Imagers of the Year

When we were first alerted to landing of the Spirit Rover on Mars this month, Advanced Imaging was delighted to find out how big a role Java Advanced Imaging (JAI) and Java3D played in the successful landing. It took a joint effort between JPL and SUN with Apple to develop a downloadable viewer for the historic event to be witnessed by the general public. For this effort, we are awarding the Imaging team award for 2003 to Mark Powell and Bob Deen from the Jet Propulsion Labs (JPL) in Pasadena, CA.

Mark Powell is a member of the technical staff in the Mobility Systems Concept Development Section at the Jet Propulsion Laboratory and Bob Deen is a technical lead for the Multimission Image processing Laboratory (MIPL) with direct responsibility for Image display and GUI; Image processing Infrastructure and Image processing applications plus being a member of Advanced Imaging’s editorial advisory board

Mark is a member of the Maestro development team. Maestro uses both Java3D and JAI for its 3D visualization and image processing. JPL worked with Sun and Apple on the development of Maestro, but JPL’s interaction with

them was mainly to inform them of issues with Java3D and JAI (things

that didn't work right in Maestro or that didn't work the way that we

expected) and they gave us workaround and bug fixes. With Apple it

was basically the same thing...they ported Java3D and JAI to MacOS X

and JPL ran Maestro on their platform and identified the issues, of

which there were few.

The help that JPL got from the Sun developers besides patches was through the

J3D and JAI developer forums, which are very useful since the entire

community is there to share their experiences with applying JAI/J3D to

solving a variety of problems.

Imagers of the year

For Bob Deen, the first day mosaics were processed by him, as was the stereo anaglyph from the next day. The TV views were results from JPL’s software efforts. While Bob did not

work directly on the Maestro project, he did work

with the team closely. Maestro is a customer of JPL’s data.

The Web Interface for TeleScience/ Science Activity Planner (WITS/SAP) program uses JadeDisplay for image display, which Bob wrote and is available for public release at openchannelfoundation.org, at the NASA distribution site. In Bob’s sub-organization, the MIPL image processing software processes the images from telemetry, mosaics, terrains, and all sorts of other goodies. JPL process the image data that Maestro displays.

Java is not deployed in the embedded systems of the Spirit rover on Mars. There has been extensive talk about on-board Java on future

Missions. Java is used extensively in the ground system.

Paul Backes and Jeff Norris wrote the original version of the Web

Interface for TeleScience (WITS) for the Mars Polar Lander in 1999, which was also released to the public at the time. It was part of the

keynote at the first JavaOne conference around that time.

Since then JPL renamed the app --it was originally an applet, intended to provide a distributed planning environment for robotic platforms-- to Science Activity Planner for the Mars Exploration Rover mission (the version used at JPL) and Maestro for the public version.

The current version of Maestro is ~180,000 lines of code and is the

result of 3 years of development by an average of 2.5 full time

people. JPL’s development platform of choice is RedHat Linux, and the

mission runs our app strictly on that platform, although it can run on

Windows, Solaris, and recently Mac OS X.

Maestro special features–not available anywhere else on the commercial market-- include; the ViewGrid GUI in the Downlink Browser, which helps you look at

hundreds of images without opening them all in separate windows;

the JadeDisplay GUI component for rendering images in 2D developed at JPL by Deen; custom JAI operators that were written in-house for special tasks like Cylindrical and Azimuthal mosaic warping, range map and elevation map overlays; seamless integration of image and stereo range data in the GUI (if

you click on a pixel, you see it in 2D and 3D and you can create a 3D

target or waypoint there by simply naming that point as a Feature);

an intuitive, custom GUI component for creating histogram

stretches, which is a vital feature to the best general purpose image

processing software such as XV and Photoshop; coregistration of imagery from heterogeneous instruments, such as overlaying infrared spectrometer data from Mini-TES onto Navcam and

Pancam; custom navigation for our ThreeDView (Orbit, Spin, Slide); a specialized terrain format for stereo-based "wedges" of terrain, designed for optimized use of automatic LOD switching for performance; a custom Imagecube view GUI compoment that lets you slide through hundreds of wavelengths of Mini-TES infrared data quickly and robotics algorithms required to simulate the position of the rover and its instruments in order to project "footprints": overlaid drawings of where new high res color images and spectra will be acquired in the context of terrain maps from the engineering cameras

Mark received his B.S.C.S. in 1992, M.S.C.S in

1997, and Ph.D. in Computer Science and Engineering in 2000 from theUniversity of South Florida, Tampa. His dissertation work was in the area of advanced illumination modeling, color and range image processing applied to robotics and medical imaging. At JPL his area of focus is science data visualization and science planning for telerobotics. He is currently supporting the Mars Exploration Rover mission as a Science Downlink Coordinator and contributed to the development of science planning software (Science Activity

Planner/Maestro) for the 2003 Mars Exploration Rovers.

Deen states that the role Java played in the processing of the incoming images was significant. For the actual pipeline processing, it's used to convert file formats, which

happens for every image JPL produces. It's also used for some small database maintenance tasks. The actual processing programs are C++ for historical reasons.

Outside of the pipeline, Java is used as the primary QC tool and the pointing correction tool are Java-based

