
LFDT and Hiero
An overview of the Linux Foundation Decentralized Trust and 

the Hiero Ledger project



The Linux Foundation Decentralized Trust (LFDT)

● A trust operated by the Linux Foundation
● Focus is on decentralized technology
● https://www.lfdecentralizedtrust.org/

○ 50+ projects, 169M+ lines of code
○ Ledger, Cryptography, Identity, Interoperability
○ Linux Foundation Events
○ LFDT Events

https://events.linuxfoundation.org/
https://www.lfdecentralizedtrust.org/events


Hiero Ledger

● A Decentralized Ledger
● Joined the LFDT in September 2024, Graduated August 2025
● Web links

○ https://www.lfdecentralizedtrust.org/projects/hiero
○ https://github.com/hiero-ledger
○ https://www.lfdecentralizedtrust.org/blog/tag/hiero

● Started with donation (code and financial) from Hedera
● Most active contributors and maintainers employed by Hashgraph and 

Limechain
● Hundreds of individual contributors
● Over 30 active repositories on Github



Hiero Improvement Proposals (HIPs)

● Most Hiero Ledger changes require a HIP
● Markdown files managed in github, approved by the TSC

○ Most are also adopted by Hedera, but this is up to the Hedera Council
● Anyone with a github account can

○ Fork the repo and send a Pull Request for a new HIP
○ Participate in discussions and comment on PRs.

● HIPs are a good place to start learning and contributing



Hiero Consensus Node

● The software that operates the ledger
○ Runs the Hashgraph consensus algorithm
○ Executes transactions
○ Accepts new transactions and adds them to events
○ Maintains the state of the ledger
○ Produces the Block Stream

● Written entirely in Java, with minimal dependencies
○ Every individual node independently executes and verifies all transactions
○ One library written in Rust (HiNTS/TSS Cryptography)

● Continuously tested
○ 24 hour performance test baseline exceeds 10,000 TPS
○ 24 hour quality/acceptance test
○ 168 hour extended quality/acceptance test
○ CI testing on every PR runs in roughly 30 minutes

● Monthly release cadence
○ Releases are pipelined
○ 4 weeks development, roughly 8-10 weeks testing per release
○ Testing includes a public testnet
○ Some features are released in preview several months in advance



Hiero Block Node

● A new project under development
● Stores Block Streams, which will replace Record Streams

○ Fully decentralized, each block carries a full ZK proof of validity
■ Full State Proof support

○ Much more efficient than record streams
● Accepts the Block Stream from the Consensus Node

○ Passes the low-latency stream to subscribers
○ Verifies the proof on every block
○ Stores all blocks "forever"
○ Maintains a copy of network state

■ Validates state
■ Generates state snapshots
■ Offers State Proofs

● Plugin-based, written in Java
○ Anyone can run a block node, and may choose which subset of functionality to support
○ Block Nodes may offer value-added services



Hiero Mirror Node

● Indexes the network history
● Provides multiple query APIs

○ gRPC
○ GraphQL
○ ReST

● Written in Java/SpringBoot
● Uses a sharded form of PostrgreSQL
● Hedera runs 2 public instances
● Reads Record Streams from cloud buckets

○ Not decentralized enough, but have worked since OA in 2019
○ Inefficient, and does not support clean state proofs

● Will read Block Streams from Block Nodes "soon"



Hiero SDKs and TCK

● SDKs are available in most common (and some uncommon) languages
● The core API (called "HAPI") is defined in Protocol Buffers and gRPC

○ Highly efficient
○ Clear and easy to understand
○ Wide language support

● JSON-RPC Relay and GRPC-Web servers offer gateways for clients that cannot 
easily use gRPC and Protocol Buffers.

● The TCK is written mostly in Javascript
○ Tests substantially the entire HAPI
○ Part of the continuous testing for the Consensus Node

● Consensus node endpoints and GRPC-Web endpoints are managed on-chain.
○ There is a HIP to start to enable adding Mirror Nodes, Block Nodes, and JSON-RPC Relay nodes 

on-chain (HIP-1137).



Solo

● A New project to make deploying Hiero nodes (Consensus, Mirror, Block, 
JSON-RPC Relay, etc...) nodes simple and easy

● Supports development, testing, and production operations
● Based on single-node Kubernetes and many related technologies
● Written mostly in Go


