
n???? (WG14) Proposal for C2y n???? (WG14)

Name
n???? - New lengthof keyword to determine array length (v2)

Category
Feature (keyword).

Author
Alejandro Colomar Andres; maintainer of the Linux man-pages project.

Cc
GNU Compiler Collection
Martin Uecker
Xi Ruoyao
Xavier Del Campo Romero
Joseph Myers
Gabriel Ravier
Jakub Jelinek
Kees Cook
Qing Zhao
Jens Gustedt
David Brown
Florian Weimer
Andreas Schwab
Timm Baeder
"A. Jiang"
Eugene Zelenko
Aaron Ballman

History
n2529 v1; 2020-06-04; authored by Xavier.

n???? v2; 2024-??-??;

Problem description
Portability

Prior to C23 it was impossible to do this, but since C23 it is possible to portably write a macro that determines
the length of an array, that is, the number of elements in the array.

#define must_be(e) \
(\

0 * (int) sizeof(\
struct { \

static_assert(e); \
int ISO_C_forbids_a_struct_with_no_members; \

} \
) \

)
#define is_array(a) \
(\

_Generic(&(a), \
typeof((a)[0]) **: 0, \
default: 1 \

) \
)
#define sizeof_array(a) (sizeof(a) + must_be(is_array(a)))
#define nitems(a) (sizeof_array(a) / sizeof((a)[0]))

While diagnostics could be better, with good helper-macro names, they are decent.

ISO/IEC 9899 2024-??-?? 1

mailto:alx@kernel.org
https://www.kernel.org/doc/man-pages/
mailto:gcc@gcc.gnu.org
mailto:uecker@tugraz.at
mailto:xry111@xry111.site
mailto:xavi.dcr@tutanota.com
mailto:josmyers@redhat.com
mailto:gabravier@gmail.com
mailto:jakub@redhat.com
mailto:keescook@chromium.org
mailto:qing.zhao@oracle.com
mailto:jens.gustedt@inria.fr
mailto:david.brown@hesbynett.no
mailto:fweimer@redhat.com
mailto:schwab@linux-m68k.org
mailto:tbaeder@redhat.com
mailto:de34@live.cn
mailto:eugene.zelenko@gmail.com
mailto:aaron.ballman@intel.com

n???? (WG14) Proposal for C2y n???? (WG14)

Type names
This nitems() macro is not ideal, since it only works with expressions but not with type names. However, for
most use cases that’s enough.

constexpr
The usual sizeof division evaluates the operand and results in a run-time value in cases where it wouldn’t be
necessary. If the top-level array length is determined by a constant expression, but an internal array is a VLA,
sizeof must evaluate:

int a[7][n];
int (*p)[7][n];

p = &a;
nitems(*p++);

With a lengthof operator, this would result in an integer constant expression of value 7.

Having more constant expressions would allow for better diagnostics.

Double evaluation
With the sizeof-based implementation from above, the example from above causes double evaluation of *p++.

Proposal description
Add a new keyword named lengthof which evaluates to the length of an array operand, that is, the number of
elements in the array. The syntax should be identical to sizeof.

The operand must be a parenthesized complete array type or an expression of such a type. It is a constraint vi-
olation to pass something else. For example:

int a[n];

lengthof a; // returns n
lengthof(int [7][3]); // returns 7

lengthof(int); // constraint violation
lengthof n; // constraint violation

The result of this operator is an integer constant expression, unless the top-level array is a variable-length ar-
ray. The operand is only evaluated if the top-level array is a variable-length array. For example:

lengthof(int [7][n++]); // integer constant expression
lengthof(int [n++][7]); // run-time value; n++ is evaluated

Syntax
A question has been raised: Should this new keyword accept an expression without parentheses (like sizeof
does)? Or should it require parentheses?

alignof requires that the operand is a type name. However, some compilers allow passing an expression as an
extension, and they don’t require parentheses, just like with sizeof . For example:

$ cat s.c
#include <stdalign.h>

int
main(void)
{

int *x;

return alignof *x;
}
$ gcc -Wall -Wextra s.c
$./a.out; echo $?

ISO/IEC 9899 2024-??-?? 2

n???? (WG14) Proposal for C2y n???? (WG14)

4

For consistency with existing operators, unparenthesized expressions should be allowed. If that syntax was
not wanted, WG14 should consider deprecating it from all such operators at once, but not for new operators
only.

Keeping the same syntax of existing operators allows keeping the implementation simpler.

Future directions
lengthof could be extended to support function parameters declared with array notation. Here’s an example
borrowing notation from n3188:

wchar_t *
wmemset(wchar_t wcs[.n], wchar_t wc, size_t n)
{

for (size_t i = 0; i < lengthof(wcs); i++)
wcs[i] = wc;

return wcs;
}

Proposed wording
6.3.2.1 Lvalues, arrays, and function designators

p3

Except when it is the operand of the sizeof operator,
+or the lengthof operator,

or the typeof operators,
or the unary & operator,
or is a string literal used to initialize an array,
an expression that has type "array of type"
is converted to an expression with type "pointer to type"
that points to the initial element of the array object
and is not an lvalue.

Forward references

prefix increment and decrement operators (6.5.4.1),
-the sizeof and alignof operators (6.5.4.4),
+the sizeof, lengthof, and alignof operators (6.5.4.4),

structure and union members (6.5.3.4).

6.4.1 Keywords
Syntax (p1)

int
+lengthof

long

6.5.4 Unary operators
Syntax (p1)

unary-expression:
postfix-expression
++ unary-expression
-- unary-expression
unary-operator cast-expression
sizeof unary-expression
sizeof (type-name)

+ lengthof unary-expression
+ lengthof (type-name)

alignof (type-name)

ISO/IEC 9899 2024-??-?? 3

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3188.htm

n???? (WG14) Proposal for C2y n???? (WG14)

6.5.4.4 The sizeof and alignof operators
Title

-The sizeof and alignof operators
+The sizeof, lengthof, and alignof operators

Constraints (p1)

or to an expression that designates a bit-field member.
+The lengthof operator shall not be applied to an expression that
+has an incomplete type or
+does not have array type,
+to the parenthesized names of such a type.

The alignof operator shall not be applied to
a function type or an incomplete type.

Semantics (pX; insert as p2)

+The lengthof operator yields the length
+(in number of elements)
+of its operand.
+The length is determined from the type of the operand.
+The result is an integer.
+If the number of elements of the array type is variable,
+the operand is evaluated;
+otherwise,
+the operand is not evaluated and the result is an integer constant.

EXAMPLE 2 (p7)
-Another use of the sizeof operator is +A use of the lengthof operator is
to compute the number of elements in an array - sizeof array / sizeof array[0]
+ lengthof array

6.6 Constant expressions
Semantics (p8)

An integer constant expression117) shall have integer type
and shall only have operands that are
integer constants,
named and compound literal constants of integer type,
character constants,

-sizeof expressions whose results are integer constants,
+sizeof or lengthof expressions whose results are integer constants,

alignof expressions,
and floating, named, or compound literal constants of arithmetic type
that are the immediate operands of casts.
Cast operators in an integer constant expression
shall only convert arithmetic types to integer types,
except as part of an operand to the typeof operators,
sizeof operator,

+lengthof operator,
or alignof operator.

Footnote 115)

The operand of a
typeof (6.7.3.6),
sizeof,

+lengthof,
or alignof operator

ISO/IEC 9899 2024-??-?? 4

n???? (WG14) Proposal for C2y n???? (WG14)

is usually not evaluated (6.5.4.4).

Semantics (p10)

An arithmetic constant expression
shall have arithmetic type
and shall only have operands that are
integer constants,
floating constants,
named or compound literal constants of arithmetic type,
character constants,

-sizeof expressions whose results are integer constants,
+sizeof or lengthof expressions whose results are integer constants,

and alignof expressions.
Cast operators in an arithmetic constant expression
shall only convert arithmetic types to arithmetic types,
except as part of an operand to the typeof operators,
sizeof operator,

+lengthof operator,
or alignof operator.

6.7.2 Storage-class specifiers
Footnote 128)

The implementation can treat any register declaration simply
as an auto declaration.
However,
whether or not addressable storage is used,
the address of
any part of an object declared with storage-class specifier register
cannot be computed,
either explicitly
(by use of the unary & operator as discussed in 6.5.4.2)
or implicitly
(by converting an array name to a pointer as discussed in 6.3.2.1).
Thus,

-the only operator
+the only operators

that can be applied to
an array declared with storage-class specifier register

-is sizeof
+are sizeof,
+lengthof,

and the typeof operators.

6.7.7.3 Array declarators
Semantics (p5)

Where a size expression is part of
the operand of a typeof or sizeof operator
and changing the value of the size expression
would not affect the result of the operator,
it is unspecified whether or not the size expression is evaluated.

+Where a size expression is part of
+the operand of a lengthof operator
+and changing the value of the size expression
+would not affect the result of the operator,
+the size expression is not evaluated.

ISO/IEC 9899 2024-??-?? 5

n???? (WG14) Proposal for C2y n???? (WG14)

Where a size expression is part of
the operand of an alignof operator,
that expression is not evaluated.

6.9.1 General
Constraints (p3)

• part of the operand of a sizeof operator
whose result is an integer constant;

+• part of the operand of a lengthof operator
whose result is an integer constant;

• part of the operand of an alignof operator
whose result is an integer constant;

Semantics (p5)

An external definition is
an external declaration that is also a definition of
a function (other than an inline definition)
or an object.
If an identifier declared with external linkage
is used in an expression
(other than as
part of the operand of a typeof operator
whose result is not a variably modified type,
part of the controlling expression of a generic selection,
part of the expression in a generic association
that is not the result expression of its generic selection,

-or part of a sizeof or alignof operator
+or part of a sizeof, lengthof, or alignof operator

whose result is an integer constant expression),
somewhere in the entire program
there shall be exactly one external definition for the identifier;
otherwise, there shall be no more than one.191)

6.10.2 Conditional inclusion
EXAMPLE 5 (p22)

- return (int)(meow[0] + meow[(sizeof(meow) / sizeof(*meow)) - 1]);
+ return (int)(meow[0] + meow[lengthof(meow) - 1]);

6.10.4.1 #embed preprocessing directive
EXAMPLE 1 (p16)

- have_you_any_wool(baa_baa, sizeof(baa_baa));
+ have_you_any_wool(baa_baa, lengthof(baa_baa));

EXAMPLE 4 (p19)

- const size_t f_size = sizeof(embed_data);
+ const size_t f_n = lengthof(embed_data);
- unsigned char f_data[f_size];
+ unsigned char f_data[f_n];

FILE* f_source = fopen("data.dat", "rb");
if (f_source == nullptr)

return 1;
char* f_ptr = (char*)&f_data[0];

- if (fread(f_ptr, 1, f_size, f_source) != f_size) {
+ if (fread(f_ptr, 1, f_n, f_source) != f_n) {

fclose(f_source);

ISO/IEC 9899 2024-??-?? 6

n???? (WG14) Proposal for C2y n???? (WG14)

return 1;
}
fclose(f_source);

- int is_same = memcmp(&embed_data[0], f_ptr, f_size);
+ int is_same = memcmp(&embed_data[0], f_ptr, f_n);

6.10.4.2 limit parameter
EXAMPLE 1 (p5)

- static_assert((sizeof(sound_signature) / sizeof(*sound_signature)) == 4,
- "There should only be 4 elements in this array.");
+ static_assert(lengthof(sound_signature) == 4);

EXAMPLE 2 (p6)

- static_assert((sizeof(sound_signature) / sizeof(*sound_signature)) == 4,
- "There should only be 4 elements in this array.");
+ static_assert(lengthof(sound_signature) == 4);

6.10.4.4 prefix parameter
EXAMPLE (p4)

- int is_good = (sizeof(whl) == 1 && whl[0] == ' ')
+ int is_good = (lengthof(whl) == 1 && whl[0] == ' ')

|| (whl[0] == '\xEF' && whl[1] == '\xBB'
- && whl[2] == '\xBF' && whl[sizeof(whl) - 1] == ' ');
+ && whl[2] == '\xBF' && whl[lengthof(whl) - 1] == ' ');

A.2.2 Keywords
(6.4.1)

int
+lengthof

long

A.3.1 Expressions
(6.5.4)

unary-expression:
postfix-expression
++ unary-expression
-- unary-expression
unary-operator cast-expression
sizeof unary-expression
sizeof (type-name)

+ lengthof unary-expression
+ lengthof (type-name)

alignof (type-name)

J.2 Undefined behavior
(52)

An expression that is required to be an integer constant expression
does not have an integer type;
has operands that are not integer constants,
named constants,
compound literal constants,
enumeration constants,
character constants,
predefined constants,

-sizeof expressions

ISO/IEC 9899 2024-??-?? 7

n???? (WG14) Proposal for C2y n???? (WG14)

+sizeof or lengthof expressions
whose results are integer constants,
alignof expressions,
or immediately-cast floating constants;
or contains casts

-(outside operands to sizeof and alignof operators)
+(outside operands to sizeof, lengthof, and alignof operators)

other than conversions of arithmetic types to integer types (6.6).

(54)

An arithmetic constant expression does not have arithmetic type;
has operands that are not integer constants,
floating constants,
named and compound literal constants of arithmetic type,
character constants,
predefined constants,

-sizeof expressions
+sizeof or lengthof expressions

whose results are integer constants,
or alignof expressions;
or contains casts

-(outside operands to sizeof or alignof operators)
+(outside operands to sizeof, lengthof, or alignof operators)

other than conversions of arithmetic types to arithmetic types (6.6).

J.6.3 Particular identifiers or keywords
p2

ldiv_t
+lengthof

lgamma

K.3.5.3.3 The fscanf_s function
EXAMPLE 2 (p8)

- n = fscanf_s(stdin, "%s", s, sizeof s);
+ n = fscanf_s(stdin, "%s", s, lengthof s);

K.3.7.4.1 The strtok_s function
EXAMPLE (p10)

- rsize_t max1 = sizeof(str1);
- rsize_t max2 = sizeof(str2);
+ rsize_t max1 = lengthof(str1);
+ rsize_t max2 = lengthof(str2);

K.3.9.4.1.2 The wcrtomb_s function
Description (p4)

- wcrtomb_s(&retval, buf, sizeof buf, L , ps)
+ wcrtomb_s(&retval, buf, lengthof buf, L , ps)

See also
The discussion of a patch set implementing a __lengthof__ operator in GCC.

ISO/IEC 9899 2024-??-?? 8

https://inbox.sourceware.org/gcc-patches/20240728141547.302478-1-alx@kernel.org/T/#t

	n???? (WG14)
	Name
	Category
	Author
	Cc

	History
	Problem description
	Portability
	Type names
	constexpr
	Double evaluation

	Proposal description
	Syntax

	Future directions
	Proposed wording
	6.3.2.1 Lvalues, arrays, and function designators
	6.4.1 Keywords
	6.5.4 Unary operators
	6.5.4.4 The sizeof and alignof operators
	6.6 Constant expressions
	6.7.2 Storage-class specifiers
	6.7.7.3 Array declarators
	6.9.1 General
	6.10.2 Conditional inclusion
	6.10.4.1 #embed preprocessing directive
	6.10.4.2 limit parameter
	6.10.4.4 prefix parameter
	A.2.2 Keywords
	A.3.1 Expressions
	J.2 Undefined behavior
	J.6.3 Particular identifiers or keywords
	K.3.5.3.3 The fscanf_s function
	K.3.7.4.1 The strtok_s function
	K.3.9.4.1.2 The wcrtomb_s function

	See also

