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The result is *1 below.
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Temporarily tossing the main diagonal.
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If A’, B’ are maximal rank nilpotent then they are equivalent (in the matrix

sense) to the Jordan form like so:
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In addition we see that

[Ua] [Al + I] [Ua]_l = [Ua] [A] [Ua]_l = [‘]+ I]
(U] [B' + 1) [Up) ™" = (U] [B] [Us) ! = [J + 1]
Thus

Now it might seem that “maximal rank nilpotent” is a very special case; but in
fact, although I haven’t proved it as a theorem, from a couple of lines of reasoning
it will always be true for the coefficient arrays of Orthogonal Polynomial sequences.
In addition finding [U,], [Up] is really quite elementary.
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If anybody likes I am sure I can demonstrate the carry through of the above to
prove:
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Where ¢ is “creation”/derivative matrix | 0 2 0 0 0 | and the e** terms
003 00
0 00 40

are the coefficient arrays for Binomial polynomials.

Generically for Appell sequences.

This is from “Umbral Calculus” Roman page 94; Generating Function and Sheffer
Identity for Bernoulli Polynomials: of order a + b,a,b .



