Make sure you've got a good representation of your group, too. If it's solvable, use
iso:=IsomorphismPcGroup(G); H:=Image(iso); then run on H (and use PreImage(iso,I) where I is the result of the code below). If not solvable, use IsomorphismPermGroup and maybe also SmallerDegreePermutationRepresentation. ConjugacyClassesSubgroups stalls very badly if you feed it a finitely presented group. Even WITH the PC presentation, some of the higher rank groups of order 256 will stall badly on the "ConjugacyClassesSubgroups" command. Joe On Sun, Nov 7, 2010 at 5:18 AM, Benjamin Sambale <bsamb...@gmx.de> wrote: > maybe the following is faster (and does not need the sonata package): > > > I:=G; #G is a group > for H in List(ConjugacyClassesSubgroups(G),Representative) do > > I:=Intersection(I,Normalizer(G,DerivedSubgroup(H))); > od; > I:=Core(G,I); > > Am 07.11.2010 09:38, schrieb Benjamin Sambale: > > try this: >> >> LoadPackage("sonata"); >> I:=G; #G is a group >> for H in Subgroups(G) do >> I:=Intersection(I,Normalizer(G,DerivedSubgroup(H))); >> od; >> #now I is the intersection you want >> >> best wishes, >> Benjamin >> >> Am 07.11.2010 08:13, schrieb 刘建军: >> >>> Dear forum, >>> >>> Let $G$ be a finite group. I would like to know that the intersection of >>> the normalizers of derived subgroups of all subgroups of $G$. >>> Is there a method to get it in GAP? >>> >>> Best Wishes >>> Jianjun Liu >>> >>> _______________________________________________ >>> Forum mailing list >>> Forum@mail.gap-system.org >>> http://mail.gap-system.org/mailman/listinfo/forum >>> >>> >> _______________________________________________ >> Forum mailing list >> Forum@mail.gap-system.org >> http://mail.gap-system.org/mailman/listinfo/forum >> > > _______________________________________________ > Forum mailing list > Forum@mail.gap-system.org > http://mail.gap-system.org/mailman/listinfo/forum > _______________________________________________ Forum mailing list Forum@mail.gap-system.org http://mail.gap-system.org/mailman/listinfo/forum