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0. PRELUDE

Personal information:

» Name: Caleb Aryee

» Email: ca2004mail@gmail.com

» Location: London/Edinburgh

» University: University of Edinburgh, Mathematics

Background:
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» Technical skills, education and experience: I am currently a third-year undergraduate student in
mathematics at the University of Edinburgh. My academic work involves a strong emphasis on
formal mathematical reasoning, especially in real and complex analysis, algebra, and topology. I

am highly comfortable with rigorous mathematical proofs.

From a computational standpoint, I have experience with Python and have worked with Sage-
Math for various coursework and independent mathematical investigations. For example, in the
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course Honours Algebra, I was tasked with investigating the spectrum of a ‘nice’ class of matrices.
In specific, I defined Sage functions to construct these matrices in QQ and from observation
of the resulting eigenvalues and eigenvectors in both QQ and SR, I formulated a conjecture on
the spectrum of these matrices. I then proved this conjecture with the aid of Sage. Similarly, in
the same course, I investigated the centralisers of another ‘nice’ class of matrices. In specific, I
investigated the dimensions of the centralisers of these matrices and their dimensions in relation
to the Jordan decomposition of these matrices. Using Sage, I again formulated a conjecture on
the dimensions of the centralisers. In this course, relating to coursework in SageMath, I have (to
this date) scored an average of 96%.

My programming ability is intermediate to advanced, particularly as it relates to scientific
computation and symbolic mathematics. I am particularly interested in implementing algorithms
with theoretical significance, such as those in the context of Riemann surfaces and period matrix
reduction.

» Suitability for project: As a mathematics undergraduate with a deep appreciation for formalism
and clarity in both proof-writing and programming, I bring a rigorous approach to mathematical
computing. My familiarity with SageMath, together with my ability to understand and implement
advanced mathematical algorithms, makes me well-suited for contributing to projects focused
on symbolic computation, Riemann surfaces, or computational algebraic geometry.

» Operating System: I currently use Windows. While this is my primary environment, I plan to use
WSL (Windows Subsystem for Linux) to support SageMath and related tools effectively.

» Open source contributions: This will be my first time contributing to an open-source project.
However, in writing the proposal, I have gained a deeper understanding of the SageMath codebase
and its structure. From this, I have wrote an issue (#39903) on the SageMath GitHub repository
to discuss a minor issue in documentation of the differential basis_baker () function.

» Past projects: My programming experience is primarily academic and coursework-based. While
I do not maintain personal repositories outside university work, I have applied programming
in mathematical modelling, algorithm design, and exploratory computation in support of my
studies.

» SageMath usage: I have been a SageMath user since being introduced to it during my undergrad-
uate studies. I use it primarily for experimentation with algebraic structures.

Project information:

» Project title: Poincaré Normal Form of Riemann Matrices

» Project length: Long (350 hours)

» Project relationship: My strong background in mathematics and SageMath, makes this project
a compelling application of my skills and aligns with my academic goals. It is an extension of
the work done in [2] and will be a valuable addition to the SageMath library. I am particularly
interested in the intersection of algebraic geometry and computational methods and this project
provides an opportunity to explore this area in depth. I am excited about the potential impact
of this work on the SageMath community and the broader mathematical community. I am also
interested in the practical applications of Riemann surfaces and theta functions in number theory
and algebraic geometry, and this project will allow me to explore these connections further.

1. INTRODUCTION

A Riemann surface is a one-dimensional complex manifold which provides a setting for the study of
complex functions. Associated to the surface are a variety of algebraic and analytic invariants among
which the Riemann matrix and associated theta functions are of particular interest.


http://www.drps.ed.ac.uk/24-25/dpt/cxmath10069.htm
https://github.com/sagemath/sage/issues/39903
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1.1. Riemann surfaces. We consider a compact Riemann surface X of genus g and its associated period
matrix (E Z) where Z satisfies the Riemann relations:

Z'=27, and J(Z)>0.

We call Z the Riemann matrix of X and the matrix E is the identity matrix of size g. Indeed, the period
matrix of any X may take this form after choosing the canonical homology basis {a,, ..., a,, by, ..., b,}
of H,(X, Z) and choosing a basis of holomorphic 1-forms of 2,(X) such thatfor 1 <i,j < g,

/wj = 8,-].,
a:

1

where §;; is the Kronecker delta.
From this matrix Z, we can define the Jacobian variety of X, a complex torus defined by

Jac(X) = CI/(Z9 + ZZ9).
We call Z9 + ZZ79 the period lattice.

1.2. Theta functions. Let Z be the Riemann matrix of a compact Riemann surface X of genus g. The
theta function 0(z, Z) is defined as the following series:

0(z,2) = 2 exp (m’nTZn + ZﬂinTz) (1.2.1)

nezZ9

where z € CY.

1.3. Poincaré reduction. If Jac(X) is decomposable, it is isogenous (or isomorphic) to a product of
Jacobians of lower dimension. It follows that if by isogeny, Jac(X) ~ J, x J, for example, the Riemann
matrix Z is reducible. This means that there exists a symplectic transformation such that under this
transformation, Z is represented by the matrix

(2, Q
Z‘(Q”lf Zz)

where Z, and Z, are lower dimensional Riemann matrices and Q is a matrix of rationals. When this
occurs, the theta function can be expressed as a product of lower-dimensional theta functions. For
example, if Jac(X) = ], xJ, where ], and ], are abelian varieties of dimension g, and g, (with g = g,+g,)
respectively, then there is a change of basis via a symplectic transformation T such that the Riemann
matrix Z of X is represented as
(3 3
0 Z,

where Z, and Z, are the Riemann matrices of ], and J, respectively. If z = (z,,2,)", then the theta
function can be factorised as follows:

0(z, Q') = 2 (1 ! Q0 n\ L, (™ ! zZ,
z, = exp | i n, 0 0,)\n, i n, z,
(n,,n,)€Z91x7.92

= Z exp (ﬂinTan1 + ZﬂianZI) Z exp (ﬂin;F_an2 + 2ﬂin§zz)
n, €791 n,€7.92

= 0(z,, Q,)0(z,, Q).
We say a period matrix (E  Z) admits reduction if it satisfies
H x (E Z) =II1xM (1.3.1)

where IT is an m X 2m matrix of complex numbers, H is an 1 X n matrix of complex numbers of maximal
rank, and M is a maximal rank 2m X 2n matrix of complex numbers also of maximal rank.
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In general, by theorem of Weierstrass and Poincaré, if (E  Z) is an 1 x 2n period matrix of a compact
Riemann surface which admits reduction, then there exists an n x n invertible matrix A of complex
numbers and a 2n x 2n symplectic unimodular matrix T such that

Z
(E Z)xT=Ax <If)1 gz Q% Z) (1.3.2)

where E, and E, are the identity matrices of appropriate size and Z, and Z, are the Riemann matrices
of dimension m x m and (n — m) x (n — m) respectively.

The matrix involving Z, and Z, arises from a normal form for M. That is, for 1 < m < n, and for a
2m X 2n matrix of maximal rank M such that MJ*M where

0 E
-(5% 5)

then, M = SNT where S is a 2m x 2m invertible matrix of integers, T' is a 21 X 2n symplectic unimodular
matrix, and N is given by
_(E, 0 0 0
N = ( 0 X A O)

where E, is the identity matrix of size m, A is a diagonal matrix of integers, and X is an m x (n — m)
matrix where (X) ji=1 for all j < r for 0 < r < n — m, and the remaining entries are zero.

Thus, in order to factorise the theta function, we must compute the normal form of M and the process
of this is known as Poincaré reduction.

1.4. Project synopsis. The goal of this project is to implement a way to compute the Poincaré normal
form of M by determining the matrix T from M in SageMath which allows for the decomposition of the
associated theta function.. Specifically, we implement the methods described by Martens in [2]. We aim
to equip the SageMath computational framework with practical tools for detecting and performing such
reductions.

Practically, a factorised theta function can be evaluated much faster than a single high-dimensional
theta. Theta function computation is notoriously expensive as genus grows, since the summation involves
77 lattice points. If 0(z, Z) = 0,(z,, Z,)0,(z,, Z,) for a decomposition Z ~ diag(Z,, Z,), one can compute
the two lower-dimensional theta functions separately. In many cases, this reduces complexity from
exponential in g to (roughly) the sum of exponentials in g, and g,. For instance, a genus-4 theta might
factor into two genus-2 thetas, potentially cutting the cost dramatically. This project thus has performance
implications in SageMath’s ability to handle higher-genus curves by breaking hard computations into
smaller pieces.

Ultimately, this implementation enables the decomposition of the associated theta function. It is
important to note that while the reduction of the Riemann matrix allows us to explicitly obtain the
Riemann matrix of the factors and compute their invariants to identify them, it is not strictly necessary
for identifying decomposable Jacobians. Instead, one can simply check the reduction condition provided
by Martens. Nonetheless, this implementation will provide a valuable tool for those wishing to perform
the reduction and explicitly work with the factor’s Riemann matrices.

Importantly, implementing Poincaré reduction fills a current gap in SageMath’s algebraic geometry
and number theory toolkit. SageMath can already compute Riemann matrices numerically and evaluate
theta functions via Nils Bruin’s package (discussed below). Adding reduction capabilities now means
Sage can not only compute these objects but analyse their structure. This elevates SageMath from a purely
computational tool to a discovery tool in this area of mathematics.

2. EXISTING FUNCTIONALITY IN SAGEMATH

SageMath offers substantial capabilities for working with Riemann surfaces. This project aims to build
upon this foundation, ensuring SageMath remains at the forefront of research applications in this area.



POINCARE NORMAL FORM OF RIEMANN MATRICES IN SAGEMATH 5

The existing codebase provides essential tools for defining Riemann surfaces, computing period matrices,
and performing related calculations. We will leverage some of these tools, while others, though valuable,
lie outside the immediate scope of this project.

Specifically, the implementation of Riemann surfaces is within sage/schemes/riemann_surfaces/
riemann_surface.py, where we have the class RiemannSurface which provides the core function-
ality for working with Riemann surfaces defined by bivariate polynomials. Additionally, we compute
the period matrix using riemann_matrix (), normalise period matrices and also compute bases for
holomorphic 1-forms Q' (X), homology bases for H,(X, Z) and we may also integrate the given 1-forms.
SageMath also offers functionality for computing the Abel-Jacobi map and the endomorphism ring of
the Jacobian.

3. MISSING FUNCTIONALITY IN SAGEMATH

3.1. Reduction via the Poincaré reducibility theorem. If Jac(X) is decomposable, then (E Z ) admits
reduction.

Reduction check of Jac(X). There is currently no functionality in SageMath to check if this is the case. If
End(Jac(X)) extended over Q contains non-trivial idempotents, that is there exists a non-trivial idem-
potent e such that e* = e, then Jac(X) is decomposable. As the endomorphism ring is computed already,
checking the condition e* = e is quick and exact.

From the endomorphism basis of End(Jac(X)), which returns a list of matrices {R,, ..., R, }, we check
for the trivial case where k = 1, with R, = I, where the Jacobian is irreducible. Otherwise. we check for
the existence of non-trivial idempotents in A = End(Jac(X)) ® Q.

Computing M. For each pair of matrices R; and R;, we compute the matrix P;; = R,R; in order to
determine how the basis elements interact. As P;; € A, it is a unique linear combination of the basis
elements. We then find the values A, such that P;; = 3’ A,R;. Now, for a general element R € A, we can
write R = Y R, for some p; € Q and compute the matrix R* — R in terms of ;. For each basis element,
we obtain k polynomial equations which may be solved by creating the ideal I in Y generated by the
polynomials and then computing the Grébner basis G of I. If G = {1}, then the only solution is the
trivial one and the Jacobian is irreducible. However, if there are non-trivial solutions, we construct the
corresponding matrix R using the solutions y; and double check that R* = R.

Selecting a non-trivial idempotent R, we compute the rank m of R and check if /2 is an integer and
that 1 < m < g. If this is the case, we rescale R so that the entries of R are integer and compute the integer
basis for the column space of R using the Hermite Normal Form of its transpose. The non-zero rows
form M. Essentially, M is the integer matrix which acts on the standard basis of the homology lattice
7?9 and selects a rank 2m sublattice which corresponds precisely to the homology group H,(J,, Z) of
the subvariety J, into which the Jacobian J decomposes. The rows of M form an integer basis for the
homology sublattice H,(J,, Z) viewed in H,(Jac(X), Z).

3.2. Computing the Poincaré normal form of M. In accordance to the process shown in Martens, we
have an exact algorithm to compute the Poincaré normal form of M. We use the symplectic operations
specified in section 2 of [2] and GCD arguments (Euclidean algorithm via matrix operations), to make
the top m rows of M become (E; 0 0 0). Similarly, with use of the Picard trick, other operations and

cleaning up, we make the bottom 1 rows of M become (0 X A 0).
From this, we may reduce the period matrix as needed.

3.3. Evaluation of theta functions. Currently, there is no extensive functionality of theta function eval-
uation in SageMath. However, we may integrate the code from Nils Bruin’s RiemannTheta package. We
note that SageMath is currently the only open-source computer algebra system that computes Riemann
matrices. The existing implementation within SageMath is highly capable, providing fast and arbitrary
precision computation of Riemann matrices. While other implementations of theta functions exist, they
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rely on Riemann matrices computed by SageMath. This project not only offers theoretical value by en-
abling the study of decomposable Jacobians but also strengthens SageMath’s position as a crucial tool for
theta function computations.

4. IMPLEMENTATION PLAN

4.1. Module 1: Finding the reduction matrix M. From the endomorphism basis, we find the non-
trivial idempotents and compute the matrix M. This involves computing the matrices P;; from the

endomorphism basis, solving the system of equations arising from R* — R to find idempotents, selecting
a suitable idempotent R, computing the integer basis for its column space using the Hermite Normal
Form to find M, and verifying that M has maximal rank and satisfies the necessary invertibility condition.
A wrapper function then returns M and its rank if a valid reduction is found.

The corresponding deliverable for this module is a working SageMath module that computes the
matrix M and the rank m for known reducible examples and correctly reports the irreducible cases.

4.2. Module 2: Computing the Poincaré normal form of M. We implement the steps to transform
the matrix M into the Poincaré normal form. This involves creating functions to generate the symplectic
operation matrices, creating functions to apply row and symplectic operations to M and update T,
implementing the Picard trick, and iteratively applying these operations to M to achieve the Poincaré
normal form. The process ensures that the GCD of the minors is 1 and that MJ*M has the required
form.

By the end, we should have a working SageMath module that computes the Poincaré normal form of
M and the matrix T

4.3. Module 3: Applying T to the period matrix. The period matrix is reduced using the computed
transformation matrix T'. This involves creating a function to multiply the period matrix by T, identifying
and checking the invertibility of the matrix A, applying the inverse of A to obtain the reduced period
matrix, verifying the block structure of the result, and extracting the submatrices Z,, Z,, and Q. A
wrapper function is created to return the reduced period matrix along with Z,, Z,, and Q.

4.4. Module 4: Integration, Testing and Validation. The modules are combined into a single workflow,
and comprehensive tests are developed to ensure the correctness and reliability of the implementation.
This involves creating a top-level function to perform reduction from a given Riemann surface X, de-
veloping test cases for each function in the preceding modules (including tests for symplectic matrix
generation, elementary operations, the Picard trick, Hermite Normal Form-based basis extraction for M,
block extraction, and idempotent detection), and using test cases, such as those in Bolza [1] for genus
2 curves, to verify that the computed matrices Z, and Z, are period matrices of the factor Jacobians
and that the reduction achieves the form described by Martens. The outcome of this module is a fully
tested implementation that correctly performs Poincaré reduction, accurately identifies decomposable
Jacobians, and produces the expected reduced period matrices.

4.5. Module 5: Documentation and Finalisation. The code is documented and prepared for delivery.
This includes writing clear docstrings for all public functions, explaining inputs, outputs, algorithms,
and potential exceptions; creating project-level documentation detailing how to use the main function,
dependencies, known limitations, and result interpretation; and conducting code review and refactoring
for clarity and efficiency. The result is high-quality documentation that adheres to standards.

5. TIMELINE

The project is structured into distinct modules, each with specific goals and dependencies. The timeline
below outlines the allocation of time for each module, ensuring a systematic and efficient development
process. During the first four weeks, the focus will be on completing module 1, which involves finding
the reduction matrix M.
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In weeks 5-8, the focus will shift to module 2, which involves computing the Poincaré normal form of
M by implementing the algorithm described by Martens.

The final weeks 9-12 will be dedicated to module 3 and module 4, which involve applying the trans-
formation matrix T to the period, extracting the reduced period matrix, and integrating the modules
into a cohesive workflow.

Documentation will be written concurrently with development and finalised during this period. Sim-
ilarly, testing of each module will be done contemporaneously with development, ensuring that each
module is thoroughly tested before moving on to the next so that no errors propagate throughout the
project.

Throughout the development period, coding and development activities will be prioritised, with week-
ends serving as the primary periods for rest and recovery.

6. RISk MANAGEMENT

6.1. Finding rational idempotents. Finding rational idempotents can be computationally hard for
Riemann surfaces of large genera or may fail for complex algebras. This is a potential risk, as the compu-
tational complexity of this task depends on the structure of the endomorphism ring. However, for the
genus of curves that SageMath can reasonably handle (typically g < 9, where computing the Riemann
matrix is not necessarily time-intensive), the dimension of the endomorphism algebra is not expected
to be excessively large. Consequently, the number of variables involved in computing the Grébner basis
is likely to remain manageable.

However, to mitigate this risk, we can find the centre of A, where idempotents are more likely to
lie. We will also use optimised Grobner basis algorithms in Sage and test with known simple algebras.
Additionally, we allocate buffer time if needed.

Alternatively, if this part of module 1 proves to be intractable within the timeframe, we may modify
the project scope to focus on completing Modules o, 2, 3, and 4, allowing M to be provided as input (e.g.,
manually derived for specific examples). We will document this limitation and suggest other ways of
finding M computationally.

6.2. Implementing the Normal Form Reduction loop. Implementing the Normal Form Reduction
loop correctly based on literature can be complex and error-prone. This complexity arises from applying
a specific sequence of symplectic operations and row reductions from Martens, which must be precisely
ordered to achieve the Poincaré normal form. Potential errors include incorrect operation application,
miscalculating intermediate matrices, or failing to maintain the symplectic property. The algorithm also
involves GCD computations and the Picard trick, further increasing complexity and error potential.

To mitigate this risk, we start with the m = 1 case, simplifying matrix manipulations to focus on the
core reduction logic. Second, we create small, verifiable test cases for M with known normal forms to
check the correctness of individual operations and the overall reduction. Finally, we conduct detailed
code reviews to identify and correct logical errors, boundary conditions, and deviations from the litera-
ture, improving implementation reliability.

6.3. Underestimation of time for testing and documentation. In order to mitigate this risk, we start
writing unit tests alongside module development simultaneously, integrate testing early and allocate
dedicated time.

7. POSSIBLE EXTENSIONS

If time permits, we may extend the project. We can utilise the RiemannTheta package and adapt it,
so that we may find the factorisation of a given theta function if possible.

Most significantly, we may go from one reduction of Jac(X) into a complete reduction of the Jacobian,
that is, Jac(X) ~ J, x J, x ... x J, where ], are the Jacobians of lower genus curves. The research challenge
here is finding an algorithm to do so. Preliminary ideas include realising that a complete reduction
corresponds to the decomposition of A = End(Jac(X)) ® Q into a product of simple algebras. From the
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decomposition of the homology group H, (X, Q), we must find one single symplectic basis {b,, ..., b, }
for the whole lattice Z9 that is adapted to this decomposition. The matrix T is the change-of-basis matrix
from the standard basis to this new basis.
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