Nonlocality in MWI, from the ’everything’ list 2016

Some of the comments from Bruce Kellett at that time.

Let me reduce this to simple steps:

1. MWI is an interpretation of QM only, Ie., it reproduces all the results of QM without adding
any additional structure or dynamics.

2. The QM state describing an entangled singlet pair does not refer to, or depend on, the separation
between the particles.

3. The quantum calculation of the joint probabilities depends on the relative orientation between
the separate measurements on the separated particles.

4. This quantum calculation is the same for any physical separation, since the singlet state itself
does not depend on the separation.

5. The quantum calculation is, therefore, intrinsically non-local because it does not depend on the
separation, which can be arbitrarily large, and space-like.

6. Since MWI does not add anything to standard QM, and standard QM gives a non-local account
of the probabilities we are considering, any MWI account must also be intrinsically non-local.

The mathematical rule that gives the differing probabilities for each outcome depending on the relative
angle of the magnets is just quantum mechanics. But that is intrinsically non-local — QM treats the
separated component of the entangled pair as a single system, and the description of that entangled
state does not depend on the physical separation of the components — the components are treated as
a single unit at all separations. Quantum mechanics is thus mute about any local physical mechanism
whereby the information about the orientation of A’s magnet is conveyed to B (or vice versa) —

quantum mechanics, unlike laboratory experiments, does not recognize the existence of any separation.

Note added: The singlet state is local in configurations space, even though non-local in ordinary

3-space.

The cos?(0/2) comes from applying the standard quantum rules to the singlet state

[0y = (IH)=) = [=)+))/V2

I think it would be instructive to actually go through the usual quantum derivation of the correlations,
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because what you call “reducing the wave after the measurement” is actually the result of applying
the standard quantum rules. It has nothing to do with so-called ‘collapse’ interpretations: it is simply

in the theory.

Quantum rules for measurement say that the initial state can be expanded in the basis corresponding
to the particular measurement in question (contextuality). That is what the state |¢)) above is —
the quantum expansion of the singlet state in the basis in which say Alice is doing her measurement.
Quantum rules then say that the result of the measurment (after decoherence has fully operated)
is one of the eigenstates in the expansion, and the measured result is the corresponding eigenvalue.
In our case, there are two possibilities for Alice after her measurement is complete: result ‘+’, with

4 9

corresponding eigenstate |[+)|—), or ‘—’, with corresponding eigenstate |—)|+). There are no other
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possibilities, and Alice has a 50% chance of obtaining either result, or of being in the corresponding
branch of the evolved wave function.

The question now arises as to how the formalism describes Bob’s measurement, assuming that it follows
that of Alice (there will always be a Lorentz frame in which that is true for space-like separation.
For time-like separations, it is either true, or we reverse the A/B labels so that it is true.) Since the
description of the state does not depend on the separation between A and B, after A gets ‘+’ and
her eigenstate is |[+)|—), Bob must measure the state |—) in the direction of his magnet. To get the
relative probabilities for his results, we must rotate the eigenfunction from Alice’s basis to the basis
appropriate for Bob’s measurement. This is the standard rotation of a spinor, given by

=) = — sin(6/2)+") + cos(6/2)|-").

Applying the standard quantum rules to this state, Bob has a probability of sin?(6/2) of obtaining a
‘+’ result, and a probability of cos?(6/2) of obtaining a ‘—’ result.

Using test values for the relative orientation, 6, we get the usual results. For § = 0° orientation,
Bob has probability 0 of obtaining ‘4+’, and probability 1 of obtaining ‘—’. For 90° orientation, the
probabilities for ‘+’ and ‘-’ are both 0.5. For a relative orientation of 120°, Bob’s probability of
getting ‘+’ is 0.75 and the probability of his getting ‘—’ is 0.25.

This is not controversial, and the result depends only on the standard rules of quantum mechanics.
The problem of interpretation, of course, is that since Alice and Bob are at different locations, and
the state they are measuring is independent of separation, there is an intrinsic non-locality implied by
the standard calculation. If you take out the quantum rule that the result of a measurement is, after
decoherence, reduction to an eigenstate with the corresponding eigenvalue, you take away an essential
ingredient of the quantum derivation, and leave Bob’s measurement as being completely independent
of that of Alice, so the only possible results for Bob ar ‘4’ and ‘—’ with equal probability, whatever
the orientation of his magnet.

Any account that deviates from this is no longer a standard quantum account because it would not
conform to the above rules. And these rules are among the best-tested rules in all of physics. They
are the basis for the whole of the phenomenal success of this theory over nearly a hundred years and
in every field in which it has been applied. You abandon these principles only at extreme peril.

There is a widely cited paper by Tipler (arxiv:quant-ph/0003146v1) that claims to show that the
MWI does away with non-locality. It is instructive to go through his argument, and to see how he
has managed to deceive himself. We start with the singlet state:

[¥) = (9)=) = [=)+)/V2,
and then expand the state for the second particle in a different basis (at relative angle 0):

[+)2 = cos(6/2) x [+) +sin(6/2) x |-),
|—)2 = — sin(0/2) x |[+') + cos(0/2) = |-').



Substituting this in to the singlet state above, we get
[9) = — [sin(68/2) * [+)[+') — cos(6/2) * [+)[=') + cos(6/2) * |[=)[+') +sin(8/2) * |-)[+') | /2,

which exactly represents the requisite four worlds, corresponding to the (+,+'), (+,—'), (—,+’), and
(—,—") possibilities for joint results, each world weighted by the required probability. Tipler claims
that this shows how the standard statistics come about by local measurements splitting the universe
into distinct worlds.

Tipler is, of course, deluding himself, because the above calculation is not local. It is, in fact, nothing
more than the stadard quantum calculations (with the projection postulate evident) that I gave above
for the possible ‘+’ and ‘—’ results for Alice, combined in the one equation. It still uses the fact that
Alice’s measurement of particle 1 affects the quantum state for particle 2 (which is, by then, a large
space-like distance away). Tipler utilizes the non-local natuure of this change to extract 6, the relative
orientation of magnets — a relative orientation that can only be known by comparing orientations at
A and B directly. So Tipler’s derivation is every bit as much local or non-local as the conventional
calculation — he has not eliminated non-locality by his trivial re-working of the derivation.

Note added: The expectation value for the product of the spins is just the sum of each outcome,
multiplied by the probability of that outcome

FDED Py + (D) (DR + (D)D) Py + (-D)(-1) P,

where P, _ is the probability that the first spin measured spin up, and the second spin is measured spin
down, and similarly for the other Ps. Inserting these probabilities — the squares of the coefficients
in the above equation — into the equation for the expectation value, gives

iy - o) = %[Sin2(9/2) — cos?(6/2) — cos(6/2) + sin(8/2)]
= —cos(f)

which is the quantum expectation value for the correlation of the two spin measurements.



