging from long-term tracking of adult loggerhead turtles
travelling across the Mediterranean from their breeding grounds in Greece,
green turtles travelling across the Indian Ocean from their breeding
grounds on the Chagos Archipelago as well as juvenile loggerhead turtles
moving in the South Pacific, the student will examine whether turtles show
directed swimming
to take account of current advection that may lead them off-route and how
they approach and locate isolated targets such as small islands. In this
way the extent and resolution of the geospatial map that turtles use will
be assessed in relation to laboratory experiments that have shown the
potential for turtles to use geomagnetic maps in long-distance movements.

Habitat use by both breeding and foraging turtles: Using tracking data from
around the world (including the Indian Ocean, Pacific and Atlantic) across
a range of sea turtle species the student will use high-resolution
Fastloc-GPS tracking to assess the habitat use by sea turtles in both their
breeding and foraging locations. The extent of space use will be compared
to habitat quality and diet, including comparison between species and
populations in different parts of their range. This work will involve GIS
analysis of space use and be used to develop informed conservation
strategies in terms of protected area designation.

Drift scenarios for juveniles: The student will use oceanographic
techniques including Lagrangian drift trajectories and ocean particle
tracking models to consider the drift scenarios for hatchling sea turtles.
This work will be embedded within questions regarding the ontogeny of
migration in sea turtles (e.g. do adults travel to those sites they
experienced as drifting hatchlings?), implications of climate change in
terms of drift scenarios and consideration of the global distribution of
sea turtles in terms of the proximity of beaches to suitable current
regimes.

Meta-analysis of movement patterns across diverse species: The advent of
comparable (Argos and Fastloc-GPS) tracking data for a range of marine
vertebrates (turtles, seals, birds) allows the patterns of movement across
taxa to be considered such as migration distances, course directness and
migration periodicity. The student will compare and contrast the movement
patterns across a range of contrasting marine vertebrates.

For further details please contact: g.h...@deakin.edu.au
See: http://scholar.google.co.uk/citations?user=7rc3SmAAAAAJ&hl=en&oi=ao

Further reading on our recent work in this area:

Fossette S, Putman NF, Lohmann KJ , Marsh R, Hays GC (2012). A biologist?s
guide to assessing ocean currents:
a review. Marine Ecology Progress Series, 457, 285-301. doi:
10.3354/meps09581

Hays GC, Fossette S, Katselidis KA, Schofield G, Gravenor MB (2010).
Breeding periodicity for male sea turtles,
operational sex ratios, and implications in the face of climate change.
Conservation Biology 24, 1636?1643. doi: 10.1111/j.1523-1739.2010.01531.x

Hays GC, Fossette S, Katselidis KA, Mariani P, Schofield G (2010).
Ontogenetic development of migration:
Lagrangian drift trajectories suggest a new paradigm for sea turtles.
Journal of Royal Society Interface 7, 1319-1327.
doi:10.1098/rsif.2010.0009.

Hays GC, Scott R (2013). Global patterns for upper ceilings on migration
distance in sea turtles and comparisons with fish, birds and mammals.
Functional Ecology 27, 748?756. doi: 10.1111/1365-2435.12073

Lohmann KJ, Luschi P, Hays GC (2008). Goal navigation and island-finding in
sea turtles. Journal of Experimental Marine Biology and Ecology 356,
83?95.doi:10.1016/j.jembe.2007.12.017

Schofield G, Scott R, Dimadi A, Fossette S, Katselidis KA, Koutsoubas D,
Lilley MKS, Pantis JD, Karagouni AD, Hays GC (2013). Evidence-based marine
protected area planning for a highly mobile endangered marine vertebrate.
Biological Conservation 161, 101?109.
http://dx.doi.org/10.1016/j.biocon.2013.03.004

Schofield G, Dimadi A, Fossette S, Katselidis KA, Koutsoubas D, Lilley MKS,
Luckman A, Pantis JD, Karagouni AD,
Hays GC (2013). The importance of sample size: tracking large numbers of
individuals to infer population level dispersal and core areas for
protection. Diversity and Distributions. doi: 10.1111/ddi.12077

Scott R, Marsh R, Hays GC (2012). Life in the really slow lane: loggerhead
sea turtles mature late relative to other reptiles. Functional Ecology, 26,
227-235. doi: 10.1111/j.1365-2435.2011.01915.x

Scott R, Marsh R, Hays GC (2012). A little movement orientated to the
geomagnetic field makes a big difference in strong flows. Marine Biology,
159, 481-488.doi 10.1007/s00227-011-1825-1
_______________________________________________
AniMov mailing list
AniMov@faunalia.it
http://lists.faunalia.it/cgi-bin/mailman/listinfo/animov

Reply via email to