Asynchronous I/O and Multi-threaded Concurrency in HDF5: Paths Forward
Quincey Koziol
May 7, 2014
Introduction
The HDF5 library is designed to be adaptable to the changing needs of its user community, to stay relevant and useful to them. As we progress further into the multi-core era, developers using the HDF5 library are increasingly writing multi-threaded applications in order to fully utilize the underlying system hardware. These developers are looking for features in the HDF5 library that enable them to leverage the concurrency they are building into this new generation of multi-threaded applications.
Although the HDF5 library is currently threadsafe and able to be used in multi-threaded applications, the internal mechanism used for ensuring this threadsafety doesn’t allow multiple application threads to concurrently use the library. This document describes, at a high-level, the current mechanism for ensuring the HDF5 library’s threadsafety, and outlines two paths to improving on its limitations.
Background
The HDF5 library must prevent multiple application threads from entering the library and modifying memory and file data structures simultaneously in an uncontrolled manner. Uncontrolled simultaneous modification of library data structures can corrupt those data structures and possibly the files produced from them.
For example, if multiple application threads simultaneously call the HDF5 library and those threads causes the library to operate on an internal data structure, each thread could attempt to modify portions of the data structure. If two or more threads attempt to modify the same portion of the structure, a race condition is created where one thread’s change to the data structure will overwrite another thread’s change, causing the data structure to become corrupted or changes to be lost.
In order to prevent this corruption, and related failures, the HDF5 library uses a global semaphore to restrict multiple threads from entering the library simultaneously. When an application thread enters an HDF5 API routine, it attempts to acquire this semaphore. If it acquires the semaphore, the thread will be allowed to enter the HDF5 library and complete its API call, blocking other threads from entering the library while doing so. When the thread holding the semaphore completes its API call and releases the semaphore, another thread can acquire the semaphore and proceed to enter the HDF5 library to perform its API call.
This single semaphore provides the threadsafety that the HDF5 library needs to avoid corrupting internal data structures. However, it doesn’t allow application threads to concurrently use the library. Solutions and alternatives to this single semaphore are described in the rest of this document.
Path #1: Improving Concurrency
To improve the concurrency of application threads within the HDF5 library, the single global semaphore guarding the entire library would be replaced with many smaller, more tightly focused, semaphores[footnoteRef:1] that guard individual data structures. When this is finished, semaphores will guard individual data structures within the HDF5 library, preventing their corruption, and the global semaphore can be removed. Then, each thread that enters the library will only wait when it needs to modify a data structure that is currently locked by another thread, greatly reducing the time that a thread waits for a resource to become available.[footnoteRef:2] [1: And/or other thread-safety structures, such as mutexs, locks, etc.] [2: One possible (although incomplete and somewhat dated) description and implementation notes for this path is documented here: http://www.hdfgroup.uiuc.edu/papers/features/mthdf/MTHDFpaper.htm]

The process of replacing a global semaphore with individual semaphores on each data structure requires careful analysis of each data structure within the code to modify and how those data structures interact with each other, according to the flow of control within the code. This process requires significant effort by knowledgeable staff, and is proportional to the size of code to analyze and modify[footnoteRef:3]. [3: This effort may actually be proportional to the square of the size of the code, due to the combinatoric interaction of internal data structures.]

Given that the HDF5 library is currently ~300,000 lines of C code, choosing this path to improvement will be a very significant undertaking, probably requiring 4-6 FTE years of work, plus ongoing effort to maintain the threadsafe nature of the data structures, as further modifications are made to the HDF5 library. Additionally, improving the concurrency in this way does not improve the latency of I/O operations for the calling thread – it still must wait to proceed on to other (non-I/O) operations until the I/O operation has completed.
Details on implementing this solution are outlined in Appendix A.
Path #2: Reducing Latency
As an alternative to directly improving the concurrency of the HDF5 library, the length of time each thread waits to acquire the global semaphore could be reduced. Achieving this goal would allow the appearance of greater multi-threaded concurrency to the HDF5 library, without requiring the effort involved in replacing the global semaphore with individual semaphores on data structures.
In order to reduce the latency of operations in the HDF5 library, the library will need to be analyzed for performance bottlenecks, and those bottlenecks removed. Given our experience and current knowledge, we anticipate that those bottlenecks will fall into three categories:
· Time spent performing I/O
· Time spent performing “compute bound” operations that depend on the I/O operations, such as datatype conversions and applying filters to chunks
· General overhead
Addressing each of those bottleneck categories will require a different technique:
· Time spent performing I/O can be addressed with the use of asynchronous I/O operations to access data in the HDF5 file. In some cases, asynchronous I/O operations can be initiated within the library in response to an existing API call to complete in the background after the API call has returned (and the global semaphore has been released), but to unlock the full potential of asynchronous I/O for applications, new, explicitly asynchronous, API calls will need to be added to the HDF5 library.
· Time spent performing compute bound operations within the HDF5 library can be addressed by using multiple threads within the HDF5 library. Each compute-bound routine can be replaced with a new implementation that uses multiple threads to accelerate the operation[footnoteRef:4], reducing the amount of time that the calling thread holds the global semaphore. [4: Either using OpenMP (http://openmp.org/) or by spawning new threads explicitly.]

· Time spent in general overhead is the most difficult to address, as it will require optimizing the existing code in a traditional way, with algorithm or data structure improvements. However, reductions in the general overhead will reduce the time a thread holds the global semaphore, as well as improve the overall performance of the HDF5 library, for both single- and multi-threaded applications.
The effort required to address time spent performing I/O and compute-bound operations is much smaller than the amount of time needed to remove the global semaphore in the library, probably on the order of 6-8 months of FTE effort for each aspect (i.e. perhaps 1.5 years of effort, total). An additional benefit of these improvements is that they are localized within the library and don’t require maintenance when future modifications are made to the HDF5 library, unless those modifications are related to I/O- or compute-bound aspects of the library. Optimizing general overhead is best done on an “as needed” basis, as it is essentially an unending task, as the library grows and is modified.
Details on implementing this solution are outlined in Appendix B.
Conclusions and Recommendation
Although the process of converting from a single global semaphore to individual semaphores (path #1) will give multi-threaded application a greater level of concurrency within the HDF5 library, the effort involved in performing this conversion, as well as the ongoing maintenance required to support it, argue against going down this path unless there is significant, and long-term, funding available to maintain the feature.
Implementing support for asynchronous I/O and internally multi-threading compute-bound aspects of the library (path #2) will bring a large portion of the benefits of the semaphore conversion path, but will be much less expensive to implement and maintain. Implementing support for asynchronous I/O will also provide the benefit of allowing each thread to overlap compute and I/O operations and will allow applications that use asynchronous I/O in combination with single-writer/multiple-reader (SWMR) access to make changes to the file visible to readers more quickly. Adding support for posting asynchronous reads of data before it is needed (i.e. “pre-fetching” data) is also an important benefit of asynchronous I/O that can’t be achieved with a solution that just relies on converting the library’s semaphore protection.
Implementing a solution based on adding support for asynchronous I/O (path #2) is the recommended course of action.[footnoteRef:5] [5: However, the two paths are not mutually exclusive - they could both be implemented, in either order, and coexist in the long-term.]

[bookmark: _Appendix_A_–]Appendix A – Design Details for Removing Global Semaphore
Should we desire to begin the process of removing the global semaphore in the HDF5 library, the steps to achieve that goal are described in the following document, particularly section 3: http://www.hdfgroup.uiuc.edu/papers/features/mthdf/MTHDFpaper.htm
Note that as described in that document, section 3.1 (“Serialization of the API”) has been completed and some of the details in section 3.2 (“Parallelization of Expensive Functions”) describing components within the library that would be modified need to be updated. In general though, the basic idea presented in section 3.2 and expanded on in section 3.3 is sound: keep the global semaphore around sections of the code that aren’t threadsafe yet and migrate toward semaphores around data structures in the library (with appropriate modifications of the algorithms to handle locking things correctly), eventually eliminating the global semaphore around blocks of code and only having protections around data structures.
[bookmark: _Appendix_B_–]Appendix B – Design Details for Implementing Asynchronous I/O
Implementing support for asynchronous I/O in the HDF5 library should be done at two levels: at the application layer (i.e. new API routines) and internally to the library. Application level changes are dependent on internal changes to the library, so the internal changes should be made first and are described first below.
Internal asynchronous I/O support within the library would be implemented with an internal thread-pool that could operate on a set of low-level POSIX-like operations (open, read, write, flush, close, etc) initiated by higher layers within the library. Consideration to using POSIX asynchronous I/O routines[footnoteRef:6] was given, but POSIX asynchronous I/O operations are poorly implemented on many operating systems and are not portable to Windows. Additionally, POSIX asynchronous I/O operations don’t encompass all the operations that the HDF5 library would like to perform asynchronously (e.g. asynchronous close and flush operations). So, a more flexible thread-based mechanism should be built within the library to handle low-level I/O to files. [6: A good description of POSIX asynchronous I/O routines is given in this IBM developerWorks article: http://www.ibm.com/developerworks/library/l-async/]

Several advantages of asynchronous I/O can be taken advantage of with only the internal asynchronous I/O support: asynchronous flushing of “cold” metadata (reducing latency of threads within the library), and improved visibility of changes to files opened in SWMR mode (by asynchronously sending changes to the file sooner). Additionally, having a thread-pool within the library would allow “compute bound” operations to be internally parallelized with multiple threads and complete more quickly.
Application level changes to support asynchronous I/O would require changes to all API routines that access an HDF5 file, returning a token to the calling application that can be used to check whether an asynchronous operation has completed. Asynchronous I/O routines would also require the HDF5 library to internally track dependencies between asynchronous I/O operations, to guarantee that operations are initiated in the necessary order (e.g. an asynchronous group create operation needs to complete before an asynchronous dataset create operation can occur within that group).
A set of asynchronous I/O API extensions for HDF5 has been prototyped as part of work on the DOE “FastForward” project[footnoteRef:7] and design documents describing the API changes are available at the following locations: https://wiki.hpdd.intel.com/download/attachments/12127153/M7-HDF5_FF_Design-v27.6.pdf?version=1&modificationDate=1397511915000&api=v2 and https://wiki.hpdd.intel.com/download/attachments/12127153/M7-HDF5_FF_Users_Guide-v5.4.pdf?version=2&modificationDate=1397512066000&api=v2. Although the FastForward prototype code can’t be used directly since it’s implemented on a research file system, we expect that asynchronous I/O API extensions to HDF5 would be a refinement of that interface. [7: A web-site with an overview of the FastForward storage project is available here: https://wiki.hpdd.intel.com/display/PUB/Fast+Forward+Storage+and+IO+Program+Documents]

[bookmark: _GoBack]The asynchronous I/O API routines added to HDF5 would queue work in the internal thread-pool, then return immediately to the calling thread. This should remove any latency issues with performing I/O, while simultaneously allowing the thread to return to application compute tasks while the I/O operation completes.
