A CENTRALITY INDEX FOR SAMPLE POINTS

In the analysis of samples, the location of modes is a difficult problem. Similar difficulties are found in density estimation and in disentangling Gaussian mixtures. The method I’m here presenting is drawn from a mechanical interpretation of sample points as material ‘points in a gravitational field. From the Newton’s gravitational theory, you learn that, if you disregard the attraction of points external to a points’ cloud, at the center of the cloud the gravitational field is null. Therefore, you are at the bottom of a potential well, like it happens for the Sun that attracts the other celestial bodies but has zero field at its center when one disregards the attractions from celestial bodies out of the Solar System. Thus, if you are able to create a potential field that wraps all sample points, you can try to isolate the potential wells and use them to:
1. Locate the modes in the sample
2. Find the initial seeds for a Cluster Analysis.
3. Isolate the normal components in a Gaussian mixture
A more detailed presentation of this approach is in the attachment. In this post I will use Python to apply the method to the Fisher Iris problem. I assume that Iris data are known to the reader. In case, Fisher Iris data are available from many public sources.
The work flow is the following
1. Read and normalize data
2. Create a potential field that wraps the data
3. Isolate the field’s potential wells

1. Read and normalize data

import numpy as np
import pandas as pd
dataraw = pd.read_excel("C:\Pyth\iris.xlsx") #specify your data
#standardize data --- dataraw is a DataFrame
#locate data in the DataFrame
datar = dataraw.iloc[:,1:5] #the field 0 is the point’s ID
means = datar.mean(axis = 0)
stdev = datar.std(axis = 0)
data = (datar-means)/stdev

2. Create a potential field. You start with the pairwise distance between points.

scalar = pd.merge(data, data, how = 'cross')
point1 = scalar.loc[:, 'sepal length _x':'petal width _x']
point2 = scalar.loc[:, 'sepal length _y':'petal width _y']
apoint1 = point1.to_numpy(dtype = float)
apoint2 = point2.to_numpy(dtype = float)
delta = (apoint1 - apoint2)
The scalar product of data with itself is done with the pandas merge method using the how = ‘cross’ specification. Unlike SQL, that always creates the scalar product unless you specify a where clause, pandas merge needs the how = parameter to differentiate a scalar product from inner or outer joins. Python automatically adds a trailer _x and _y to the variable names found in data to distinguish the two points in the record generated by the merge method. You can therefore extract point1 and point2 from scalar. The two DataFrames keep the data of the first point and of the second one in each couple found in scalar. Separating the two points makes it easier to find the differences of the 4 variables in each couple of points because you can run computations by block on the 2 ndarrays apoint1 and apoint2 you get with point1.to_numpy() and point2.to_numpy().
Now you compute the pairwise attraction force. Remember that the force is a vector that always points to the point you are considering. You state the pointing direction with the function sig(), the signum of the distance delta. My suggestion is to use an exponential force, like exp(-abs(delta)). I strongly suggest not to use any delta inverse due to the risk of too strong forces when by chance two points are too near.

force = 0
if delta.any() != 0:
 force = np.exp(-abs(delta))
sig = np.sign(delta)
sforce = sig*force
dsforce = pd.DataFrame(sforce)

Now, for each point you need to sum all forces converging to it. The following code does the trick by variable. Variables are the force components. The array sforce is taken in chunks of 150 rows that bear the force’s components that point to a given point from all the others. Force’s components are thus summed up by chunk.

arr = np.ones((150, 1),)
sforcet = sforce.T
sum_force = np.zeros((1, 4),) #do not use empty arrays
start = 0
end = 150
for i in range(150):
 s_forcet = sforcet[:, start:end]
 work = np.matmul(s_forcet, arr)
 sum_force = np.concatenate((sum_force, work.reshape(1, 4)), axis = 0)
 start = end
 end +=150
sumforce = sum_force[1:, :] #omit the starting block
dsumforce = pd.DataFrame(sumforce)
dsumforce.to_excel('C:\Pyth\sumforce_sqc.xlsx')

The array arr is a service array you need to sum through the chunk of 150 rows. As you can see, I don’t use any empty arrays to initialize the concatenation. I found that it doesn’t always work properly. So I decided to start with a true array I’ll later remove with sumforce = sum_force[1:, :] that starts from the second row of the array sum_force. The array keeps 4 numbers: the sums of the 4 force components along the 4 axes given by the 4 original variables. The norm of the vector having the 4 components is easily computed as follows

sum_force_square = sumforce**2
ssT = np.ones((4, 1),)
T_w_ = np.sqrt(np.matmul(sum_force_square, ssT))

3. Isolate the field’s potential wells

Potential wells are where |T_w_| is at a local minimum. Because in the use of matplotlib I’m still a beginner, after exporting |T_w_| to EXCEL I got the following line plot. Data are ordered by the row number of the original data. So that the first 50 points correspond to Setosa, then 50 Versicolor follow, and last 50 Virginica close the sequence.

The first minimum is at point 16 with coordinates (5.7, 4.4, 1.5, 0.4). It is a Setosa. The second minimum is at the point 67 with coordinates (5.6, 3.0, 4.5, 1.5). It is a Versicolor. The third minimum is at point 92 with coordinates (6.1, 3.0, 4.6, 1.4). It is still a Versicolor. Now we find the point 128 with coordinates (6.1, 3.0, 4.9, 1.8). It is a Virginica. The point 139 follows, a Virginica too, with coordinates (6.4, 3.1, 5.5, 1.8). We have 5 points as candidates for seeds in a Clustering procedure. However, we have to choose those that are not too near to some other ones. They would belong to the same potential well. We can use different strategies here. A hierarchical clustering with the Ward distance would agglomerate the points 128 with 139 and the point 67 with the point 92. You could also choose one in the two couples to be agglomerated. Last you could start with 5 clusters and then agglomerate the final clusters.
Any cluster method would easily find the three clusters with a good correspondence with the true species.
Good seeds are a strong winning factor. In fact, iterative clustering methods suffer too much from the initial seeds due to the sequential process implicit in the many of them.

To compare the points in the potential well with the data averages by species, first I took the average of the two couples of too near points. They stay in the same potential well, though this doesn’t appear in the graph due to the points being ordered as in the raw data table. I got:
Couple (67, 92) average = (5.85, 3.00, 4.555, 1.45)
Couple (128, 139) average = (6.25, 3.05, 5.20, 1,80)
The point 16 (Setosa) is well separated from the other ones. So, I take it as it is. In the table, PW() means points from the potential wells and Avg() means sample average by species.

	
	Sepal length
	Sepal width
	Petal length
	Petal width

	Avg(Setosa)
	5.006
	3.428
	1.462
	0.246

	PW(Setosa)
	5.700
	4.400
	1.500
	0.400

	Avg(Versicolor)
	5.936
	2.770
	4.260
	1.326

	PW(versicolor)
	5.850
	3.000
	4.555
	1.450

	Avg(Virginica)
	6.588
	2.974
	5.552
	2.026

	PW(Virginica)
	6.250
	3.050
	5.200
	1.800

APPENDIX: partial reprint of a previous post

Locating Modes in Samples by a Weighted Laplace Convolution

Abstract
In the case of continuous random variables, a straight application of the theorem of Fermat is enough to locate modes when they are located inside of the variables’ range. The zeros of their Densities’ derivatives are in fact the points where they attain their maximum, minimum or inflection points. In order to decide between the three cases, a check on the second derivative is needed. Unfortunately, derivatives are of no help in the search of modes in a sample. Discrete by its very nature, a sample makes derivatives meaningless. However, keeping in mind that by definition modes are local Density’s maximums, one can completely overhaul the derivative-based approach and exploit the expectation that sample points would cluster around the sample’s modes. This paper shows how this approach can be implemented through a Gravitational model that endows each sample point with a “centrality” score in its surrounding topological neighbourhood. Thus, instead of a direct search of modes, a two-steps method is suggested: (1) searching points that bear a good centrality score and then (2) checking the local density in their neighbourhoods.
[bookmark: _Hlk87349738]Keywords: mode; clustering; mixture decomposition; gravitation; deep learning.
1. How the paper is organized
After an introduction, the theory underpinning the method is presented. Then, the case of the Logistic distribution is addressed. It enjoys a Cumulative in closed form that under the gravitational law between the couple of points allows a closed form representation of the corresponding gravitational field . The zeros of locate the mode when it is inside of the variable’s range. The value of the method lies in the fact that in a sample the gravitational field is easy to compute. Details needed to demonstrate the statements can be found in the Appendix.

2. Introduction
[bookmark: _Hlk87350895]Due to the randomness of data patterns in a sample, even after a preliminary careful smoothing of sample’s data, the smartest attempt to locate modes may end in a failure. In Author’s opinion the simple approach here sketched could attract some attention from readers. The core of the method stays in the study of the gravitational field generated by a negative exponential gravitational law of points’ inter-distance that corresponds to a weighted convolution of the density with the Laplace distribution. Because the convolution acts on the Density of continuous random variables and because Densities are absolutely summable over the whole real line, any convergence concern disappears. The method can work well when the data body is a sample from a continuous distribution and the mode is an internal point in the variable’s range. In this paper, therefore, mode means “a central point in a dense neighbourhood”. This definition implies that the method can be viewed as a new variant of Clustering algorithms.

3. The gravitational model

The gravitational field represents the accumulation on each sample point of the information about where the other points are. The value of the method is in its ability to provide each sample point with a “centrality” score in a suitably narrow surrounding neighbourhood. Borrowing from other fields of science, it is possible to endow each sample point with a smooth function of the pairwise point inter-distances from all the other points. We know that, by the notion of mutual attraction between couples of points, the gravitational Newton’s model does exactly this. Here the Newton model is taken only as a mental paradigm, without pretending the applicability to Statistics of the gravitational hypothesis as such. Therefore, we won’t use the Newton law that, among others, would lead to singular points, the infamous black holes. Narrowly circulated attempts by the Author with a plain application of the Newton’s law show that the gravitational force between some couples of sample points may be too big thus remarkably hindering the search. Mechanical paradigms are not new in Statistics (Capra et al. 1970). The simplest case is the interpretation of the mean as the barycentre of the data. All sample points, bearing the information of their position in the variable’s range, concur to the estimation of the sample mean. In addition, it is known that some multivariate models plunge their roots in mechanics. Principal Components Analysis is the straight replication of the theory of the axis of permanent rotation of a rigid body. In fact, the variance is the statistical companion of the moment of inertia that measures the resistance of a rigid body to rotation. Coming to samples, the sample variance is the resistance to rotation of a cloud of points keeping their inter-distances invariant during rotation. Viewing a data body as a collection of asteroids is thus certainly not new.
In this paper, keeping the basic characteristics of the Newton approach, we use a suitable law of attraction, both mathematically tractable and free from singularities. Namely:
1. for each couple of points in the sample, an attraction force that declines with the distance , is defined,
2. [bookmark: _Hlk99726923]each point is endowed with the sum of all the attraction forces emanating from all the other points in the sample
Often, we will refer to the ’s intensity as . A central point in a neighbourhood enjoys a local minimum of the total attraction’s intensity because the nearest surrounding points, pivotal in the sum of forces acting on that point, balance their contribution making to decrease to a local minimum. Central points in a neighbourhood lay therefore at the bottom of a potential well. The points where the intensity of the sum of the attraction forces has a local minimum are thus candidates as local modes in the sample. They can be taken as modes only after checking that the local density attains a local maximum there. In fact, the attraction forces can reach a balance because of the mutual disposition of points in the sample without being central in any dense neighbourhood. They wouldn’t be candidate as modes, however until directly checked. The centrality effect here described can be theoretically verified when the cumulative Distribution can be written in closed form.
From what has been said, the attraction force between the two points is

[bookmark: _Hlk87351772]
where
 is the sign of the difference between the two points and . Taking as the point under consideration, all forces are always directed from to . So, they are positive when and negative when . This entails that the sum of forces is the integral in of (1)
[bookmark: _Hlk85009975] is the mass of the point , actually the local Density at , actually its likelihood
 is the mass of the point , actually the local density at , actually its likelihood
 is the law of the force intensity’s decline with
Given the point , the total force acting on due to all the other points is given by

Twointegrals are needed because the forces change their direction at the point Please note that, being the integral in , the density is a constant, so that it can be moved out from the integral symbol.
All symmetric distributions obviously have = mean. In fact, taking without loss of generality , the force’s intensity that links the couple ((,) is equal to the force intensity that links the two points because is fixed, and also is the same. Thus, forces’ intensities are also the same with opposite signs, however. When the density is symmetric, the function is thus antisymmetric with . Summing over all points symmetrically positioned with respect to the mean , one gets the sum of 0. You conclude that, in the case of a unimodal symmetric distribution, the root of is also the single mode of the distribution. In fact, happens when is central to a dense neighbourhood. starts negative and ends positive so that admits at least 1 root in the range. The root is actually only one. In fact, both and are positive. For a generic and similarly . Therefore, and Buy the Ulysses Dini theorem, crosses the x-axis. The point of crossing is due to the symmetry between and

4. [bookmark: _Hlk87429631]The Logistic distribution

Unfortunately, can’t be put in closed form for the normal Distribution. Integrating by parts, the Cumulative will show up at some point. Though admits approximations, they are of no help in the search of the roots of . A suitable approach is to leverage Distributions having a Cumulative in closed form. The Logistic distribution can work well with the distances .
The Logistic Density and the Logistic Cumulative distributions are written as

For each and the distance you have

For the total force acting on the point you have

A detailed computation for the Logistic distribution follows. Three basic integrals underpin the key steps. The first one is a definite integral spanning from to and linking the Logistic density to its companion Cumulative. The second and the third ones are indefinite integrals you can retrace in the mathematical literature (ex. Weast et al., 1964). Omitting the arbitrary constant you have

Also, the substitution is used when needed. The total force is written as

Separately dealing with A and B, you get

Putting all together

 is antisymmetric in. The factor outside the major parenthesis is the density at , symmetric for a logistic distribution. Easy to prove, anyway. Substituting with you come back to the same form with inverted sign. You easily check that

And also

is obviously antisymmetric. Therefore, the part within the major parenthesis is antisymmetric. A continuous antisymmetric function admits at least one root . In addition, because 0 is a root of , you should have . This is easily checked. Both take the value at 0.

Bibliography

[1] Capra, R., Lena, S., Santarelli, U., Vescovi, P. (1976). “Cluster Analysis by Moment of Inertia Method”, IBM technical disclosure Bulletin, Vol. 18 No. 8.
[2] Weast R., M. Samuel (1964). “Standard Mathematical Tables”, The Chemical Rubber Co.
[3] Guojun G., M. Chaoqun, W. Jianhong (2007). “Data Clustering, Theory, Algorithms and Applications, ASA-SIAM Series on Statistics and Applied Probability, SIAM, Philadelphia, ASA, Alexandria, VA.
[4] Hartigan, J. (1975). “Clustering Algorithms”, Toronto, John Wiley & Sons.

T_w_: Field intensity by points

52.164967321890011	50.653037112303991	67.595435264578228	47.854937696257217	54.323452569806207	34.83693998119405	55.371446826387952	45.500190078690302	55.574768553519917	63.036164015794213	38.286885040846478	53.586537824467158	69.170908581442831	79.550880287403984	60.371304640007502	15.38765336342346	54.126963918305279	46.274085254789817	30.653930302451549	29.40794518745189	43.881996110090832	30.65504576296124	72.846762826650192	35.460118976369962	55.258049396117713	36.337108342452467	40.153010044516087	42.292178573779758	48.5722565349704	51.39473919812535	48.360069729158809	33.766772220598313	54.745289748257782	42.417508857720897	63.036164015794213	65.975601020845403	61.576643546468617	63.036164015794213	62.261441743917139	40.569337105281377	61.060203665979053	64.772653787279054	66.577713906984272	42.429449971111843	34.185552433202943	47.422492260488262	38.76379727652467	58.259772485790002	37.707747984339093	52.455581572710017	39.839632093615442	34.610868377289179	39.015212928308983	42.660298662660487	37.573158037896981	30.472750908699059	32.912381754802318	55.559455823005933	34.872615831626057	45.472633244373377	46.568936716306261	22.37057789333792	44.526309439853627	21.54515767717902	36.328003355739462	36.852529620593508	13.75570423871179	45.415915259977062	31.81853646139194	48.989150088320173	29.315017697030541	40.365813789692787	37.077937731715267	34.926278670049228	37.276908731943479	30.626940812133011	41.688776889074767	33.538615402403217	23.62351684186174	46.492684067266083	49.472814795489541	48.830321549909428	49.769604760514923	42.081431988815353	18.906870191137671	33.605843180080782	33.697502900259359	38.709082823919353	27.289205582124481	44.675881925077107	43.180759868923907	9.7705473846448054	47.015577930048508	49.488716891906321	40.815241885172021	29.801511181294131	31.064490951660328	31.635818357547919	43.266867061174629	36.934005799534773	65.475512764528645	45.885112631444663	59.156320713053013	44.271910027994892	57.717078467569657	52.144743749128622	47.963523250357383	56.1574410994373	61.009083524558577	71.953676648302974	48.982461026400877	53.380193853609768	52.316924909733629	43.340918157784749	52.082497980861831	55.021741781477459	41.723154148815013	59.272009023905589	63.510510673404177	32.739918494628562	65.991589434557099	38.233285922908223	57.196662110655012	39.898427502896418	62.003905375089992	58.387062714414398	32.089810956072398	20.494540022505269	56.19374934079795	51.46150730454233	61.78138757792189	58.500243764054247	56.902207286800262	37.793425420281167	47.08317950479217	60.417292699741601	60.760877776377022	42.719037053783801	17.433904502348049	54.733717397592457	61.161631073623987	55.322024339935354	45.885112631444663	67.969037887030467	67.207674773520822	52.768114553612932	44.398073139409163	46.14538333748569	53.70218258098982	27.707908127044931	

