Data Serving
The data serving benchmark relies on the Yahoo! Cloud Serving Benchmark (YCSB). YCSB is a framework to benchmark data store systems. This framework comes with the interfaces to populate and stress many popular data serving systems. Here we provide the instructions and pointers to download and install YCSB and use it with the Cassandra data store.
Prerequisite Software Packages
1. Cassandra 0.7.3
2. YCSB 0.1.3 Clone from git hub, use:
git clone git://github.com/brianfrankcooper/YCSB.git
3. Apache ant and Java JDK (we tested 1.6.023)
Download the Data Serving Benchmark
Important: The distributed YCSB package might not compile with Cassandra 0.7.x. This is why the code should be obtained from the git repository.
Install Apache Ant
Install apache ant. 
Run ant command.
If you get the following error:
[Buildfile: build.xml does not exist! Build failed]
That means that we have successfully installed the ant else in case of error please make sure that JAVA_HOME is set correctly.
export  JAVA_HOME=/usr/lib/jvm/java-1.6.0-openjdk-amd64/
PATH=${PATH}:${JAVA_HOME}/bin  
Also set the ANT_HOME if not already set.
export  ANT_HOME ANT_HOME=/usr/bin/ant
PATH=${PATH}:${ANT_HOME}/bin  
Preparing YCSB
The following YCSB website provides detailed instructions to install YCSB. Here we summarize all the instructions that are necessary to prepare YCSB to benchmark the Cassandra data store. YCSB consists of two main components:
· The client interface is used to benchmark a specific data store, (Cassandra 0.7.3 in our case).
· The workload specifies the distribution of requests (read/write ratio, key) that clients send to the data store.
1. After downloading and unpacking the YCSB framework either from the data serving benchmark Package or from github as mentioned above:
· cd YCSB
· ant (Make sure you set the JAVA_HOME parameter correctly and install the Apache Ant tool before this step).
2. Build the client interface (database layers)
Because YCSB can be used with various database systems, we need to build the specific interface for Cassandra. To do so, we need to copy the jar files from the Cassandra package to YCSB.
· Unpack the downloaded Cassandra file. You may want to download (and later install) Cassandra on a different machine than the one that runs the client.
· cd $CASSANDRA_PATH/lib/ (in our case this should be apache-cassandra-0.7.3/lib)
Make sure that all the jar files exist in this directory. The Cassandra-0.7.3 source distribution didn't have the apache-cassandra-0.7.3.jar file. This file is included in the bin distribution we are using in this tutorial.
· Copy all the jar files into the YCSB/db/cassandra-0.7/lib/ directory on the client machine. (You can use the scp command to copy the files between different machines). If the client is running on the same machine as Cassandra then the command will be: 
cp *.jar ~/YCSB/db/cassandra-0.7/lib/
Then on the client machine:
· cd ~/YCSB/
· ant
· ant dbcompile-cassandra-0.7
This will create the ycsb.jar file that contains all the classes needed to run the YCSB benchmark in the build/ directory.
Installing Cassandra
The Cassandra project website provides detailed instructions of picking and installing a Cassandra distribution 
provides detailed instructions for installing and setting up various Cassandra distributions. Here, we provide the main instructions required to have an operational Cassandra 0.7:
1. Running Cassandra on a single node:
· cd to the unpacked Cassandra directory
· ant 		[Do not need this command anymore]
· Check the configuration parameters: conf/cassandra.yaml contains default values for the Cassandra parameters. First, ensure that the paths for the following parameters point to the directories where you have the write permissions. 
data_file_directories, commitlog_directory, and saved_caches_directory.
· In conf/log4j-server.properties, make sure that the parameter: log4.appender.R.Fileis set to the directories of your choice that you have write permissions to.
· Set your JAVA_HOME environment variable properly.
· Run Cassandra by invoking: bin/cassandra -f
(if you don't see error messages, then you have a good chance of successful installation.)
· Optionally you can follow the instructions in the README file in the installation folder for testing your installation.
2. Running Cassandra on a cluster of nodes: The instructions to run Cassandra are almost the same as installing multiple Cassandra data stores on multiple nodes. However, you need to configure each Cassandra instance properly to communicate with each other. The way that a Cassandra node is designed to communicate with other nodes is through the Gossip protocol. Each Cassandra node should know at least one reliable Cassandra node called the seed. More details at the link above.
· Configure the seed for each node in the conf/cassandra.yaml file under the seeds directory.
· Configure the listen_address and rpc_address in conf/cassandra.yaml to the hostname (or the IP address of the node).
Generating dataset
The YCSB client has a data generator. After starting Cassandra, YCSB can load data. First, you need to create a keyspace named usertable and a column family for YCSB. This is a must for YCSB to load data and run.
In order to create a keyspace and a column family, you can use the following commands after connecting to the server with cassandra-cli utility under $CASSANDRA_PATH/bin.
Following command is used to connect to the Cassandra server.
./cassandra-cli -host HostIPAddress -port 9160
If you are connecting to Cassandra Server from a different client machine using the cassandra-cli utility, then set HostIPAddress = IP Address of the Cassandra server or else HostIPAddress = localhost.
In case if you get the below mentioned error:
Exception connecting to 10.xx.xx.xx/9160. Reason: Connection refused.
Please make sure that rpc_address is set to a public one instead of localhost in conf/cassandra.yaml on Cassandra server machine we are trying to connect.
Cassandra server by default runs on 9160 port, so also make sure that this port is not blocked by firewall on the server.

1. create keyspace usertable with replication_factor=1; 
Note: the semicolon is important in the all the commands.
2. use usertable;
3. create column family data with column_type = 'Standard' and comparator = 'UTF8Type';
4. exit;
Then
5. cd $YCSB_PATH
6. To generate the standard data set, we provide two files: settings_load.dat andrun_load.command. 
The first file, settings_load.dat, specifies several parameters related to the generated data, mainly:
· hosts: specifies the IP address of the machine running Cassandra.
· recordcount: specifies the number of records to be loaded in the data store.
The second file, run_load.command, starts loading the database with the parameters specified in settings_load.dat file:
java -cp build/ycsb.jar:db/cassandra-0.7/lib/* com.yahoo.ycsb.Client -load -s -db com.yahoo.ycsb.db.CassandraClient7 -P workloads/workloada -P settings_load.dat
Note that the above command will load the data necessary for “workloada”. To specify other workload mixes, you only need to change the name in the run.command file.
More detailed instructions on generating the data set can be found in Step 5 at this link
Although Step 5 in the link describes the data loading procedure other steps (e.g., 1, 2, 3, 4) are very useful to understand the YCSB settings.
Note: A rule of thumb on the dataset size:
To emulate a realistic setup, you can generate more data than your main memory size if you have a low-latency, high-bandwidth I/O subsystem. For example, for a machine with 24GB memory, you can generate 30 million records corresponding to a 30GB data set size 
Note: The data set resides in Cassandra’s data folder(s).The actual data takes up more space than the total size of the records because data files have metadata structures (e.g., index). Make sure you have enough disk space. 
Tuning the server performance
1. In general the server settings are under the $CASSANDRA_PATH/conf folder. The main file is cassandra.yaml. The file has comments about all parameters. They can also be found here:
http://wiki.apache.org/cassandra/StorageConfiguration
2. You can modify the target and threadcount variables to tune the benchmark and utilize the server. The throughput depends on the number of hard drives on the server. If there are enough disks, the cores can be utilized after running the benchmark for 10 minutes. Make sure that half of the main memory is free for the operating system file buffers and caching.
3. Additionally, the following are useful pointers for performance tuning: 
· http://spyced.blogspot.com/2010/01/linux-performance-basics.html
· http://wiki.apache.org/cassandra/MemtableThresholds
Running the benchmark
After you install and run the server, install the YCSB framework files and populate Cassandra, you are one step away from running the benchmark. To specify the run time parameters for the client, a good practice is to create a settings file. You can keep the important parameters (e.g.,target, threadcount, hosts, operationcount, recordcount) in this file, similar to what we did in the data generation phase.
In the package, we provide two files to facilitate the run phase. The first is settings.dat and the second is run.command. 
The settings.dat file defines the IP address(es) of the node(s) running Cassandra, in addition to the recordcount parameter (which should be less than or equal to the number specified in the data generation step to avoid potential errors). The operationcount parameter sets the number of operations to be executed on the data store. 
The run.command file takes the settings.dat file as an input and runs the following command:

java -cp build/ycsb.jar:db/cassandra-0.7/lib/* com.yahoo.ycsb.Client -t -s -db com.yahoo.ycsb.db.CassandraClient7 -P workloads/workloada -P settings.dat
To keep the benchmark running for a long time, you can override the operationcount variable. 
Step 6 at this link provides detailed instructions on running the benchmark.

Benchmark Output:
Loading workload...
Starting test.
 0 sec: 0 operations;
 10 sec: 46133 operations; 4605.93 current ops/sec; [UPDATE AverageLatency(us)=3                                                                                        23.58] [READ AverageLatency(us)=492.9]
 20 sec: 99819 operations; 5368.06 current ops/sec; [UPDATE AverageLatency(us)=2                                                                                        23.94] [READ AverageLatency(us)=347.36]
 30 sec: 149820 operations; 4999.6 current ops/sec; [UPDATE AverageLatency(us)=2                                                                                        39.46] [READ AverageLatency(us)=359.54]
 40 sec: 199725 operations; 4990.5 current ops/sec; [UPDATE AverageLatency(us)=2                                                                                        99.86] [READ AverageLatency(us)=454.2]
 50 sec: 249827 operations; 5009.7 current ops/sec; [UPDATE AverageLatency(us)=2                                                                                        92.9] [READ AverageLatency(us)=422.83]
 60 sec: 299828 operations; 5000.1 current ops/sec; [UPDATE AverageLatency(us)=247.91] [READ AverageLatency(us)=378.45]
 70 sec: 349249 operations; 4941.61 current ops/sec; [UPDATE AverageLatency(us)=302.59] [READ AverageLatency(us)=461.62]
 80 sec: 399673 operations; 5042.4 current ops/sec; [UPDATE AverageLatency(us)=273.61] [READ AverageLatency(us)=409.24]
 90 sec: 449835 operations; 5015.7 current ops/sec; [UPDATE AverageLatency(us)=252.71] [READ AverageLatency(us)=377.13]
 100 sec: 499837 operations; 5000.2 current ops/sec; [UPDATE AverageLatency(us)=269.37] [READ AverageLatency(us)=403.62]
 110 sec: 549838 operations; 5000.1 current ops/sec; [UPDATE AverageLatency(us)=276.23] [READ AverageLatency(us)=402.67]
 120 sec: 599840 operations; 4999.7 current ops/sec; [UPDATE AverageLatency(us)=284.15] [READ AverageLatency(us)=437.64]
 130 sec: 649766 operations; 4992.6 current ops/sec; [UPDATE AverageLatency(us)=281.33] [READ AverageLatency(us)=429.8]
 140 sec: 699844 operations; 5007.3 current ops/sec; [UPDATE AverageLatency(us)=248.73] [READ AverageLatency(us)=400.03]
 150 sec: 749847 operations; 5000.3 current ops/sec; [UPDATE AverageLatency(us)=250.99] [READ AverageLatency(us)=385.72]
 160 sec: 799850 operations; 4999.8 current ops/sec; [UPDATE AverageLatency(us)=272.61] [READ AverageLatency(us)=426.06]
 170 sec: 849802 operations; 4995.2 current ops/sec; [UPDATE AverageLatency(us)=270.4] [READ AverageLatency(us)=420.85]
 180 sec: 899696 operations; 4988.9 current ops/sec; [UPDATE AverageLatency(us)=259.46] [READ AverageLatency(us)=389.86]
 190 sec: 949859 operations; 5016.3 current ops/sec; [UPDATE AverageLatency(us)=277.44] [READ AverageLatency(us)=429.29]
 200 sec: 999855 operations; 4999.1 current ops/sec; [UPDATE AverageLatency(us)=264.31] [READ AverageLatency(us)=407.99]
 200 sec: 1000000 operations; 3815.79 current ops/sec; [UPDATE AverageLatency(us)=360.9] [READ AverageLatency(us)=365.54]


