
N3294 (WG14) Proposal for C2y N3294 (WG14)

Name
n3294 - The [[restrict()]] function attribute as a replacement of the restrict qualifier

Category
Feature and deprecation.

Author
Alejandro Colomar Andres; maintainer of the Linux man-pages project.

Cc
GNU C library
GNU Compiler Collection
Linux man-pages
Paul Eggert
Xi Ruoyao
Jakub Jelinek
Martin Uecker
LIU Hao
Jonathan Wakely
Richard Earnshaw
Sam James
Emanuele Torre
Ben Boeckel
"Eissfeldt, Heiko"
David Malcolm

Description
restrict qualifier

The restrict qualifier is not useful for diagnostics. Being defined in terms of accesses, the API is not enough
for a caller to know what the function will do with the objects it receives.

That is, a caller cannot know if the following call is correct:

void f(const int *restrict a, int **restrict b);

f(a, &a);

Having no way to determine if a call will result in Undefined Behavior makes it a dangerous qualifier.

The reader might notice that this prototype and call is very similar to the prototype of strtol(3), and the use re-
minds of a relatively common use of that function.

Diagnostics
A good replacement of the restrict qualifier should allow to specify in the API of the following function that it
doesn’t accept pointers that alias.

void
replace(const T *restrict new, T **restrict ls, size_t pos)
{

memcpy(ls[pos], new, sizeof(T));
}

This proposal suggests the following:

[[restrict(1)]] [[restrict(2)]]
void
replace(const T *restrict new, T **restrict ls, size_t pos);

replace(arr[3], arr, 2); // UB; can be diagnosed

ISO/IEC 9899 2024-07-09 1

mailto:alx@kernel.org
https://www.kernel.org/doc/man-pages/
mailto:libc-alpha@sourceware.org
mailto:gcc@gcc.gnu.org
mailto:linux-man@vger.kernel.org
mailto:eggert@cs.ucla.edu
mailto:xry111@xry111.site
mailto:jakub@redhat.com
mailto:uecker@tugraz.at
mailto:lh_mouse@126.com
mailto:jwakely.gcc@gmail.com
mailto:Richard.Earnshaw@arm.com
mailto:sam@gentoo.org
mailto:torreemanuele6@gmail.com
mailto:ben.boeckel@kitware.com
mailto:heiko.eissfeldt@siemens.com
mailto:dmalcolm@redhat.com
man:strtol(3)

N3294 (WG14) Proposal for C2y N3294 (WG14)

Qualifiers
It is also unfortunate that restrict is a qualifier, since it doesn’t follow the rules that apply to all other quali-
fiers. While it is discarded easily, its semantics make it as if it couldn’t be discarded.

Function attribute
The purpose of restrict is to

• Allow functions to optimize based on the knowledge that certain objects are not accessed by any other ob-
ject in the same scope; usually a function boundary, which is the most opaque boundary, and where this in-
formation is not otherwise available.

• Diagnose calls that would result in Undefined Behavior under this memory model.

Qualifiers don’t seem to be good for carrying this information, but function attributes are precisely for adding
information that cannot be expressed by just using the type system.

An attribute would need to be more strict than the restrict qualifier to allow diagnosing non-trivial cases, such
as the call shown above.

A caller only knows what the callee receives, not what it does with it. Thus, for diagnostics to work, the se-
mantics of a function attribute should be specified in terms of what a function is allowed to receive.

[[restrict]]
The [[restrict]] function attribute specifies that the pointer to which it applies is the only reference to the array
object to which it points (except that a pointer to one past the last element may overlap another object).

If the number of elements is specified with array notation or a compiler-specific attribute, the array object to
be considered is a subobject of the original array object, which is limited by the number of elementsspecified
in the function prototype.

For the following prototype:

[[restrict(1)]] [[restrict(2)]]
void add_inplace(size_t n, int a[n], const int b[n]);

In the following calls, the caller is able to determine with certainty if the behavior is defined or undefined:

char a[100] = ...;
char b[50] = ...;

add_inplace(50, a, a + 50); // Ok
add_inplace(50, a, b); // Ok
add_inplace(50, a, a); // UB

In the first of the three calls, the parameters don’t alias inside the function, since the subobjects of 50 elements
do not overlap each other, even though they are one single array object to the outer function.

Optimizations
This function attribute allows similar optimizations than those allowed by the restrict qualifier.

strtol(3)
In some cases, such as the strtol(3) function, the prototype will be different, since this attribute is
stricter than restrict, and can’t be applied to the same parameters. For example, the prototype for
strtol(3) would be

[[restrict(2)]]
long
strtol(const char *str, char **endp, int base);

This could affect optimizations, since now it’s not clear to the implementation that str is not modified
by any other reference. Compiler-specific attributes can help with that. For example, the
[[gnu::access()]] attribute can be used in this function to give more information:

[[restrict(2)]]
[[gnu::access(read_only, 1)]]

ISO/IEC 9899 2024-07-09 2

man:strtol(3)
man:strtol(3)
man:strtol(3)

N3294 (WG14) Proposal for C2y N3294 (WG14)

[[gnu::access(write_only, 2)]]
long
strtol(const char *str, char **endp, int base);

The fact that endp is write-only lets the callee deduce that *endp cannot be used to write to the string
(since the callee is not allowed to inspect *endp).

Another concern is that a global variable such as errno might alias the string. This is already a con-
cern in several ISO C calls, such as rename(2). But in the case of strtol(3), it would be a regression.
There are ways to overcome that, such as designing helper functions in a way that the attribute can be
applied to add extra information.

It is important that diagnostics are easy to determine, to avoid false negatives and false positives, so
that code is easily safe. Optimizations, while important, need not be as easy to apply as diagnostics.
If an implementation wants to be optimal, it will do the extra work for being fast.

Multiple aliasing pointers
In some cases, it might be useful to allow specifying that some pointers may alias each other, but not
others.

Strings
Another way to determine that str cannot be aliased by any other object such as errno would be to
use an attribute that marks str as a string. An object of type int shouldn’t be allowed to represent a
string, so regardless of character types being allowed to alias any other type, an attribute such as
[[gnu::null_terminated_string_arg()]] might be used to determine that the global errno does not
alias the string.

Deprecation
The restrict qualifier would be deprecated by this attribute, similar to how the noreturn function specifier was
superseded by the [[noreturn]] function attribute.

Backwards compatibility
Removing the restrict qualifier from function prototypes does not cause problems in most functions. Only
functions with restrict applied to a pointee would have incompatible definitions. The only standard functions
where this would happen are:

tmpfile_s()
fopen_s()
freopen_s()

Those functions are not widely adopted, so the problem would likely be minimal.

Proposal
6.7.13.x The restrict function attribute

Constraints
The restrict attribute shall be applied to a function.

A 1-based index can be specified in an attribute argument clause, to associate the attribute with the
corresponding parameter of the function, which must be of a pointer type.

(Optional.) Several indices can be specified, separated by commas.

The attribute can be applied several times to the same function, to mark several parameters with the
attribute.

(Optional.) The argument attribute clause may be omitted, which is equivalent to specifying the at-
tribute once for each parameter that is a pointer.

Semantics
If a function is defined with the restrict attribute, the corresponding parameter shall be the only refer-
ence to the array object that it points to. If the function receives another reference to the same array
object, the behavior is undefined. If the function accesses the array object through an lvalue that is
not derived from that pointer, the behavior is undefined.

ISO/IEC 9899 2024-07-09 3

man:rename(2)
man:strtol(3)
man:tmpfile_s()
man:fopen_s()
man:freopen_s()

N3294 (WG14) Proposal for C2y N3294 (WG14)

(Optional.) If more than one parameters are specified in the same attribute argument clause, then all
of those pointers are allowed to point to the same array object.

If the number of elements is specified with array notation (or a compiler-specific attribute), the array
object to be considered for aliasing is a sub-object of the original array object, limited by the number
of elements specifiedr [1].

[1] For the following prototype:

[[restrict(1)]] [[restrict(2)]]
void f(size_t n, int a[n], const int b[n]);

In the the following calls, the caller is able to determine if the behavior is defined or undefined:

char a[100] = /*...*/;
char b[50] = /*...*/;

f(50, a, a + 50); // Ok
f(50, a, b); // UB; a diagnostic is recommended
f(50, a, a + 2); // UB; a diagnostic is recommended

History
Revisions of this paper:

0.1 Original draft for removing restrict from the first parameter of strtol(3).

0.2 Incorporate feedback from glibc and gcc mailing lists.

0.3 Re-purpose, to deprecate restrict and propose [[restrict()]] instead.

See also
The original discussion about restrict and strtol(3).

ISO/IEC 9899 2024-07-09 4

man:strtol(3)
https://inbox.sourceware.org/libc-alpha/ajmcodhaxi33wxmyvomkd3osq42m3pd5c63uccfinissjputqw@scu47raz2oop/T/#t
man:strtol(3)

	N3294 (WG14)
	Name
	Category
	Author
	Cc

	Description
	restrict qualifier
	Diagnostics
	Qualifiers
	Function attribute
	 [[restrict]]
	Optimizations
	Deprecation
	Backwards compatibility

	Proposal
	6.7.13.x The restrict function attribute

	History
	See also

