Dear Forum, I want to know that:
"Is it possible using GAP to check that given presentation is a nilpotent group of class 2 or not?" For example $G=\langleĀ a,b,c| a^{p^5}, b^{p^3}, c^{p^2}, [a,b]=a^{p^3}, [a,c]=c^p, [b,c]=b^{p^2} \rangle $ where $p$ is a prime. Also how can we determine its automorphism group using GAP? with regards Vivek kumar jain Your Mail works best with the New Yahoo Optimized IE8. Get it NOW! http://downloads.yahoo.com/in/internetexplorer/ _______________________________________________ Forum mailing list Forum@mail.gap-system.org http://mail.gap-system.org/mailman/listinfo/forum