This is my cilynder in a Swing component. I’m trying to make a function which receives the new radius and height of the cilynder and change them in real time without rebuild the scene.

Someone suggest me to use Transform3D. Transform3D.setScale(new Vector3d(x, y, z)) over the cilynder for change them; but I couldn’t get it.

Any suggestion?

Thanks in advantage ;-)

class panel3DCil extends JPanel

{

 public BranchGroup createSceneGraph1() {

 Color3f amarillo = new Color3f(1.0f,1.0f,0.0f);

 Color3f blanco = new Color3f(1.0f,1.0f,1.0f);

 // Creamos un nodo raiz principal

 BranchGroup BGNodoPrinc = new BranchGroup();

 //Nodo Transform para el rat¢n

 TransformGroup root_group = new TransformGroup();

 BGNodoPrinc.addChild(root_group);

 BranchGroup BGobjRaizEstatico = new BranchGroup();

 //Nodo BG para el Autor 1

 BranchGroup BGobjRaizAut1 = new BranchGroup();

 //Nodo Transform para Autor 1

 Transform3D TAutor13D = new Transform3D(); //Autor 1

 //Lo situamos 0 por encima del eje Y y 13 por detr s de Z

 TAutor13D.setTranslation(new Vector3f(0.0f, 0.0f, -14.0f));

 //Grupo Transform para el movimiento de las letras

 TransformGroup TGMoveAutor1= new TransformGroup(TAutor13D);

 BGobjRaizAut1.addChild(TGMoveAutor1);

 //rotar levemente

 Transform3D rotar=new Transform3D();

 Transform3D rotartemp=new Transform3D();

 rotar.rotY(Math.PI);

 rotartemp.rotX(Math.PI/10.0f);

 rotar.mul(rotartemp);

 //Nuevo Nodo de Transform para permitir movimiento.

 TransformGroup TGobjAutor1 = new TransformGroup(rotar);

 TGobjAutor1.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);

 TGMoveAutor1.addChild(TGobjAutor1);

 //Apariencia y texto para autor 1

 Appearance AparienciaTexto1 = new Appearance();

 ColoringAttributes ColorTexto = new ColoringAttributes();

 AparienciaTexto1.setColoringAttributes(ColorTexto);

 AparienciaTexto1.setMaterial(new Material());

 Cylinder cilindro=new Cylinder(2,5,AparienciaTexto1);

 cilindro.setAppearance(AparienciaTexto1);

 TGobjAutor1.addChild(cilindro);

 // Creamos un comportamiento

 Transform3D XEje= new Transform3D();

 XEje.rotX(Math.PI/10.0f);

 XEje.rotY(Math.PI);

 Alpha rotationAlphaAut1 = new Alpha(-1, 10000);

RotationInterpolator rotatorAut1 = new RotationInterpolator(rotationAlphaAut1,TGobjAutor1,rotar ,0.0f,(float)Math.PI*2.0f);

// Con una esfera limite especificamos un comportamiento activo

// creamos una esfera en el origen de coordenadas y con un radio de 100

BoundingSphere boundsAutores = new BoundingSphere(new Point3d(0.0f, 0.0f, 0.0f),100);

 rotatorAut1.setSchedulingBounds(boundsAutores);

 TGobjAutor1.addChild(rotatorAut1);

 //Luz proyectada

 DirectionalLight lightDAutores = new DirectionalLight();

 lightDAutores.setInfluencingBounds(boundsAutores);

 lightDAutores.setDirection(new Vector3f(11.0f, 10.0f, 2.0f));

 lightDAutores.setColor(amarillo);

 TGMoveAutor1.addChild(lightDAutores);

 AmbientLight lightAAutores = new AmbientLight();

 lightAAutores.setInfluencingBounds(boundsAutores);

 TGMoveAutor1.addChild(lightAAutores);

 Background fondoAut = new Background();

 String fichero = "c:\\Evoltrip\\Imagenes\\fondo3D.jpg";

 TextureLoader cargaIm = new TextureLoader(fichero, this);

 ImageComponent2D imagenFondo = cargaIm.getImage();

 if(imagenFondo == null) fondoAut.setColor(0.4f, 0.4f, 1.0f);

 else fondoAut.setImage(imagenFondo);

 fondoAut.setApplicationBounds(boundsAutores);

 BGobjRaizEstatico.addChild(fondoAut);

 BGNodoPrinc.addChild(BGobjRaizAut1);

 BGNodoPrinc.addChild(BGobjRaizEstatico);

 return BGNodoPrinc;

 } // end of createSceneGraph1 method

 public panel3DCil(String titulo)

 {

 // construct the 3D image

 Canvas3D canvas3D = new Canvas3D(null);

 SimpleUniverse simpleU = new SimpleUniverse(canvas3D);

 BranchGroup scene = createSceneGraph1();

 simpleU.getViewingPlatform().setNominalViewingTransform();

// This will move the ViewPlatform back a bit so the

 simpleU.addBranchGraph(scene);

 this.setLayout(new BorderLayout());

 this.setOpaque(false);

 this.add("Center", canvas3D);

 }

}

class Ventana3D extends JFrame

{

 Image icono;

 public static Dimension screenSize= new Dimension(205,200);

 public Ventana3D(String titulo) {

 super();

 icono = Toolkit.getDefaultToolkit().createImage("C:\\Evoltrip\\Imagenes\\icoVent.jpg");

 try { // usamos el aspecto por defecto

 UIManager.setLookAndFeel(UIManager.getSystemLookAndFeelClassName());

 }

 catch(Exception e) { }

 this.setSize(screenSize);

 this.setResizable(false);

 this.setTitle("Vista 3D de ciudad:"+titulo);

 this.setLocation(200,200);

 vista3D.theOuterframe = this; //hacemos la variable global

 // en el evento de cerrar la ventana mataremos todos los hilos.

 WindowListener l = new WindowAdapter() {

 public void windowClosing(WindowEvent e)

 { //Aqu¡ mataremos el hilo de este dibujo

 }

};

 this.addWindowListener(l);

 this.getContentPane().add(new panel3DCil(titulo));

 this.setIconImage(icono);

 this.show(); // start drawing itself

 }

}

public class vista3D {

 public static Ventana3D theOuterframe;

 vista3D(String titulo)

 {

 theOuterframe=new Ventana3D(titulo); // make the window

 }

}

