Dear Forum, I really appreciate if anybody can help me with this:
Is there a function like NullSpace but for modules over a group ring? Let $G$ a finite $2$-group. Consider the Group Ring $F[G]$ over the field of two elements. Let $V$ sub $F[G]$-module of $\oplus^n F[G]$ (n copies of the group ring). I have a $F[G]$-tranformation T:V^a \to V^b. I need Kernel(T). _______________________________________________ Forum mailing list Forum@mail.gap-system.org http://mail.gap-system.org/mailman/listinfo/forum