On Sun, July 27, 2014 5:17 pm, Kurt Ewald wrote: > how can I construct a Permutationgroup with given Order and Degree. > > for instance: GroupOrder 12 and Degree 5, I found by accident > > G:=<(1,2,3),(1,5,2)>
You can find all transitive permutation groups of order n and degree d <= 30 by AllTransitiveGroups(DegreeAction,d,Size,n); For example: gap> AllTransitiveGroups(DegreeAction,6,Size,60); [ L(6) = PSL(2,5) = A_5(6) ] gap> AllTransitiveGroups(DegreeAction,6,Size,72); [ F_36(6):2 = [S(3)^2]2 = S(3) wr 2 ] gap> AllTransitiveGroups(DegreeAction,8,Size,32); [ [1/4.cD(4)^2]2, 1/2[2^4]4, [4^2]2, E(8):E_4=[2^2]D(4), E(8):4=[1/4.eD(4)^2]2, [2^3]4, 1/2[2^4]E(4)=[1/4.dD(4)^2]2, E(8):D_4=[2^3]2^2 ] gap> AllTransitiveGroups(DegreeAction,24,Size,240); [ t24n570, t24n571, t24n572, t24n573, t24n574, t24n575, t24n576, t24n577, t24n578 ] The data is taken from the GAP Transitive Groups Library, cf. http://www.gap-system.org/Datalib/trans.html. If -- as your example suggests -- you are also interested in intransitive groups, you maybe need to do some programming yourself -- though for very small degrees you can simply use the following brute force approach: PermGroupsOfGivenDegreeAndOrder := function ( d, n ) return Filtered(List(ConjugacyClassesSubgroups(SymmetricGroup(d)), Representative), G->Size(G)=n); end; For example: gap> PermGroupsOfGivenDegreeAndOrder(6,12); [ Group([ (3,6,4), (3,4)(5,6) ]), Group([ (1,5,3)(2,6,4), (1,2)(3,4) ]), Group([ (1,3)(4,6), (1,4)(2,6)(3,5) ]), Group([ (5,6), (2,3)(4,6) ]) ] gap> List(last,Size); [ 12, 12, 12, 12 ] By the way -- your example does not have degree 5, since 4 is fixed: gap> DegreeAction(Group((1,2,3),(1,5,2))); 4 Hope this helps, Stefan Kohl ----------------------------------------------------------------------------- http://www.gap-system.org/DevelopersPages/StefanKohl/ ----------------------------------------------------------------------------- _______________________________________________ Forum mailing list Forum@mail.gap-system.org http://mail.gap-system.org/mailman/listinfo/forum