
Background

● Practical Connection Limit - PostgreSQL achieves some of the fastest SQL
throughput in the world, but does so through a fewer amount of connections.
Typically 100 is the limit, and diminishing returns become counterproductive beyond
200. (Reference Required)

● Multiple User Accounts - There are a number of PostgreSQL users who wish to
use PostgreSQL for more than 200 concurrent database-users. Such connections
are from independent backend processes. They are often idle, but desire the ability
to be NOTIFY’d on certain topics. This situation arises with Microservices
Architectures, but also in situations with many Database Administrators, many
Business Analysts, and DTS integrations.

● Connection Pooling - Is a great way to leverage the speed of PostgreSQL while
keeping within a 100-connection limit. PgBouncer is one tool that helps accomplish
this. Odyssey is another such tool that uses asyn-io and more than one CPU thread.
These are typically used for 1 database user account, for a single database, with
good benefits. A single large pool can be used.

● Listen/Notify Pooling - Work is being specified to enable more efficient pooling of
Listen/Notify mechanisms:

○ https://github.com/yandex/odyssey/issues/365
○ https://github.com/pgbouncer/pgbouncer/issues/655

Problem

Issues

● A single large connection pool cannot be shared across multiple Users (and
Databases). Pools can only be practically created for related Database-User
combinations. If there are 200x users, there needs to be at least 200 connections
ready.

● The network connection protocol doesn’t have support for changing the user on an
existing connection. Instead new connections must be created specifically for the
User-Database context (and old ones terminated), adding lag.

● The PostgreSQL SQL dialect doesn’t have support to “authoritatively” change the
user.

○ SET ROLE - is limited to a subset of roles the current session user is a
member of; it can be reset using RESET ROLE. This enables the client
application to gain broader privileges and impersonate other users, which is
bad.

○ SET SESSION AUTHORIZATION - can only be used by a superuser to
switch to another user (perhaps less privileged). `RESET SESSION
AUTHORIZATION` can be sent, resetting back to being a super user. This

https://github.com/yandex/odyssey/issues/365
https://github.com/pgbouncer/pgbouncer/issues/655
https://www.postgresql.org/docs/14/sql-set-role.html
https://www.postgresql.org/docs/14/sql-set-session-authorization.html

enables the client application to gain broader privileges and impersonate
other users, which is bad.

Inadequate workarounds
● SET SESSION AUTHORIZATION - see above
● Separate connections - as above, for 200x users this requires 200x connections

between the middleware and backend. This defeats the purpose of connection
pooling.

● Aggressive connection termination - at an extreme, the middleware could create a
single user connection for running a command, then close the connection. This has a
performance penalty. This can be balanced with a timeout factor, and idle-detection,
but that requires tuning.

● Don’t use PostgreSQL - it seems that mySQL comfortably supports up to 200k
concurrent connections. That’s nice, but many systems have already chosen
PostgreSQL and cannot easily change, and want to invest in its improvement.

● Use more PostgreSQL replicated instances - while that can work for many
workloads, that’s not universally efficient.

○ Consider a simple situation with 1000 users (with different database logins)
who are sending 1 query every 1 hour. It’s a very light load, and the server
resources are underutilized. It’s the concurrent connection issue that needs to
be solved here. Additional nodes will work, but that’s unnecessary cost, as
well as new added sysadmin complexity to manage replication.

○ This proposal is particularly considering the use of Listen/Notify, which only
works within a single node.

● Use a custom middleware - perhaps a Web API could be built that used a single
shared user account

○ Assume that all of the client applications need the PostgreSQL protocol
connection. (eg. PowerBI, pgAdmin, Third Party software, and more). A new
API is not an option in such cases.

○ Such a Web API would need to implement authentication and authorization.
That’s a trap many developers fall into, but it’s not one that all developers
desire.

Solution

Goals
● Fast - any changing of username needs to be as low-overhead as possible. The

middleware can be trusted (it already has the ability to connect as superuser
anyway).

● Changing the username (not necessarily the database).
● For use with middleware like pgBouncer or Odyssey.

Options
The following options proposed here are backwards compatible with previous versions.

1. Connection: Database User Impersonation - This approach is preferred, because
it is anticipated to be the most efficient with 0-RTT most of the time.

○ A new GRANT privilege to Impersonate Users. Users don’t have this privilege
by default. A user with the Impersonate Users privilege SHOULD NOT have
any other privilege (reading any data or anything).

○ A middleware (the frontend of a direct connection to PostgreSQL) WILL use
the Startup Message as usual to authenticate as a user with ImpersonateUser
privilege.

○ A new protocol message format called “ImpersonateDatabaseUser” with
fields for

■ user - The username is a mandatory. If the userOid is not provided,
this MUST match a username that is present and active in
PostgreSQL.

■ userOid - The user Oid is optional. If provided, this will be used. The
middleware MAY lookup a valid oid for efficiency. The backend MUST
use the provided Oid if one is set.

■ Database - The database is mandatory. This MUST match the same
database that the connection was started on. In the future, this might
be used to change the database.

■ Password - optional. This SHOULD be sent the first time a username
is used by the middleware to validate the password. This may be
empty upon subsequent uses, to reduce lookups and load.

○ A middleware MAY send commands to reset a connection state before a
batch of client protocol commands.

○ A middleware WILL send ImpersonateDatabaseUser
○ A middleware WILL send one or more messages for that user (database)

context.
○ A middleware MAY send commands to reset a connection state after a batch

of client protocol commands
○ ImpersonateDatabaseUser will either succeed silently (0-RTT), or fail. Upon

failure, no further commands will be processed until
ImpersonateDatabaseUser succeeds.

■ The middleware will receive the ImpersonateDatabaseUserError
message, and propagate this back to the real client. The middleware
MAY cache the SimpleQuery and retry instead of propagating this
message back to the real client. But that’s not necessary.

2. Connection: Permit more than one StartupMessage -
○ Compared to [1], the difference here, is that it’s the same StartupMessage

with multiple RTT as usual. But this is less suitable for per-statement user-role
changes.

○ Instead of only supporting the StartupMessage upon connection, the
StartupMessage is expected and permitted outside of a Query
request/response cycle.

https://www.postgresql.org/docs/10/protocol-message-formats.html

3. SQL: Database User Impersonation - this is very similar to [1], except using new
SQL SimpleQuery commands instead of Protocol Messages. Protocol Messages are
preferred because they are more structured, and not SQL-standard anyway.

4. SQL: Extend `SET ROLE` with Password -
○ This would be allowed for a user role with less or no privileges to change to a

privileged role. Therefore the use of `RESET ROLE` could result in losing all
access.

○ Eg. `SET ROLE user5 WITH PASSWORD ‘abc123’;`
5. SQL: Extend `SET SESSION AUTHORIZATION` with Password

○ This would be allowed for a user role with less or no privileges to change to a
privileged role. Therefore the use of `RESET SESSION AUTHORIZATION`
could result in losing all access.

○ Eg. `SET SESSION AUTHORIZATION user5 WITH PASSWORD ‘abc123’;`
6. Multiple implementations - to enable this capability for a variety of use cases.

Particularly [1] and [5] perhaps. One for Connection level, and one for SQL level.

Next Steps
● Community Consultation and Design on pgsql-hackers@lists.postgresql.org
● Test Specs
● Resourcing

○ People
○ Funding options

Design considerations, and preliminary work
● Key Reading

○ https://www.postgresql.org/docs/14/protocol-message-formats.html
○ https://wiki.postgresql.org/wiki/Backend_flowchart#tcop

■ https://www.postgresql.org/developer/backend/
○ https://www.postgresql.org/docs/devel/overview.html

● Currently focusing on Solution Option 1 [SO1].
● Design TODO: Where will ImpersonateDatabaseUser message be parsed?

(Probably somewhere in tcop)
○ How will ImpersonateDatabaseUser be suppressed/delayed if there is already

a query/response in progress? (It should be rejected - the client should wait
for a ReadyForQuery message)

● Create a function VerifyUserPassword(username, password) based on
CheckPasswordAuth implementation

● Design TODO: Create a new GRANT privilege OR perhaps a special “role” that
permits Impersonation?

○ this is ideally cached within miscinit.c as bool IsImpersonationPermitted
alongside CurrentUserId

● Create a function SetSessionUserId(username, userid, password)
○ It will check that the authenticated connection user is allowed to impersonate
○ It will lookup userid if necessary (username is supplied but not userid)

mailto:pgsql-hackers@lists.postgresql.org
https://www.postgresql.org/docs/14/protocol-message-formats.html
https://wiki.postgresql.org/wiki/Backend_flowchart#tcop
https://www.postgresql.org/developer/backend/
https://www.postgresql.org/docs/devel/overview.html

○ It will verify the password with VerifyUserPassword, if the password is
provided

○ It will prepare a myextra structure kind of pattern - see variable.c:792
○ It will eventually call SetSessionUserId(userid, is_superuser=false)

Code Investigations
● According to the backend flowchart, postmaster is where the connection starts.

According to code investigation, the startup finishes init in the tcop module.
● How is the username initially set with the Start message? Short answer:

postmaster.c:2233
○ I started in the tcop module - src/backend/tcop/postgres.c
○ StartupMessage doesn’t have a header byte, it’s implicitly processed as the

first message. See StartupMessage in
https://www.postgresql.org/docs/14/protocol-message-formats.html

○ The protocol version number is distinct for this message type and should be a
useful search term.

○ “FrontendProtocol” seems to be the right variable assigned
○ It looks like tcop is the wrong place to be looking for StartupMessage magic.

Postmaster is where the connection startup magic occurs.
○ “ProcessStartupPacket” is looking good in

/src/backend/postmaster/postmaster.c
■ This assigns StartupMessage.User to “port->user_name” on line 2233.
■ port is Port type supplied as param. Port is defined in libpq-be.h as

“typedef struct Port”
■ port->user_name is limited to NAMEDATALEN (which I think is 64

chars?)
■ GSS is negotiated here if used, but the user password is not checked

here
● How does post->username get to a SQL variable like “current_user”? Short

answer: “BackendRun” function
○ Working backwards.
○ SQL Variables

■ current_user = user - this is what starts the connection
■ session_user - TODO -

○ For parsing current_user is “SVFOP_CURRENT_USER”
○ It might get resolved at: /backend/utils/adt/name.c:263.

■ CStringGetDatum(GetUserNameFromId(GetUserId(), false))
■ GetUserId resolves to CurrentUserId (OID) in miscinit.c:498
■ SetOuterUserId,SetSessionUserId,SetUserIdAndSecContext,SetUse

rIdAndContext sets to CurrentUserId
● SetOuterUserId > SetCurrentRoleId > commands/variable.c -

assign_role
● SetSessionUserId

○ InitializeSessionUserId - this assigns directly to
AuthenticatedUserId before calling SetSessionUserId

○ /utils/init/postinit.c - InitPostgres >

https://www.postgresql.org/developer/backend/
https://wiki.postgresql.org/wiki/Backend_flowchart#tcop
https://www.postgresql.org/docs/14/protocol-message-formats.html

■ /tcop/postgres.c - PostgresMain > postmaster.c
- BackendRun - this is where port->username
is bound. Called by BackendStartup which
must be the Main entrypoint.

■ Postmaster.c -
BackgroundWorkerInitializeConnection -
“Background” seems like a deadend

■ BackgroundWorkerInitializeConnectionByOid -
probably not used

○ InitializeSessionUserIdStandalone - we’re not
interested in standalone

○ SetSessionAuthorization - likely for the SQL command
○ Therefore, Postmaster links to current_user via BackendStartup >

BackendRun > PostgresMain > InitPostgres > InitializeSessionUserId >
SetSessionUserId

■ And that means “SetSessionUserId” is probably the best way to
change the active values.

■ InitPostgres has the logic to convert from username to Oid.
● How is the password validated? Short answer: InitPostgres

○ Best to start at BackendStartup - in postmaster.c:4235
○ AuthenticationCleartextPassword or AuthenticationMD5Password is used.
○ The connection is not valid until after, authentication, so I’m guessing that

BackendRun is called after Authentication.
○ Postmaster.c has ClientAuthInProgress bool
○ (Identities are loaded during PostmasterMain)
○ BackendInitialize sets ClientAuthInProgress to true :4421

■ This calls ProcessStartupPacket :4522
■ It doesn’t appear to do simple authentication.

○ InitProcess comes after BackendInitialize in BackendStartup
○ Searching for ‘R’
○ pq_beginmessage(&buf, 'R'); in sendAuthRequest

■ CheckPasswordAuth calls sendAuthRequest with
AUTH_REQ_PASSWORD

■ ClientAuthentication calls CheckPasswordAuth
■ PerformAuthentication calls ClientAuthentication
■ InitPostgres calls PerformAuthentication postinit.c:776

● Then calls InitializeSessionUserId
● How can we reuse a plain password function?

○ ClientAuthentication calls CheckPasswordAuth
■ This function gets the password from sendAuthRequest, but we won’t
■

○ If password is set on ImpersonateDatabaseUser then:
■ Refer to /src/backend/libpq/auth.c:784 in CheckPasswordAuth

○ Code reference:
■ char *shadow_pass = get_role_password(port->user_name, logdetail);
■ if (shadow_pass)
■ {
■ result = plain_crypt_verify(port->user_name, shadow_pass, passwd,

■ logdetail);
■ }
■ //deallocations are necessary
■ //result is an integer and should be STATUS_OK

