Actually, the function turned out to be inconsistent unfortunately. Can it be checked once again? Or any other comments for the central product?
2012/5/13 Benjamin Sambale <benjamin.samb...@gmail.com> > Hi, > > some time ago I wrote the following function just for myself: > > CentralProduct:=function(arg) > local G,H,D,f,f1,f2,S,g,M; > if Length(arg)=1 and IsList(arg[1]) then arg:=arg[1]; fi; > if Length(arg)=0 then return TrivialGroup(); fi; > if Length(arg)=1 then return arg[1]; fi; > G:=arg[1]; > H:=arg[2]; > D:=DirectProduct(G,H); > f:=IsomorphismGroups(Center(G),Center(H)); > if f=fail then > if IsPGroup(Center(G)) and IsCyclic(Center(H)) then > > > f:=IsomorphismGroups(Center(G),Filtered(Subgroups(Center(H)),M->Size(M)=Size(Center(G)))[1]); > if f=fail then Error("Centers are not compatible"); fi; > else > > > f:=IsomorphismGroups(Filtered(Subgroups(Center(G)),M->Size(M)=Size(Center(H)))[1],Center(H)); > if f=fail then Error("Centers are not compatible"); fi; > fi; > fi; > f1:=Embedding(D,1); > f2:=Embedding(D,2); > S:=Set(Center(G),g->g^(f1)*(g^(-1))^(f*f2)); > Remove(arg,1); > arg[1]:=FactorGroup(D,Subgroup(D,S)); > return CentralProduct(arg); > end; > > No warranty! > > Best wishes, > Benjamin > > Am 12.05.2012 12:36, schrieb sumeyra uskudar: > > Dear forum, >> >> Is there a way to define a central product in GAP, and how do we define >> the >> common central factor in this function? >> For example we want to define G:=Q8.K(the central product), >> where, Q8 is the quaternion group of order 8 presented as ; >> <a,b:a^4=1,b^2=a^2,bab^-1=a^-1> >> and K=<x,y:x^4=y^4=1,yxy^-1=x^-1> >> with te common central factor being x^2y^2. >> >> Thanks in advance, >> >> -- *Sümeyra Bedir* _______________________________________________ Forum mailing list Forum@mail.gap-system.org http://mail.gap-system.org/mailman/listinfo/forum