Hi, I downloaded both gee and geepack, and I am trying to understand the differences between the two libraries. I used the same data and estimated the same model, with a correlation structure autoregressive of order 1. Surprisingly for me, I found very different results. Coefficients are slightly different in value but sometimes opposite in sign. Moreover, the estimate of rho (correlation coefficient) given by gee is 0.5759 (see element 1.2 in the working correlation matrix) while the estimate given by geese is 0.4519. Could somebody explain me what happened?
Data are in dati22, which is only a part of the data for the study I intend to perform. Here what I did ,using first gee and then geese: > str(dati22) `data.frame': 47 obs. of 7 variables: $ TR : Factor w/ 4 levels "7","8","9","11": 1 1 1 1 1 1 1 1 1 1 ... $ STAT : Factor w/ 3 levels "1","2","3": 1 1 1 1 2 2 2 2 3 3 ... $ PIANTA: int 2 2 2 2 2 2 2 2 41 41 ... $ ANLEP : int 1999 1998 1999 1998 1999 1998 1999 1998 1999 1998 ... $ eta : int 12 11 10 9 11 10 11 10 14 13 ... $ VCRE : num 5.3 6.9 11 9.9 7.9 9.2 14.2 11.9 10.5 10 ... $ temp : num 19.7 20.0 19.7 20.0 19.7 ... > mio1.2<- gee(VCRE ~ TR + STAT + temp + eta, id = PIANTA, + + data = dati22, family = Gamma, corstr = "AR-M", Mv = 1) > summary(mio1.2) GEE: GENERALIZED LINEAR MODELS FOR DEPENDENT DATA gee S-function, version 4.13 modified 98/01/27 (1998) Model: Link: Reciprocal Variance to Mean Relation: Gamma Correlation Structure: AR-M , M = 1 Call: gee(formula = VCRE ~ TR + STAT + temp + eta, id = PIANTA, data = dati22, family = Gamma, corstr = "AR-M", Mv = 1) Summary of Residuals: Min 1Q Median 3Q Max -4.5154238 -2.0766622 -0.2153521 0.9418182 6.3871421 Coefficients: Estimate Naive S.E. Naive z Robust S.E. Robust z (Intercept) 0.411995251 0.174052364 2.36707644 0.131632816 3.12988253 TR8 -0.001154422 0.021191593 -0.05447549 0.011807163 -0.09777305 TR9 0.019559907 0.024379471 0.80231056 0.008993803 2.17482050 TR11 -0.041092894 0.021609580 -1.90160537 0.015384050 -2.67113620 STAT2 0.023886745 0.014219390 1.67987130 0.013543550 1.76369899 STAT3 0.045749728 0.016844262 2.71604237 0.012862504 3.55682917 temp -0.020141682 0.008819798 -2.28368975 0.006851784 -2.93962600 eta 0.008021081 0.001465212 5.47434944 0.001129986 7.09838725 Estimated Scale Parameter: 0.1049601 Number of Iterations: 13 Working Correlation [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [1,] 1.0000 0.5758 0.3315 0.1909 0.1099 0.0633 0.0364 0.0210 [2,] 0.5758 1.0000 0.5758 0.3315 0.1909 0.1099 0.0633 0.0364 [3,] 0.3315 0.5758 1.0000 0.5758 0.3315 0.1909 0.1099 0.0633 [4,] 0.1909 0.3315 0.5758 1.0000 0.5758 0.3315 0.1909 0.1099 [5,] 0.1099 0.1909 0.3315 0.5758 1.0000 0.5758 0.3315 0.1909 [6,] 0.0633 0.1099 0.1909 0.3315 0.5758 1.0000 0.5758 0.3315 [7,] 0.0364 0.0633 0.1099 0.1909 0.3315 0.5758 1.0000 0.5758 [8,] 0.0210 0.0364 0.0633 0.1099 0.1909 0.3315 0.5758 1.0000 USING geese: > mio1.2pack<-geese(VCRE ~ TR + STAT + temp + eta, id = PIANTA, data = dati22, + + family = Gamma, corstr = "ar1") Coefficients: estimate san.se wald p (Intercept) 0.44799 0.18279 6.007 1.43e-02 TR8 0.00444 0.00985 0.203 6.52e-01 TR9 0.02182 0.00632 11.923 5.54e-04 TR11 -0.03728 0.01407 7.024 8.04e-03 STAT2 0.02116 0.01476 2.056 1.52e-01 STAT3 0.04270 0.01245 11.758 6.06e-04 temp -0.02233 0.00973 5.273 2.17e-02 eta 0.00865 0.00136 40.683 1.79e-10 Scale Model: Scale Link: identity Estimated Scale Parameters: estimate san.se wald p (Intercept) 0.081 0.0287 7.98 0.00474 Correlation Model: Correlation Structure: ar1 Correlation Link: identity Estimated Correlation Parameters: estimate san.se wald p alpha 0.452 0.272 2.77 0.0963 Returned Error Value: 0 Number of clusters: 6 Maximum cluster size: 8 Thanks, Daria **************************** Daria Mendola Department of Statistics and Matematics "Silvio Vianelli" University di Palermo Viale delle Scienze - Edificio 13 90128 Palermo, Italy phone +39 091 6626210 fax +39 091 485726 email: [EMAIL PROTECTED] ______________________________________________ [EMAIL PROTECTED] mailing list https://www.stat.math.ethz.ch/mailman/listinfo/r-help