Dear R.N. Tsai,
You asked: > I'd like to identify > the subalgebra irreps with concrete subspaces of the main algebra. Is there > a (hopefully simple) way to extract this information? Not directly, however it is not so difficult to write some code for that. At the bottom of this message please find a GAP function that does that. It is followed by an example. One remark: in your piece of code you use the command Dimension(HighestWeightModule(sub,bra[1][k])) It is much more efficient to use DimensionOfHighestWeughtModule( sub, bra[1][k] ); as this avoids constructing the module. You also asked: > is there a general way to get the weight of the adjoint rep for an > arbitrary semisimple algebra? If the Lie algebra is denoted L, then you can do wt:= PositiveRootsAsWeights( RootSystem(L) );; hw:= wt[ Length(wt) ]; I am glad that the sla package is of use to you. Best wishes, Willem de Graaf # function: DecomposeAdRep:= function( L, K ) # K is a subalgebra of L, both semisimple in char 0; # we return the decomposition of L as K module. local cg, e, x, ad, i, spaces, spaces0, h, ww, sp, mat, es, hwv; cg:= CanonicalGenerators( RootSystem(K) ); e:= List( Basis(L), x -> [ ] ); for x in cg[1] do ad:= TransposedMat( AdjointMatrix(Basis(L),x) ); for i in [1..Length(ad)] do Append( e[i], ad[i] ); od; od; spaces:= [ List( NullspaceMat(e), u -> u*Basis(L) ) ]; for h in cg[3] do spaces0:= [ ]; for ww in spaces do sp:= Basis( Subspace(L,ww), ww ); mat:= List( ww, u-> Coefficients(sp,h*u) ); es:= Eigenspaces( LeftActingDomain(L), mat ); for i in [1..Length(es)] do Add( spaces0, List( Basis(es[i]), x -> x*ww ) ); od; od; spaces:= spaces0; od; hwv:= Concatenation( spaces ); spaces:= [ ]; for i in [1..Length(hwv)] do Add( spaces, MutableBasisOfClosureUnderAction( LeftActingDomain(L), cg[2], "left", [ hwv[i] ], \*, Zero(L), Dimension(L) ) ); od; return List( spaces, u -> Subspace(L,BasisVectors(u)) ); end; # example: gap> r:= LieAlgebraAndSubalgebras("G2");; gap> L:= r.liealg;; gap> K:= r.subalgs[5];; gap> DecomposeAdRep( L, K ); [ <vector space over Rationals, with 8 generators>, <vector space over Rationals, with 3 generators>, <vector space over Rationals, with 3 generators> ] _______________________________________________ Forum mailing list Forum@mail.gap-system.org http://mail.gap-system.org/mailman/listinfo/forum