Dear Forum,

I want to know that:

"Is it possible using GAP to check that given presentation is a nilpotent group 
of class 2 or not?"

For example $G=\langleĀ  a,b,c| a^{p^5}, b^{p^3}, c^{p^2}, [a,b]=a^{p^3}, 
[a,c]=c^p, [b,c]=b^{p^2} \rangle $ where $p$ is a prime.

Also how can we determine its automorphism group using GAP?


with regards

Vivek kumar jain




      Your Mail works best with the New Yahoo Optimized IE8. Get it NOW! 
http://downloads.yahoo.com/in/internetexplorer/
_______________________________________________
Forum mailing list
Forum@mail.gap-system.org
http://mail.gap-system.org/mailman/listinfo/forum

Reply via email to