From cf539f322c91bbea79f444c746303bf49d6b4d70 Mon Sep 17 00:00:00 2001
From: Chengpeng Yan <chengpeng_yan@outlook.com>
Date: Sun, 30 Nov 2025 14:05:10 +0800
Subject: [PATCH v1] Add GOO (Greedy Operator Ordering) join search as an
 alternative to GEQO

Introduce a greedy join search algorithm (GOO) to handle
large join problems. GOO builds join relations iteratively, maintaining
a list of clumps (join components) and committing to the cheapest
legal join at each step until only one clump remains.

Signed-off-by: Chengpeng Yan <chengpeng_yan@outlook.com>
---
 src/backend/optimizer/path/Makefile           |   1 +
 src/backend/optimizer/path/allpaths.c         |   4 +
 src/backend/optimizer/path/goo.c              | 601 +++++++++++++++++
 src/backend/optimizer/path/meson.build        |   1 +
 src/backend/utils/misc/guc_parameters.dat     |   9 +
 src/backend/utils/misc/postgresql.conf.sample |   1 +
 src/include/optimizer/goo.h                   |  23 +
 src/include/optimizer/paths.h                 |   1 +
 src/test/regress/expected/goo.out             | 634 ++++++++++++++++++
 src/test/regress/expected/sysviews.out        |   3 +-
 src/test/regress/parallel_schedule            |   9 +-
 src/test/regress/sql/goo.sql                  | 329 +++++++++
 12 files changed, 1612 insertions(+), 4 deletions(-)
 create mode 100644 src/backend/optimizer/path/goo.c
 create mode 100644 src/include/optimizer/goo.h
 create mode 100644 src/test/regress/expected/goo.out
 create mode 100644 src/test/regress/sql/goo.sql

diff --git a/src/backend/optimizer/path/Makefile b/src/backend/optimizer/path/Makefile
index 1e199ff66f7..3bc825cd845 100644
--- a/src/backend/optimizer/path/Makefile
+++ b/src/backend/optimizer/path/Makefile
@@ -17,6 +17,7 @@ OBJS = \
 	clausesel.o \
 	costsize.o \
 	equivclass.o \
+	goo.o \
 	indxpath.o \
 	joinpath.o \
 	joinrels.o \
diff --git a/src/backend/optimizer/path/allpaths.c b/src/backend/optimizer/path/allpaths.c
index 4c43fd0b19b..4574b1f44cc 100644
--- a/src/backend/optimizer/path/allpaths.c
+++ b/src/backend/optimizer/path/allpaths.c
@@ -35,6 +35,7 @@
 #include "optimizer/clauses.h"
 #include "optimizer/cost.h"
 #include "optimizer/geqo.h"
+#include "optimizer/goo.h"
 #include "optimizer/optimizer.h"
 #include "optimizer/pathnode.h"
 #include "optimizer/paths.h"
@@ -3845,6 +3846,9 @@ make_rel_from_joinlist(PlannerInfo *root, List *joinlist)
 
 		if (join_search_hook)
 			return (*join_search_hook) (root, levels_needed, initial_rels);
+		/* WIP: for now use geqo_threshold for testing */
+		else if (enable_goo_join_search && levels_needed >= geqo_threshold)
+			return goo_join_search(root, levels_needed, initial_rels);
 		else if (enable_geqo && levels_needed >= geqo_threshold)
 			return geqo(root, levels_needed, initial_rels);
 		else
diff --git a/src/backend/optimizer/path/goo.c b/src/backend/optimizer/path/goo.c
new file mode 100644
index 00000000000..c6dc69e8432
--- /dev/null
+++ b/src/backend/optimizer/path/goo.c
@@ -0,0 +1,601 @@
+/*-------------------------------------------------------------------------
+ *
+ * goo.c
+ *     Greedy operator ordering (GOO) join search for large join problems
+ *
+ * GOO is a deterministic greedy operator ordering algorithm that constructs
+ * join relations iteratively, always committing to the cheapest legal join at
+ * each step. The algorithm maintains a list of "clumps" (join components),
+ * initially one per base relation. At each iteration, it evaluates all legal
+ * pairs of clumps, selects the pair that produces the cheapest join according
+ * to the planner's cost model, and replaces those two clumps with the
+ * resulting joinrel. This continues until only one clump remains.
+ *
+ * ALGORITHM COMPLEXITY:
+ *
+ * Time Complexity: O(n^3) where n is the number of base relations.
+ * - The algorithm performs (n - 1) iterations, merging two clumps each time.
+ * - At iteration i, there are (n - i + 1) remaining clumps, requiring
+ *   O((n-i)^2) pair evaluations to find the cheapest join.
+ * - Total: Sum of (n-i)^2 for i=1 to n-1 ≈ O(n^3)
+ *
+ * REFERENCES:
+ *
+ * This implementation is based on the algorithm described in:
+ *
+ * Leonidas Fegaras, "A New Heuristic for Optimizing Large Queries",
+ * Proceedings of the 9th International Conference on Database and Expert
+ * Systems Applications (DEXA '98), August 1998, Pages 726-735.
+ * https://dl.acm.org/doi/10.5555/648311.754892
+ *
+ *
+ * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
+ * Portions Copyright (c) 1994, Regents of the University of California
+ *
+ * IDENTIFICATION
+ *     src/backend/optimizer/path/goo.c
+ *
+ *-------------------------------------------------------------------------
+ */
+
+#include "postgres.h"
+
+#include "miscadmin.h"
+#include "nodes/bitmapset.h"
+#include "nodes/pathnodes.h"
+#include "optimizer/geqo.h"
+#include "optimizer/goo.h"
+#include "optimizer/joininfo.h"
+#include "optimizer/pathnode.h"
+#include "optimizer/paths.h"
+#include "utils/hsearch.h"
+#include "utils/memutils.h"
+
+/*
+ * Configuration defaults.  These are exposed as GUCs in guc_tables.c.
+ */
+bool		enable_goo_join_search = false;
+
+/*
+ * Working state for a single GOO search invocation.
+ *
+ * This structure holds all the state needed during a greedy join order search.
+ * It manages three memory contexts with different lifetimes to avoid memory
+ * bloat during large join searches.
+ *
+ * TODO: Consider using the extension_state mechanism in PlannerInfo (similar
+ * to GEQO's approach) instead of passing GooState separately.
+ */
+typedef struct GooState
+{
+	PlannerInfo *root;			/* global planner state */
+	MemoryContext goo_cxt;		/* long-lived (per-search) allocations */
+	MemoryContext cand_cxt;		/* per-iteration candidate storage */
+	MemoryContext scratch_cxt;	/* per-candidate speculative evaluation */
+	List	   *clumps;			/* remaining join components (RelOptInfo *) */
+
+	/*
+	 * "clumps" are similar to GEQO's concept (see geqo_eval.c): join
+	 * components that haven't been merged yet. Initially one per base
+	 * relation, gradually merged until one remains.
+	 */
+	bool		clause_pair_present;	/* any clause-connected pair exists? */
+}			GooState;
+
+/*
+ * Candidate join between two clumps.
+ *
+ * This structure holds the cost metrics extracted from a speculative joinrel
+ * evaluation. We create this lightweight structure in cand_cxt after discarding
+ * the actual joinrel from scratch_cxt, allowing us to compare many candidates
+ * without exhausting memory.
+ */
+typedef struct GooCandidate
+{
+	RelOptInfo *left;			/* left input clump */
+	RelOptInfo *right;			/* right input clump */
+	Cost		total_cost;		/* total cost of cheapest path */
+}			GooCandidate;
+
+static GooState * goo_init_state(PlannerInfo *root, List *initial_rels);
+static void goo_destroy_state(GooState * state);
+static RelOptInfo *goo_search_internal(GooState * state);
+static void goo_reset_probe_state(GooState * state, int saved_rel_len,
+								  struct HTAB *saved_hash);
+static GooCandidate * goo_build_candidate(GooState * state, RelOptInfo *left,
+										  RelOptInfo *right);
+static RelOptInfo *goo_commit_join(GooState * state, GooCandidate * cand);
+static bool goo_candidate_better(GooCandidate * a, GooCandidate * b);
+static bool goo_candidate_prunable(GooState * state, RelOptInfo *left,
+								   RelOptInfo *right);
+
+/*
+ * goo_join_search
+ *		Entry point for Greedy Operator Ordering join search algorithm.
+ *
+ * This function is called from make_rel_from_joinlist() when
+ * enable_goo_join_search is true and the number of relations meets or
+ * exceeds geqo_threshold.
+ *
+ * Returns the final RelOptInfo representing the join of all base relations,
+ * or errors out if no valid join order can be found.
+ */
+RelOptInfo *
+goo_join_search(PlannerInfo *root, int levels_needed,
+				List *initial_rels)
+{
+	GooState   *state;
+	RelOptInfo *result;
+	int			base_rel_count;
+	struct HTAB *base_hash;
+
+	/* Initialize search state and memory contexts */
+	state = goo_init_state(root, initial_rels);
+
+	/*
+	 * Save initial state of join_rel_list and join_rel_hash so we can restore
+	 * them if the search fails.
+	 */
+	base_rel_count = list_length(root->join_rel_list);
+	base_hash = root->join_rel_hash;
+
+	/* Run the main greedy search loop */
+	result = goo_search_internal(state);
+
+	if (result == NULL)
+	{
+		/* Restore planner state before reporting error */
+		root->join_rel_list = list_truncate(root->join_rel_list, base_rel_count);
+		root->join_rel_hash = base_hash;
+		elog(ERROR, "GOO join search failed to find a valid join order");
+	}
+
+	goo_destroy_state(state);
+	return result;
+}
+
+/*
+ * goo_init_state
+ *		Initialize per-search state and memory contexts.
+ *
+ * Creates the GooState structure and three memory contexts with different
+ * lifetimes:
+ *
+ * - goo_cxt: Lives for the entire search, holds the clumps list and state.
+ * - cand_cxt: Reset after each iteration, holds candidate structures during
+ *   the comparison phase.
+ * - scratch_cxt: Reset after each candidate evaluation, holds speculative
+ *   joinrels that are discarded before committing to a choice.
+ *
+ * The three-context design prevents memory bloat during large join searches
+ * where we may evaluate hundreds or thousands of candidate joins.
+ */
+static GooState * goo_init_state(PlannerInfo *root, List *initial_rels)
+{
+	MemoryContext oldcxt;
+	GooState   *state;
+
+	oldcxt = MemoryContextSwitchTo(root->planner_cxt);
+
+	state = palloc(sizeof(GooState));
+	state->root = root;
+	state->clumps = NIL;
+	state->clause_pair_present = false;
+
+	/* Create the three-level memory context hierarchy */
+	state->goo_cxt = AllocSetContextCreate(root->planner_cxt, "GOOStateContext",
+										   ALLOCSET_DEFAULT_SIZES);
+	state->cand_cxt = AllocSetContextCreate(state->goo_cxt, "GOOCandidateContext",
+											ALLOCSET_SMALL_SIZES);
+	state->scratch_cxt = AllocSetContextCreate(
+											   state->goo_cxt, "GOOScratchContext", ALLOCSET_SMALL_SIZES);
+
+	/*
+	 * Copy the initial_rels list into goo_cxt. This becomes our working
+	 * clumps list that we'll modify throughout the search.
+	 */
+	MemoryContextSwitchTo(state->goo_cxt);
+	state->clumps = list_copy(initial_rels);
+
+	MemoryContextSwitchTo(oldcxt);
+
+	return state;
+}
+
+/*
+ * goo_destroy_state
+ *		Free all memory allocated for the GOO search.
+ *
+ * Deletes the goo_cxt memory context (which recursively deletes cand_cxt
+ * and scratch_cxt as children) and then frees the state structure itself.
+ * This is called after the search completes successfully or fails.
+ */
+static void
+goo_destroy_state(GooState * state)
+{
+	MemoryContextDelete(state->goo_cxt);
+	pfree(state);
+}
+
+/*
+ * goo_search_internal
+ *		Main greedy search loop.
+ *
+ * Implements a two-pass algorithm at each iteration:
+ *
+ * Pass 1: Scan all clump pairs to detect whether any clause-connected pairs
+ *         exist. This sets the clause_pair_present flag.
+ *
+ * Pass 2: Evaluate all viable candidate pairs, keeping track of the best one
+ *         according to our comparison criteria. If clause_pair_present is true,
+ *         we skip Cartesian products entirely to avoid expensive cross joins.
+ *
+ * After selecting the best candidate, we permanently create its joinrel in
+ * planner_cxt and replace the two input clumps with this new joinrel. This
+ * continues until only one clump remains.
+ *
+ * The function runs primarily in goo_cxt, temporarily switching to planner_cxt
+ * when creating permanent joinrels and to scratch_cxt when evaluating
+ * speculative candidates.
+ *
+ * Returns the final joinrel spanning all base relations, or NULL on failure.
+ */
+static RelOptInfo *
+goo_search_internal(GooState * state)
+{
+	PlannerInfo *root = state->root;
+	RelOptInfo *final_rel = NULL;
+	MemoryContext oldcxt;
+
+	/*
+	 * Switch to goo_cxt for the entire search process. This ensures that all
+	 * operations on state->clumps and related structures happen in the
+	 * correct memory context.
+	 */
+	oldcxt = MemoryContextSwitchTo(state->goo_cxt);
+
+	while (list_length(state->clumps) > 1)
+	{
+		ListCell   *lc1;
+		int			i;
+		GooCandidate *best_candidate = NULL;
+
+		/* Allow query cancellation during long join searches */
+		CHECK_FOR_INTERRUPTS();
+
+		/* Reset candidate context for this iteration */
+		MemoryContextReset(state->cand_cxt);
+		state->clause_pair_present = false;
+
+		/*
+		 * Pass 1: Scan all pairs to detect clause-connected joins.
+		 *
+		 * We need to know whether ANY clause-connected pairs exist before we
+		 * can decide whether to skip Cartesian products. This quick scan
+		 * allows us to prefer well-connected joins without completely
+		 * forbidding Cartesian products (which may be necessary for
+		 * disconnected query graphs).
+		 */
+		for (i = 0, lc1 = list_head(state->clumps); lc1 != NULL;
+			 lc1 = lnext(state->clumps, lc1), i++)
+		{
+			RelOptInfo *left = lfirst_node(RelOptInfo, lc1);
+			ListCell   *lc2 = lnext(state->clumps, lc1);
+
+			for (; lc2 != NULL; lc2 = lnext(state->clumps, lc2))
+			{
+				RelOptInfo *right = lfirst_node(RelOptInfo, lc2);
+
+				/* Check if this pair has a join clause or order restriction */
+				if (have_relevant_joinclause(root, left, right) ||
+					have_join_order_restriction(root, left, right))
+				{
+					/* Found at least one clause-connected pair */
+					state->clause_pair_present = true;
+					break;
+				}
+			}
+
+			if (state->clause_pair_present)
+				break;
+		}
+
+		/*
+		 * Pass 2: Evaluate all viable candidate pairs and select the best.
+		 *
+		 * For each pair that passes the pruning check, we do a full
+		 * speculative evaluation using make_join_rel() to get accurate costs.
+		 * The candidate with the best cost (according to
+		 * goo_candidate_better) is remembered and will be committed after
+		 * this pass.
+		 *
+		 * TODO: It might be worth caching cost estimates if the same join
+		 * pair appears in multiple iterations.
+		 */
+		for (lc1 = list_head(state->clumps); lc1 != NULL;
+			 lc1 = lnext(state->clumps, lc1))
+		{
+			RelOptInfo *left = lfirst_node(RelOptInfo, lc1);
+			ListCell   *lc2 = lnext(state->clumps, lc1);
+
+			for (; lc2 != NULL; lc2 = lnext(state->clumps, lc2))
+			{
+				RelOptInfo *right = lfirst_node(RelOptInfo, lc2);
+				GooCandidate *cand;
+
+				cand = goo_build_candidate(state, left, right);
+				if (cand == NULL)
+					continue;
+
+				/* Track the best candidate seen so far */
+				if (best_candidate == NULL ||
+					goo_candidate_better(cand, best_candidate))
+					best_candidate = cand;
+			}
+		}
+
+		/* We must have at least one valid join candidate */
+		if (best_candidate == NULL)
+			elog(ERROR, "GOO join search failed to find any valid join candidates");
+
+		/*
+		 * Commit the best candidate: create the joinrel permanently and
+		 * update the clumps list.
+		 */
+		final_rel = goo_commit_join(state, best_candidate);
+
+		if (final_rel == NULL)
+			elog(ERROR, "GOO join search failed to commit join");
+	}
+
+	/* Switch back to the original context before returning */
+	MemoryContextSwitchTo(oldcxt);
+
+	return final_rel;
+}
+
+/*
+ * goo_candidate_prunable
+ *		Determine whether a candidate pair should be skipped.
+ *
+ * We use a two-level pruning strategy:
+ *
+ * 1. Pairs with join clauses or join-order restrictions are never prunable.
+ *    These represent natural joins or required join orders (e.g., from outer
+ *    joins or LATERAL references).
+ *
+ * 2. If clause_pair_present is true (meaning at least one clause-connected
+ *    pair exists in this iteration), we prune Cartesian products to avoid
+ *    evaluating expensive cross joins when better options are available.
+ *
+ * However, if NO clause-connected pairs exist in an iteration, we allow
+ * Cartesian products to be considered. This ensures we can always make
+ * progress even with disconnected query graphs.
+ *
+ * Returns true if the pair should be pruned (skipped), false otherwise.
+ */
+static bool
+goo_candidate_prunable(GooState * state, RelOptInfo *left,
+					   RelOptInfo *right)
+{
+	PlannerInfo *root = state->root;
+	bool		has_clause = have_relevant_joinclause(root, left, right);
+	bool		has_restriction = have_join_order_restriction(root, left, right);
+
+	if (has_clause || has_restriction)
+		return false;			/* never prune clause-connected joins */
+
+	return state->clause_pair_present;
+}
+
+/*
+ * goo_build_candidate
+ *		Evaluate a potential join between two clumps and return a
+ *candidate.
+ *
+ * This function performs a speculative join evaluation to extract cost metrics
+ * without permanently creating the joinrel. The process is:
+ *
+ * 1. Check basic viability (pruning, overlapping relids).
+ * 2. Switch to scratch_cxt and create the joinrel using make_join_rel().
+ * 3. Generate paths (including partitionwise and parallel variants).
+ * 4. Extract cost metrics from the cheapest path.
+ * 5. Discard the joinrel by calling goo_reset_probe_state().
+ * 6. Create a lightweight GooCandidate in cand_cxt with the extracted metrics.
+ *
+ * This evaluate-and-discard pattern prevents memory bloat when evaluating
+ * many candidates. The winning candidate will be rebuilt permanently later
+ * by goo_commit_join().
+ *
+ * Returns a GooCandidate structure, or NULL if the join is illegal or
+ * overlapping. Assumes the caller is in goo_cxt.
+ */
+static GooCandidate * goo_build_candidate(GooState * state, RelOptInfo *left,
+										  RelOptInfo *right)
+{
+	PlannerInfo *root = state->root;
+	MemoryContext oldcxt;
+	int			saved_rel_len;
+	struct HTAB *saved_hash;
+	RelOptInfo *joinrel;
+	Path	   *best_path;
+	Cost		total_cost;
+	GooCandidate *cand;
+
+	/* Skip if this pair should be pruned */
+	if (goo_candidate_prunable(state, left, right))
+		return NULL;
+
+	/* Sanity check: ensure the clumps don't overlap */
+	if (bms_overlap(left->relids, right->relids))
+		return NULL;
+
+	/*
+	 * Save state before speculative join evaluation. We'll create the joinrel
+	 * in scratch_cxt and then discard it.
+	 */
+	saved_rel_len = list_length(root->join_rel_list);
+	saved_hash = root->join_rel_hash;
+
+	/* Switch to scratch_cxt for speculative joinrel creation */
+	oldcxt = MemoryContextSwitchTo(state->scratch_cxt);
+
+	/*
+	 * Temporarily disable join_rel_hash so make_join_rel() doesn't find or
+	 * cache this speculative joinrel.
+	 */
+	root->join_rel_hash = NULL;
+
+	/*
+	 * Create the joinrel and generate all its paths.
+	 *
+	 * TODO: This is the most expensive part of GOO. Each candidate evaluation
+	 * performs full path generation via make_join_rel(). We might improve
+	 * performance by deferring expensive path variants (partitionwise,
+	 * parallel) until the commit phase.
+	 */
+	joinrel = make_join_rel(root, left, right);
+
+	if (joinrel)
+	{
+		/* Generate additional path variants */
+		generate_partitionwise_join_paths(root, joinrel);
+		if (!bms_equal(joinrel->relids, root->all_query_rels))
+			generate_useful_gather_paths(root, joinrel, false);
+		set_cheapest(joinrel);
+	}
+
+	best_path = joinrel ? joinrel->cheapest_total_path : NULL;
+	if (best_path == NULL)
+	{
+		/* Invalid or uninteresting join, clean up and return NULL */
+		MemoryContextSwitchTo(oldcxt);
+		goo_reset_probe_state(state, saved_rel_len, saved_hash);
+		return NULL;
+	}
+
+	/*
+	 * Extract the metrics we need from the speculative joinrel. After this,
+	 * we'll discard the entire joinrel and all its paths.
+	 */
+	total_cost = best_path->total_cost;
+
+	/*
+	 * Switch back to goo_cxt and discard the speculative joinrel.
+	 * goo_reset_probe_state() will clean up join_rel_list, join_rel_hash, and
+	 * reset scratch_cxt to free all the joinrel's memory.
+	 */
+	MemoryContextSwitchTo(oldcxt);
+	goo_reset_probe_state(state, saved_rel_len, saved_hash);
+
+	/*
+	 * Now create the candidate structure in cand_cxt. This will survive until
+	 * the end of this iteration (when cand_cxt is reset).
+	 */
+	oldcxt = MemoryContextSwitchTo(state->cand_cxt);
+	cand = palloc(sizeof(GooCandidate));
+	cand->left = left;
+	cand->right = right;
+	cand->total_cost = total_cost;
+	MemoryContextSwitchTo(oldcxt);
+
+	return cand;
+}
+
+/*
+ * goo_reset_probe_state
+ *		Clean up after a speculative joinrel evaluation.
+ *
+ * Reverts the planner's join_rel_list and join_rel_hash to their saved state,
+ * removing any joinrels that were created during speculative evaluation.
+ * Also resets scratch_cxt to free all memory used by the discarded joinrel
+ * and its paths.
+ *
+ * This function is called after extracting cost metrics from a speculative
+ * joinrel that we don't want to keep.
+ */
+static void
+goo_reset_probe_state(GooState * state, int saved_rel_len,
+					  struct HTAB *saved_hash)
+{
+	PlannerInfo *root = state->root;
+
+	/* Remove speculative joinrels from the planner's lists */
+	root->join_rel_list = list_truncate(root->join_rel_list, saved_rel_len);
+	root->join_rel_hash = saved_hash;
+
+	/* Free all memory used during speculative evaluation */
+	MemoryContextReset(state->scratch_cxt);
+}
+
+/*
+ * goo_commit_join
+ *		Permanently create the chosen join and update the clumps list.
+ *
+ * After selecting the best candidate in an iteration, we need to permanently
+ * create its joinrel (with all paths) and integrate it into the planner state.
+ * This function:
+ *
+ * 1. Switches to planner_cxt and creates the joinrel using make_join_rel().
+ *    Unlike the speculative evaluation, this joinrel is kept permanently.
+ * 2. Generates partitionwise and parallel path variants.
+ * 3. Determines the cheapest paths.
+ * 4. Updates state->clumps by removing the two input clumps and adding the
+ *    new joinrel as a single clump.
+ *
+ * The next iteration will treat this joinrel as an atomic unit that can be
+ * joined with other remaining clumps.
+ *
+ * Returns the newly created joinrel. Assumes the caller is in goo_cxt.
+ */
+static RelOptInfo *
+goo_commit_join(GooState * state, GooCandidate * cand)
+{
+	MemoryContext oldcxt;
+	PlannerInfo *root = state->root;
+	RelOptInfo *joinrel;
+
+	/*
+	 * Create the joinrel permanently in planner_cxt. Unlike the speculative
+	 * evaluation in goo_build_candidate(), this joinrel will be kept and
+	 * added to root->join_rel_list for use by the rest of the planner.
+	 */
+	oldcxt = MemoryContextSwitchTo(root->planner_cxt);
+
+	joinrel = make_join_rel(root, cand->left, cand->right);
+	if (joinrel == NULL)
+	{
+		MemoryContextSwitchTo(oldcxt);
+		elog(ERROR, "GOO join search failed to create join relation");
+	}
+
+	/* Generate additional path variants, just like standard_join_search() */
+	generate_partitionwise_join_paths(root, joinrel);
+	if (!bms_equal(joinrel->relids, root->all_query_rels))
+		generate_useful_gather_paths(root, joinrel, false);
+	set_cheapest(joinrel);
+
+	/*
+	 * Switch back to goo_cxt and update the clumps list. Remove the two input
+	 * clumps and add the new joinrel as a single clump.
+	 */
+	MemoryContextSwitchTo(oldcxt);
+
+	state->clumps = list_delete_ptr(state->clumps, cand->left);
+	state->clumps = list_delete_ptr(state->clumps, cand->right);
+	state->clumps = lappend(state->clumps, joinrel);
+
+	return joinrel;
+}
+
+/*
+ * goo_candidate_better
+ *		Compare two join candidates and determine which is better.
+ *
+ * Returns true if candidate 'a' should be preferred over candidate 'b'.
+ */
+static bool
+goo_candidate_better(GooCandidate * a, GooCandidate * b)
+{
+	return (a->total_cost < b->total_cost);
+}
diff --git a/src/backend/optimizer/path/meson.build b/src/backend/optimizer/path/meson.build
index 12f36d85cb6..e5046365a37 100644
--- a/src/backend/optimizer/path/meson.build
+++ b/src/backend/optimizer/path/meson.build
@@ -5,6 +5,7 @@ backend_sources += files(
   'clausesel.c',
   'costsize.c',
   'equivclass.c',
+  'goo.c',
   'indxpath.c',
   'joinpath.c',
   'joinrels.c',
diff --git a/src/backend/utils/misc/guc_parameters.dat b/src/backend/utils/misc/guc_parameters.dat
index 3b9d8349078..a8ce31ab8a7 100644
--- a/src/backend/utils/misc/guc_parameters.dat
+++ b/src/backend/utils/misc/guc_parameters.dat
@@ -840,6 +840,15 @@
   boot_val => 'true',
 },
 
+/* WIP: for now keep this in QUERY_TUNING_GEQO group for testing convenience */
+{ name => 'enable_goo_join_search', type => 'bool', context => 'PGC_USERSET', group => 'QUERY_TUNING_GEQO',
+  short_desc => 'Enables the planner\'s use of GOO join search for large join problems.',
+  long_desc => 'Greedy Operator Ordering (GOO) is a deterministic join search algorithm for queries with many relations.',
+  flags => 'GUC_EXPLAIN',
+  variable => 'enable_goo_join_search',
+  boot_val => 'false',
+},
+
 { name => 'enable_group_by_reordering', type => 'bool', context => 'PGC_USERSET', group => 'QUERY_TUNING_METHOD',
   short_desc => 'Enables reordering of GROUP BY keys.',
   flags => 'GUC_EXPLAIN',
diff --git a/src/backend/utils/misc/postgresql.conf.sample b/src/backend/utils/misc/postgresql.conf.sample
index dc9e2255f8a..8284e8b1da7 100644
--- a/src/backend/utils/misc/postgresql.conf.sample
+++ b/src/backend/utils/misc/postgresql.conf.sample
@@ -456,6 +456,7 @@
 # - Genetic Query Optimizer -
 
 #geqo = on
+#enable_goo_join_search = off
 #geqo_threshold = 12
 #geqo_effort = 5                        # range 1-10
 #geqo_pool_size = 0                     # selects default based on effort
diff --git a/src/include/optimizer/goo.h b/src/include/optimizer/goo.h
new file mode 100644
index 00000000000..0080dfa2ac8
--- /dev/null
+++ b/src/include/optimizer/goo.h
@@ -0,0 +1,23 @@
+/*-------------------------------------------------------------------------
+ *
+ * goo.h
+ *     prototype for the greedy operator ordering join search
+ *
+ * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
+ * Portions Copyright (c) 1994, Regents of the University of California
+ *
+ * IDENTIFICATION
+ *     src/include/optimizer/goo.h
+ *
+ *-------------------------------------------------------------------------
+ */
+#ifndef GOO_H
+#define GOO_H
+
+#include "nodes/pathnodes.h"
+#include "nodes/pg_list.h"
+
+extern RelOptInfo *goo_join_search(PlannerInfo *root, int levels_needed,
+								   List *initial_rels);
+
+#endif							/* GOO_H */
diff --git a/src/include/optimizer/paths.h b/src/include/optimizer/paths.h
index f6a62df0b43..5b3ebe5f1d2 100644
--- a/src/include/optimizer/paths.h
+++ b/src/include/optimizer/paths.h
@@ -21,6 +21,7 @@
  * allpaths.c
  */
 extern PGDLLIMPORT bool enable_geqo;
+extern PGDLLIMPORT bool enable_goo_join_search;
 extern PGDLLIMPORT bool enable_eager_aggregate;
 extern PGDLLIMPORT int geqo_threshold;
 extern PGDLLIMPORT double min_eager_agg_group_size;
diff --git a/src/test/regress/expected/goo.out b/src/test/regress/expected/goo.out
new file mode 100644
index 00000000000..88996f57508
--- /dev/null
+++ b/src/test/regress/expected/goo.out
@@ -0,0 +1,634 @@
+--
+-- GOO (Greedy Operator Ordering) Join Search Tests
+--
+-- This test suite validates the GOO join ordering algorithm and verifies
+-- correct behavior for various query patterns.
+--
+-- Create test tables with various sizes and join patterns
+CREATE TEMP TABLE t1 (a int, b int);
+CREATE TEMP TABLE t2 (a int, c int);
+CREATE TEMP TABLE t3 (b int, d int);
+CREATE TEMP TABLE t4 (c int, e int);
+CREATE TEMP TABLE t5 (d int, f int);
+CREATE TEMP TABLE t6 (e int, g int);
+CREATE TEMP TABLE t7 (f int, h int);
+CREATE TEMP TABLE t8 (g int, i int);
+CREATE TEMP TABLE t9 (h int, j int);
+CREATE TEMP TABLE t10 (i int, k int);
+CREATE TEMP TABLE t11 (j int, l int);
+CREATE TEMP TABLE t12 (k int, m int);
+CREATE TEMP TABLE t13 (l int, n int);
+CREATE TEMP TABLE t14 (m int, o int);
+CREATE TEMP TABLE t15 (n int, p int);
+CREATE TEMP TABLE t16 (o int, q int);
+CREATE TEMP TABLE t17 (p int, r int);
+CREATE TEMP TABLE t18 (q int, s int);
+-- Populate with small amount of data
+INSERT INTO t1 SELECT i, i FROM generate_series(1,10) i;
+INSERT INTO t2 SELECT i, i FROM generate_series(1,10) i;
+INSERT INTO t3 SELECT i, i FROM generate_series(1,10) i;
+INSERT INTO t4 SELECT i, i FROM generate_series(1,10) i;
+INSERT INTO t5 SELECT i, i FROM generate_series(1,10) i;
+INSERT INTO t6 SELECT i, i FROM generate_series(1,10) i;
+INSERT INTO t7 SELECT i, i FROM generate_series(1,10) i;
+INSERT INTO t8 SELECT i, i FROM generate_series(1,10) i;
+INSERT INTO t9 SELECT i, i FROM generate_series(1,10) i;
+INSERT INTO t10 SELECT i, i FROM generate_series(1,10) i;
+INSERT INTO t11 SELECT i, i FROM generate_series(1,10) i;
+INSERT INTO t12 SELECT i, i FROM generate_series(1,10) i;
+INSERT INTO t13 SELECT i, i FROM generate_series(1,10) i;
+INSERT INTO t14 SELECT i, i FROM generate_series(1,10) i;
+INSERT INTO t15 SELECT i, i FROM generate_series(1,10) i;
+INSERT INTO t16 SELECT i, i FROM generate_series(1,10) i;
+INSERT INTO t17 SELECT i, i FROM generate_series(1,10) i;
+INSERT INTO t18 SELECT i, i FROM generate_series(1,10) i;
+ANALYZE;
+--
+-- Basic 3-way join (sanity check)
+--
+SET enable_goo_join_search = on;
+SET geqo_threshold = 2;
+EXPLAIN (COSTS OFF)
+SELECT count(*)
+FROM (VALUES (1),(2)) AS a(x)
+JOIN (VALUES (1),(2)) AS b(x) USING (x)
+JOIN (VALUES (1),(3)) AS c(x) USING (x);
+                              QUERY PLAN                              
+----------------------------------------------------------------------
+ Aggregate
+   ->  Hash Join
+         Hash Cond: ("*VALUES*".column1 = "*VALUES*_2".column1)
+         ->  Hash Join
+               Hash Cond: ("*VALUES*".column1 = "*VALUES*_1".column1)
+               ->  Values Scan on "*VALUES*"
+               ->  Hash
+                     ->  Values Scan on "*VALUES*_1"
+         ->  Hash
+               ->  Values Scan on "*VALUES*_2"
+(10 rows)
+
+SELECT count(*)
+FROM (VALUES (1),(2)) AS a(x)
+JOIN (VALUES (1),(2)) AS b(x) USING (x)
+JOIN (VALUES (1),(3)) AS c(x) USING (x);
+ count 
+-------
+     1
+(1 row)
+
+--
+-- Disconnected graph (Cartesian products required)
+--
+-- This tests GOO's ability to handle queries where some relations
+-- have no join clauses connecting them. GOO should allow Cartesian
+-- products when no clause-connected joins are available.
+--
+EXPLAIN (COSTS OFF)
+SELECT count(*)
+FROM t1, t2, t5
+WHERE t1.a = 1 AND t2.c = 2 AND t5.f = 3;
+             QUERY PLAN              
+-------------------------------------
+ Aggregate
+   ->  Nested Loop
+         ->  Seq Scan on t5
+               Filter: (f = 3)
+         ->  Nested Loop
+               ->  Seq Scan on t1
+                     Filter: (a = 1)
+               ->  Seq Scan on t2
+                     Filter: (c = 2)
+(9 rows)
+
+SELECT count(*)
+FROM t1, t2, t5
+WHERE t1.a = 1 AND t2.c = 2 AND t5.f = 3;
+ count 
+-------
+     1
+(1 row)
+
+--
+-- Star schema (fact table with multiple dimension tables)
+--
+-- Test GOO with a typical star schema join pattern.
+--
+CREATE TEMP TABLE fact (id int, dim1_id int, dim2_id int, dim3_id int, dim4_id int, value int);
+CREATE TEMP TABLE dim1 (id int, name text);
+CREATE TEMP TABLE dim2 (id int, name text);
+CREATE TEMP TABLE dim3 (id int, name text);
+CREATE TEMP TABLE dim4 (id int, name text);
+INSERT INTO fact SELECT i, i, i, i, i, i FROM generate_series(1,100) i;
+INSERT INTO dim1 SELECT i, 'dim1_'||i FROM generate_series(1,10) i;
+INSERT INTO dim2 SELECT i, 'dim2_'||i FROM generate_series(1,10) i;
+INSERT INTO dim3 SELECT i, 'dim3_'||i FROM generate_series(1,10) i;
+INSERT INTO dim4 SELECT i, 'dim4_'||i FROM generate_series(1,10) i;
+ANALYZE;
+EXPLAIN (COSTS OFF)
+SELECT count(*)
+FROM fact
+JOIN dim1 ON fact.dim1_id = dim1.id
+JOIN dim2 ON fact.dim2_id = dim2.id
+JOIN dim3 ON fact.dim3_id = dim3.id
+JOIN dim4 ON fact.dim4_id = dim4.id
+WHERE dim1.id < 5;
+                                QUERY PLAN                                 
+---------------------------------------------------------------------------
+ Aggregate
+   ->  Nested Loop
+         Join Filter: (fact.dim4_id = dim4.id)
+         ->  Hash Join
+               Hash Cond: (dim3.id = fact.dim3_id)
+               ->  Seq Scan on dim3
+               ->  Hash
+                     ->  Hash Join
+                           Hash Cond: (dim2.id = fact.dim2_id)
+                           ->  Seq Scan on dim2
+                           ->  Hash
+                                 ->  Hash Join
+                                       Hash Cond: (fact.dim1_id = dim1.id)
+                                       ->  Seq Scan on fact
+                                       ->  Hash
+                                             ->  Seq Scan on dim1
+                                                   Filter: (id < 5)
+         ->  Seq Scan on dim4
+(18 rows)
+
+--
+-- Long join chain
+--
+-- Tests GOO with a large join involving 15 relations.
+--
+SET geqo_threshold = 8;
+EXPLAIN (COSTS OFF)
+SELECT count(*)
+FROM t1
+JOIN t2 ON t1.a = t2.a
+JOIN t3 ON t1.b = t3.b
+JOIN t4 ON t2.c = t4.c
+JOIN t5 ON t3.d = t5.d
+JOIN t6 ON t4.e = t6.e
+JOIN t7 ON t5.f = t7.f
+JOIN t8 ON t6.g = t8.g
+JOIN t9 ON t7.h = t9.h
+JOIN t10 ON t8.i = t10.i
+JOIN t11 ON t9.j = t11.j
+JOIN t12 ON t10.k = t12.k
+JOIN t13 ON t11.l = t13.l
+JOIN t14 ON t12.m = t14.m
+JOIN t15 ON t13.n = t15.n;
+                           QUERY PLAN                           
+----------------------------------------------------------------
+ Aggregate
+   ->  Hash Join
+         Hash Cond: (t7.h = t9.h)
+         ->  Hash Join
+               Hash Cond: (t8.i = t10.i)
+               ->  Hash Join
+                     Hash Cond: (t2.c = t4.c)
+                     ->  Hash Join
+                           Hash Cond: (t3.b = t1.b)
+                           ->  Hash Join
+                                 Hash Cond: (t5.f = t7.f)
+                                 ->  Hash Join
+                                       Hash Cond: (t3.d = t5.d)
+                                       ->  Seq Scan on t3
+                                       ->  Hash
+                                             ->  Seq Scan on t5
+                                 ->  Hash
+                                       ->  Seq Scan on t7
+                           ->  Hash
+                                 ->  Hash Join
+                                       Hash Cond: (t1.a = t2.a)
+                                       ->  Seq Scan on t1
+                                       ->  Hash
+                                             ->  Seq Scan on t2
+                     ->  Hash
+                           ->  Hash Join
+                                 Hash Cond: (t6.g = t8.g)
+                                 ->  Hash Join
+                                       Hash Cond: (t4.e = t6.e)
+                                       ->  Seq Scan on t4
+                                       ->  Hash
+                                             ->  Seq Scan on t6
+                                 ->  Hash
+                                       ->  Seq Scan on t8
+               ->  Hash
+                     ->  Hash Join
+                           Hash Cond: (t12.m = t14.m)
+                           ->  Hash Join
+                                 Hash Cond: (t10.k = t12.k)
+                                 ->  Seq Scan on t10
+                                 ->  Hash
+                                       ->  Seq Scan on t12
+                           ->  Hash
+                                 ->  Seq Scan on t14
+         ->  Hash
+               ->  Hash Join
+                     Hash Cond: (t11.l = t13.l)
+                     ->  Hash Join
+                           Hash Cond: (t9.j = t11.j)
+                           ->  Seq Scan on t9
+                           ->  Hash
+                                 ->  Seq Scan on t11
+                     ->  Hash
+                           ->  Hash Join
+                                 Hash Cond: (t13.n = t15.n)
+                                 ->  Seq Scan on t13
+                                 ->  Hash
+                                       ->  Seq Scan on t15
+(58 rows)
+
+-- Execute to verify correctness
+SELECT count(*)
+FROM t1
+JOIN t2 ON t1.a = t2.a
+JOIN t3 ON t1.b = t3.b
+JOIN t4 ON t2.c = t4.c
+JOIN t5 ON t3.d = t5.d
+JOIN t6 ON t4.e = t6.e
+JOIN t7 ON t5.f = t7.f
+JOIN t8 ON t6.g = t8.g
+JOIN t9 ON t7.h = t9.h
+JOIN t10 ON t8.i = t10.i
+JOIN t11 ON t9.j = t11.j
+JOIN t12 ON t10.k = t12.k
+JOIN t13 ON t11.l = t13.l
+JOIN t14 ON t12.m = t14.m
+JOIN t15 ON t13.n = t15.n;
+ count 
+-------
+    10
+(1 row)
+
+--
+-- Bushy tree support
+--
+-- Verify that GOO can produce bushy join trees, not just left-deep or right-deep.
+-- With appropriate cost model, GOO should join (t1,t2) and (t3,t4) first,
+-- then join those results (bushy tree).
+--
+SET geqo_threshold = 4;
+EXPLAIN (COSTS OFF)
+SELECT count(*)
+FROM t1, t2, t3, t4
+WHERE t1.a = t2.a
+  AND t3.b = t4.c
+  AND t1.a = t3.b;
+                  QUERY PLAN                  
+----------------------------------------------
+ Aggregate
+   ->  Hash Join
+         Hash Cond: (t1.a = t3.b)
+         ->  Hash Join
+               Hash Cond: (t1.a = t2.a)
+               ->  Seq Scan on t1
+               ->  Hash
+                     ->  Seq Scan on t2
+         ->  Hash
+               ->  Hash Join
+                     Hash Cond: (t3.b = t4.c)
+                     ->  Seq Scan on t3
+                     ->  Hash
+                           ->  Seq Scan on t4
+(14 rows)
+
+--
+-- Compare GOO vs standard join search
+--
+-- Run the same query with GOO and standard join search to verify both
+-- produce valid plans. Results should be identical even if plans differ.
+--
+SET enable_goo_join_search = on;
+PREPARE goo_plan AS
+SELECT count(*)
+FROM t1 JOIN t2 ON t1.a = t2.a
+JOIN t3 ON t1.b = t3.b
+JOIN t4 ON t2.c = t4.c
+JOIN t5 ON t3.d = t5.d
+JOIN t6 ON t4.e = t6.e;
+EXECUTE goo_plan;
+ count 
+-------
+    10
+(1 row)
+
+SET enable_goo_join_search = off;
+SET geqo_threshold = default;
+PREPARE standard_plan AS
+SELECT count(*)
+FROM t1 JOIN t2 ON t1.a = t2.a
+JOIN t3 ON t1.b = t3.b
+JOIN t4 ON t2.c = t4.c
+JOIN t5 ON t3.d = t5.d
+JOIN t6 ON t4.e = t6.e;
+EXECUTE standard_plan;
+ count 
+-------
+    10
+(1 row)
+
+-- Results should match
+EXECUTE goo_plan;
+ count 
+-------
+    10
+(1 row)
+
+EXECUTE standard_plan;
+ count 
+-------
+    10
+(1 row)
+
+--
+-- Large join (18 relations)
+--
+-- Test GOO with a large number of relations.
+--
+SET enable_goo_join_search = on;
+SET geqo_threshold = 10;
+EXPLAIN (COSTS OFF)
+SELECT count(*)
+FROM t1
+JOIN t2 ON t1.a = t2.a
+JOIN t3 ON t1.b = t3.b
+JOIN t4 ON t2.c = t4.c
+JOIN t5 ON t3.d = t5.d
+JOIN t6 ON t4.e = t6.e
+JOIN t7 ON t5.f = t7.f
+JOIN t8 ON t6.g = t8.g
+JOIN t9 ON t7.h = t9.h
+JOIN t10 ON t8.i = t10.i
+JOIN t11 ON t9.j = t11.j
+JOIN t12 ON t10.k = t12.k
+JOIN t13 ON t11.l = t13.l
+JOIN t14 ON t12.m = t14.m
+JOIN t15 ON t13.n = t15.n
+JOIN t16 ON t14.o = t16.o
+JOIN t17 ON t15.p = t17.p
+JOIN t18 ON t16.q = t18.q;
+                                                            QUERY PLAN                                                            
+----------------------------------------------------------------------------------------------------------------------------------
+ Aggregate
+   ->  Hash Join
+         Hash Cond: (t16.q = t18.q)
+         ->  Hash Join
+               Hash Cond: (t15.p = t17.p)
+               ->  Hash Join
+                     Hash Cond: (t14.o = t16.o)
+                     ->  Hash Join
+                           Hash Cond: (t13.n = t15.n)
+                           ->  Hash Join
+                                 Hash Cond: (t12.m = t14.m)
+                                 ->  Hash Join
+                                       Hash Cond: (t11.l = t13.l)
+                                       ->  Hash Join
+                                             Hash Cond: (t10.k = t12.k)
+                                             ->  Hash Join
+                                                   Hash Cond: (t9.j = t11.j)
+                                                   ->  Hash Join
+                                                         Hash Cond: (t8.i = t10.i)
+                                                         ->  Hash Join
+                                                               Hash Cond: (t7.h = t9.h)
+                                                               ->  Hash Join
+                                                                     Hash Cond: (t6.g = t8.g)
+                                                                     ->  Hash Join
+                                                                           Hash Cond: (t5.f = t7.f)
+                                                                           ->  Hash Join
+                                                                                 Hash Cond: (t4.e = t6.e)
+                                                                                 ->  Hash Join
+                                                                                       Hash Cond: (t3.d = t5.d)
+                                                                                       ->  Hash Join
+                                                                                             Hash Cond: (t2.c = t4.c)
+                                                                                             ->  Hash Join
+                                                                                                   Hash Cond: (t1.b = t3.b)
+                                                                                                   ->  Hash Join
+                                                                                                         Hash Cond: (t1.a = t2.a)
+                                                                                                         ->  Seq Scan on t1
+                                                                                                         ->  Hash
+                                                                                                               ->  Seq Scan on t2
+                                                                                                   ->  Hash
+                                                                                                         ->  Seq Scan on t3
+                                                                                             ->  Hash
+                                                                                                   ->  Seq Scan on t4
+                                                                                       ->  Hash
+                                                                                             ->  Seq Scan on t5
+                                                                                 ->  Hash
+                                                                                       ->  Seq Scan on t6
+                                                                           ->  Hash
+                                                                                 ->  Seq Scan on t7
+                                                                     ->  Hash
+                                                                           ->  Seq Scan on t8
+                                                               ->  Hash
+                                                                     ->  Seq Scan on t9
+                                                         ->  Hash
+                                                               ->  Seq Scan on t10
+                                                   ->  Hash
+                                                         ->  Seq Scan on t11
+                                             ->  Hash
+                                                   ->  Seq Scan on t12
+                                       ->  Hash
+                                             ->  Seq Scan on t13
+                                 ->  Hash
+                                       ->  Seq Scan on t14
+                           ->  Hash
+                                 ->  Seq Scan on t15
+                     ->  Hash
+                           ->  Seq Scan on t16
+               ->  Hash
+                     ->  Seq Scan on t17
+         ->  Hash
+               ->  Seq Scan on t18
+(70 rows)
+
+--
+-- Mixed connected and disconnected components
+--
+-- Query with two connected components that need a Cartesian product between them.
+--
+EXPLAIN (COSTS OFF)
+SELECT count(*)
+FROM t1 JOIN t2 ON t1.a = t2.a,
+     t5 JOIN t6 ON t5.f = t6.e
+WHERE t1.a < 5 AND t5.d < 3;
+                      QUERY PLAN                       
+-------------------------------------------------------
+ Aggregate
+   ->  Hash Join
+         Hash Cond: (t2.a = t1.a)
+         ->  Seq Scan on t2
+         ->  Hash
+               ->  Nested Loop
+                     ->  Hash Join
+                           Hash Cond: (t6.e = t5.f)
+                           ->  Seq Scan on t6
+                           ->  Hash
+                                 ->  Seq Scan on t5
+                                       Filter: (d < 3)
+                     ->  Seq Scan on t1
+                           Filter: (a < 5)
+(14 rows)
+
+--
+-- Outer joins
+--
+-- Verify GOO handles outer joins correctly (respects join order restrictions)
+--
+EXPLAIN (COSTS OFF)
+SELECT count(*)
+FROM t1
+LEFT JOIN t2 ON t1.a = t2.a
+LEFT JOIN t3 ON t2.a = t3.b
+LEFT JOIN t4 ON t3.d = t4.c;
+                  QUERY PLAN                  
+----------------------------------------------
+ Aggregate
+   ->  Hash Left Join
+         Hash Cond: (t3.d = t4.c)
+         ->  Hash Left Join
+               Hash Cond: (t2.a = t3.b)
+               ->  Hash Left Join
+                     Hash Cond: (t1.a = t2.a)
+                     ->  Seq Scan on t1
+                     ->  Hash
+                           ->  Seq Scan on t2
+               ->  Hash
+                     ->  Seq Scan on t3
+         ->  Hash
+               ->  Seq Scan on t4
+(14 rows)
+
+--
+-- Complete Cartesian products (disconnected graphs)
+--
+-- Test GOO's ability to handle queries with no join clauses at all.
+--
+SET enable_goo_join_search = on;
+SET geqo_threshold = 2;
+EXPLAIN (COSTS OFF)
+SELECT count(*)
+FROM t1, t2;
+            QUERY PLAN            
+----------------------------------
+ Aggregate
+   ->  Nested Loop
+         ->  Seq Scan on t1
+         ->  Materialize
+               ->  Seq Scan on t2
+(5 rows)
+
+SELECT count(*)
+FROM t1, t2;
+ count 
+-------
+   100
+(1 row)
+
+--
+-- Join order restrictions with FULL OUTER JOIN
+--
+-- FULL OUTER JOIN creates strong ordering constraints that GOO must respect
+--
+EXPLAIN (COSTS OFF)
+SELECT count(*)
+FROM t1
+FULL OUTER JOIN t2 ON t1.a = t2.a
+FULL OUTER JOIN t3 ON t2.a = t3.b;
+               QUERY PLAN               
+----------------------------------------
+ Aggregate
+   ->  Hash Full Join
+         Hash Cond: (t2.a = t3.b)
+         ->  Hash Full Join
+               Hash Cond: (t1.a = t2.a)
+               ->  Seq Scan on t1
+               ->  Hash
+                     ->  Seq Scan on t2
+         ->  Hash
+               ->  Seq Scan on t3
+(10 rows)
+
+--
+-- Self-join handling
+--
+-- Test GOO with the same table appearing multiple times. GOO must correctly
+-- handle self-joins that were not removed by Self-Join Elimination.
+--
+EXPLAIN (COSTS OFF)
+SELECT count(*)
+FROM t1 a
+JOIN t1 b ON a.a = b.a
+JOIN t2 c ON b.b = c.c;
+                QUERY PLAN                
+------------------------------------------
+ Aggregate
+   ->  Hash Join
+         Hash Cond: (b.b = c.c)
+         ->  Hash Join
+               Hash Cond: (a.a = b.a)
+               ->  Seq Scan on t1 a
+               ->  Hash
+                     ->  Seq Scan on t1 b
+         ->  Hash
+               ->  Seq Scan on t2 c
+(10 rows)
+
+--
+-- Complex bushy tree pattern
+--
+-- Create a query that naturally leads to bushy tree: multiple independent
+-- join chains that need to be combined
+--
+CREATE TEMP TABLE chain1a (id int, val int);
+CREATE TEMP TABLE chain1b (id int, val int);
+CREATE TEMP TABLE chain1c (id int, val int);
+CREATE TEMP TABLE chain2a (id int, val int);
+CREATE TEMP TABLE chain2b (id int, val int);
+CREATE TEMP TABLE chain2c (id int, val int);
+INSERT INTO chain1a SELECT i, i FROM generate_series(1,100) i;
+INSERT INTO chain1b SELECT i, i FROM generate_series(1,100) i;
+INSERT INTO chain1c SELECT i, i FROM generate_series(1,100) i;
+INSERT INTO chain2a SELECT i, i FROM generate_series(1,100) i;
+INSERT INTO chain2b SELECT i, i FROM generate_series(1,100) i;
+INSERT INTO chain2c SELECT i, i FROM generate_series(1,100) i;
+ANALYZE;
+EXPLAIN (COSTS OFF)
+SELECT count(*)
+FROM chain1a
+JOIN chain1b ON chain1a.id = chain1b.id
+JOIN chain1c ON chain1b.val = chain1c.id
+JOIN chain2a ON chain1a.val = chain2a.id  -- Cross-chain join
+JOIN chain2b ON chain2a.val = chain2b.id
+JOIN chain2c ON chain2b.val = chain2c.id;
+                           QUERY PLAN                            
+-----------------------------------------------------------------
+ Aggregate
+   ->  Hash Join
+         Hash Cond: (chain1a.val = chain2a.id)
+         ->  Hash Join
+               Hash Cond: (chain1b.val = chain1c.id)
+               ->  Hash Join
+                     Hash Cond: (chain1a.id = chain1b.id)
+                     ->  Seq Scan on chain1a
+                     ->  Hash
+                           ->  Seq Scan on chain1b
+               ->  Hash
+                     ->  Seq Scan on chain1c
+         ->  Hash
+               ->  Hash Join
+                     Hash Cond: (chain2b.val = chain2c.id)
+                     ->  Hash Join
+                           Hash Cond: (chain2a.val = chain2b.id)
+                           ->  Seq Scan on chain2a
+                           ->  Hash
+                                 ->  Seq Scan on chain2b
+                     ->  Hash
+                           ->  Seq Scan on chain2c
+(22 rows)
+
+-- Cleanup
+DEALLOCATE goo_plan;
+DEALLOCATE standard_plan;
+RESET geqo_threshold;
+RESET enable_goo_join_search;
diff --git a/src/test/regress/expected/sysviews.out b/src/test/regress/expected/sysviews.out
index 3b37fafa65b..cb0c84cebff 100644
--- a/src/test/regress/expected/sysviews.out
+++ b/src/test/regress/expected/sysviews.out
@@ -153,6 +153,7 @@ select name, setting from pg_settings where name like 'enable%';
  enable_distinct_reordering     | on
  enable_eager_aggregate         | on
  enable_gathermerge             | on
+ enable_goo_join_search         | off
  enable_group_by_reordering     | on
  enable_hashagg                 | on
  enable_hashjoin                | on
@@ -173,7 +174,7 @@ select name, setting from pg_settings where name like 'enable%';
  enable_seqscan                 | on
  enable_sort                    | on
  enable_tidscan                 | on
-(25 rows)
+(26 rows)
 
 -- There are always wait event descriptions for various types.  InjectionPoint
 -- may be present or absent, depending on history since last postmaster start.
diff --git a/src/test/regress/parallel_schedule b/src/test/regress/parallel_schedule
index cc6d799bcea..14e3a475906 100644
--- a/src/test/regress/parallel_schedule
+++ b/src/test/regress/parallel_schedule
@@ -68,6 +68,12 @@ test: select_into select_distinct select_distinct_on select_implicit select_havi
 # ----------
 test: brin gin gist spgist privileges init_privs security_label collate matview lock replica_identity rowsecurity object_address tablesample groupingsets drop_operator password identity generated_stored join_hash
 
+# ----------
+# Additional JOIN ORDER tests
+# WIP: need to find an appropriate group for this test
+# ----------
+test: goo
+
 # ----------
 # Additional BRIN tests
 # ----------
@@ -98,9 +104,6 @@ test: maintain_every
 # no relation related tests can be put in this group
 test: publication subscription
 
-# ----------
-# Another group of parallel tests
-# select_views depends on create_view
 # ----------
 test: select_views portals_p2 foreign_key cluster dependency guc bitmapops combocid tsearch tsdicts foreign_data window xmlmap functional_deps advisory_lock indirect_toast equivclass stats_rewrite
 
diff --git a/src/test/regress/sql/goo.sql b/src/test/regress/sql/goo.sql
new file mode 100644
index 00000000000..c4d9cae48a4
--- /dev/null
+++ b/src/test/regress/sql/goo.sql
@@ -0,0 +1,329 @@
+--
+-- GOO (Greedy Operator Ordering) Join Search Tests
+--
+-- This test suite validates the GOO join ordering algorithm and verifies
+-- correct behavior for various query patterns.
+--
+
+-- Create test tables with various sizes and join patterns
+CREATE TEMP TABLE t1 (a int, b int);
+CREATE TEMP TABLE t2 (a int, c int);
+CREATE TEMP TABLE t3 (b int, d int);
+CREATE TEMP TABLE t4 (c int, e int);
+CREATE TEMP TABLE t5 (d int, f int);
+CREATE TEMP TABLE t6 (e int, g int);
+CREATE TEMP TABLE t7 (f int, h int);
+CREATE TEMP TABLE t8 (g int, i int);
+CREATE TEMP TABLE t9 (h int, j int);
+CREATE TEMP TABLE t10 (i int, k int);
+CREATE TEMP TABLE t11 (j int, l int);
+CREATE TEMP TABLE t12 (k int, m int);
+CREATE TEMP TABLE t13 (l int, n int);
+CREATE TEMP TABLE t14 (m int, o int);
+CREATE TEMP TABLE t15 (n int, p int);
+CREATE TEMP TABLE t16 (o int, q int);
+CREATE TEMP TABLE t17 (p int, r int);
+CREATE TEMP TABLE t18 (q int, s int);
+
+-- Populate with small amount of data
+INSERT INTO t1 SELECT i, i FROM generate_series(1,10) i;
+INSERT INTO t2 SELECT i, i FROM generate_series(1,10) i;
+INSERT INTO t3 SELECT i, i FROM generate_series(1,10) i;
+INSERT INTO t4 SELECT i, i FROM generate_series(1,10) i;
+INSERT INTO t5 SELECT i, i FROM generate_series(1,10) i;
+INSERT INTO t6 SELECT i, i FROM generate_series(1,10) i;
+INSERT INTO t7 SELECT i, i FROM generate_series(1,10) i;
+INSERT INTO t8 SELECT i, i FROM generate_series(1,10) i;
+INSERT INTO t9 SELECT i, i FROM generate_series(1,10) i;
+INSERT INTO t10 SELECT i, i FROM generate_series(1,10) i;
+INSERT INTO t11 SELECT i, i FROM generate_series(1,10) i;
+INSERT INTO t12 SELECT i, i FROM generate_series(1,10) i;
+INSERT INTO t13 SELECT i, i FROM generate_series(1,10) i;
+INSERT INTO t14 SELECT i, i FROM generate_series(1,10) i;
+INSERT INTO t15 SELECT i, i FROM generate_series(1,10) i;
+INSERT INTO t16 SELECT i, i FROM generate_series(1,10) i;
+INSERT INTO t17 SELECT i, i FROM generate_series(1,10) i;
+INSERT INTO t18 SELECT i, i FROM generate_series(1,10) i;
+
+ANALYZE;
+
+--
+-- Basic 3-way join (sanity check)
+--
+SET enable_goo_join_search = on;
+SET geqo_threshold = 2;
+
+EXPLAIN (COSTS OFF)
+SELECT count(*)
+FROM (VALUES (1),(2)) AS a(x)
+JOIN (VALUES (1),(2)) AS b(x) USING (x)
+JOIN (VALUES (1),(3)) AS c(x) USING (x);
+
+SELECT count(*)
+FROM (VALUES (1),(2)) AS a(x)
+JOIN (VALUES (1),(2)) AS b(x) USING (x)
+JOIN (VALUES (1),(3)) AS c(x) USING (x);
+
+--
+-- Disconnected graph (Cartesian products required)
+--
+-- This tests GOO's ability to handle queries where some relations
+-- have no join clauses connecting them. GOO should allow Cartesian
+-- products when no clause-connected joins are available.
+--
+EXPLAIN (COSTS OFF)
+SELECT count(*)
+FROM t1, t2, t5
+WHERE t1.a = 1 AND t2.c = 2 AND t5.f = 3;
+
+SELECT count(*)
+FROM t1, t2, t5
+WHERE t1.a = 1 AND t2.c = 2 AND t5.f = 3;
+
+--
+-- Star schema (fact table with multiple dimension tables)
+--
+-- Test GOO with a typical star schema join pattern.
+--
+CREATE TEMP TABLE fact (id int, dim1_id int, dim2_id int, dim3_id int, dim4_id int, value int);
+CREATE TEMP TABLE dim1 (id int, name text);
+CREATE TEMP TABLE dim2 (id int, name text);
+CREATE TEMP TABLE dim3 (id int, name text);
+CREATE TEMP TABLE dim4 (id int, name text);
+
+INSERT INTO fact SELECT i, i, i, i, i, i FROM generate_series(1,100) i;
+INSERT INTO dim1 SELECT i, 'dim1_'||i FROM generate_series(1,10) i;
+INSERT INTO dim2 SELECT i, 'dim2_'||i FROM generate_series(1,10) i;
+INSERT INTO dim3 SELECT i, 'dim3_'||i FROM generate_series(1,10) i;
+INSERT INTO dim4 SELECT i, 'dim4_'||i FROM generate_series(1,10) i;
+
+ANALYZE;
+
+EXPLAIN (COSTS OFF)
+SELECT count(*)
+FROM fact
+JOIN dim1 ON fact.dim1_id = dim1.id
+JOIN dim2 ON fact.dim2_id = dim2.id
+JOIN dim3 ON fact.dim3_id = dim3.id
+JOIN dim4 ON fact.dim4_id = dim4.id
+WHERE dim1.id < 5;
+
+--
+-- Long join chain
+--
+-- Tests GOO with a large join involving 15 relations.
+--
+SET geqo_threshold = 8;
+
+EXPLAIN (COSTS OFF)
+SELECT count(*)
+FROM t1
+JOIN t2 ON t1.a = t2.a
+JOIN t3 ON t1.b = t3.b
+JOIN t4 ON t2.c = t4.c
+JOIN t5 ON t3.d = t5.d
+JOIN t6 ON t4.e = t6.e
+JOIN t7 ON t5.f = t7.f
+JOIN t8 ON t6.g = t8.g
+JOIN t9 ON t7.h = t9.h
+JOIN t10 ON t8.i = t10.i
+JOIN t11 ON t9.j = t11.j
+JOIN t12 ON t10.k = t12.k
+JOIN t13 ON t11.l = t13.l
+JOIN t14 ON t12.m = t14.m
+JOIN t15 ON t13.n = t15.n;
+
+-- Execute to verify correctness
+SELECT count(*)
+FROM t1
+JOIN t2 ON t1.a = t2.a
+JOIN t3 ON t1.b = t3.b
+JOIN t4 ON t2.c = t4.c
+JOIN t5 ON t3.d = t5.d
+JOIN t6 ON t4.e = t6.e
+JOIN t7 ON t5.f = t7.f
+JOIN t8 ON t6.g = t8.g
+JOIN t9 ON t7.h = t9.h
+JOIN t10 ON t8.i = t10.i
+JOIN t11 ON t9.j = t11.j
+JOIN t12 ON t10.k = t12.k
+JOIN t13 ON t11.l = t13.l
+JOIN t14 ON t12.m = t14.m
+JOIN t15 ON t13.n = t15.n;
+
+--
+-- Bushy tree support
+--
+-- Verify that GOO can produce bushy join trees, not just left-deep or right-deep.
+-- With appropriate cost model, GOO should join (t1,t2) and (t3,t4) first,
+-- then join those results (bushy tree).
+--
+SET geqo_threshold = 4;
+
+EXPLAIN (COSTS OFF)
+SELECT count(*)
+FROM t1, t2, t3, t4
+WHERE t1.a = t2.a
+  AND t3.b = t4.c
+  AND t1.a = t3.b;
+
+--
+-- Compare GOO vs standard join search
+--
+-- Run the same query with GOO and standard join search to verify both
+-- produce valid plans. Results should be identical even if plans differ.
+--
+SET enable_goo_join_search = on;
+PREPARE goo_plan AS
+SELECT count(*)
+FROM t1 JOIN t2 ON t1.a = t2.a
+JOIN t3 ON t1.b = t3.b
+JOIN t4 ON t2.c = t4.c
+JOIN t5 ON t3.d = t5.d
+JOIN t6 ON t4.e = t6.e;
+
+EXECUTE goo_plan;
+
+SET enable_goo_join_search = off;
+SET geqo_threshold = default;
+PREPARE standard_plan AS
+SELECT count(*)
+FROM t1 JOIN t2 ON t1.a = t2.a
+JOIN t3 ON t1.b = t3.b
+JOIN t4 ON t2.c = t4.c
+JOIN t5 ON t3.d = t5.d
+JOIN t6 ON t4.e = t6.e;
+
+EXECUTE standard_plan;
+
+-- Results should match
+EXECUTE goo_plan;
+EXECUTE standard_plan;
+
+--
+-- Large join (18 relations)
+--
+-- Test GOO with a large number of relations.
+--
+SET enable_goo_join_search = on;
+SET geqo_threshold = 10;
+
+EXPLAIN (COSTS OFF)
+SELECT count(*)
+FROM t1
+JOIN t2 ON t1.a = t2.a
+JOIN t3 ON t1.b = t3.b
+JOIN t4 ON t2.c = t4.c
+JOIN t5 ON t3.d = t5.d
+JOIN t6 ON t4.e = t6.e
+JOIN t7 ON t5.f = t7.f
+JOIN t8 ON t6.g = t8.g
+JOIN t9 ON t7.h = t9.h
+JOIN t10 ON t8.i = t10.i
+JOIN t11 ON t9.j = t11.j
+JOIN t12 ON t10.k = t12.k
+JOIN t13 ON t11.l = t13.l
+JOIN t14 ON t12.m = t14.m
+JOIN t15 ON t13.n = t15.n
+JOIN t16 ON t14.o = t16.o
+JOIN t17 ON t15.p = t17.p
+JOIN t18 ON t16.q = t18.q;
+
+--
+-- Mixed connected and disconnected components
+--
+-- Query with two connected components that need a Cartesian product between them.
+--
+EXPLAIN (COSTS OFF)
+SELECT count(*)
+FROM t1 JOIN t2 ON t1.a = t2.a,
+     t5 JOIN t6 ON t5.f = t6.e
+WHERE t1.a < 5 AND t5.d < 3;
+
+--
+-- Outer joins
+--
+-- Verify GOO handles outer joins correctly (respects join order restrictions)
+--
+EXPLAIN (COSTS OFF)
+SELECT count(*)
+FROM t1
+LEFT JOIN t2 ON t1.a = t2.a
+LEFT JOIN t3 ON t2.a = t3.b
+LEFT JOIN t4 ON t3.d = t4.c;
+
+--
+-- Complete Cartesian products (disconnected graphs)
+--
+-- Test GOO's ability to handle queries with no join clauses at all.
+--
+SET enable_goo_join_search = on;
+SET geqo_threshold = 2;
+
+EXPLAIN (COSTS OFF)
+SELECT count(*)
+FROM t1, t2;
+
+SELECT count(*)
+FROM t1, t2;
+
+--
+-- Join order restrictions with FULL OUTER JOIN
+--
+-- FULL OUTER JOIN creates strong ordering constraints that GOO must respect
+--
+EXPLAIN (COSTS OFF)
+SELECT count(*)
+FROM t1
+FULL OUTER JOIN t2 ON t1.a = t2.a
+FULL OUTER JOIN t3 ON t2.a = t3.b;
+
+--
+-- Self-join handling
+--
+-- Test GOO with the same table appearing multiple times. GOO must correctly
+-- handle self-joins that were not removed by Self-Join Elimination.
+--
+EXPLAIN (COSTS OFF)
+SELECT count(*)
+FROM t1 a
+JOIN t1 b ON a.a = b.a
+JOIN t2 c ON b.b = c.c;
+
+--
+-- Complex bushy tree pattern
+--
+-- Create a query that naturally leads to bushy tree: multiple independent
+-- join chains that need to be combined
+--
+CREATE TEMP TABLE chain1a (id int, val int);
+CREATE TEMP TABLE chain1b (id int, val int);
+CREATE TEMP TABLE chain1c (id int, val int);
+CREATE TEMP TABLE chain2a (id int, val int);
+CREATE TEMP TABLE chain2b (id int, val int);
+CREATE TEMP TABLE chain2c (id int, val int);
+
+INSERT INTO chain1a SELECT i, i FROM generate_series(1,100) i;
+INSERT INTO chain1b SELECT i, i FROM generate_series(1,100) i;
+INSERT INTO chain1c SELECT i, i FROM generate_series(1,100) i;
+INSERT INTO chain2a SELECT i, i FROM generate_series(1,100) i;
+INSERT INTO chain2b SELECT i, i FROM generate_series(1,100) i;
+INSERT INTO chain2c SELECT i, i FROM generate_series(1,100) i;
+
+ANALYZE;
+
+EXPLAIN (COSTS OFF)
+SELECT count(*)
+FROM chain1a
+JOIN chain1b ON chain1a.id = chain1b.id
+JOIN chain1c ON chain1b.val = chain1c.id
+JOIN chain2a ON chain1a.val = chain2a.id  -- Cross-chain join
+JOIN chain2b ON chain2a.val = chain2b.id
+JOIN chain2c ON chain2b.val = chain2c.id;
+
+-- Cleanup
+DEALLOCATE goo_plan;
+DEALLOCATE standard_plan;
+
+RESET geqo_threshold;
+RESET enable_goo_join_search;
-- 
2.39.3 (Apple Git-146)

