Hi, this is my best result... figure is acceptable when I use a lot of points...
#!/usr/bin/env python # -*- coding: utf-8 -*- import matplotlib import matplotlib.art3d import matplotlib.axes3d import pylab if __name__ == "__main__": data_filename = ... # We load data # # x1 y1 v1 # x2 y2 v2 # x3 y3 v3 # ... # data_file = pylab.load(data_filename) # We get x coordinate lstX = data_file[:, 0] # We get y coordinate lstY = data_file[:, 1] # We get data values lstV = data_file[:, 2] # We create list of lines from (x, y, 0) to (x, y, value) lstLines = [[(x, y, 0), (x, y, v)] for (x, y, v) in zip(lstX, lstY, lstV)] # We create the figure fig = pylab.figure(1) # We get the axe reference ax = matplotlib.axes3d.Axes3D(fig) # We create a matplotlib line collection lines = matplotlib.art3d.Line3DCollection(lstLines, linewidths=5) # We add the collection to the axes ax.add_3DCollection(lines) # Auto scale ax.auto_scale_xyz(lstX, lstY, lstV, ax.has_data()) # Draw pylab.show() # Bye exit(0) Example of data file : 0 0 -4.49132 0 1 0.676531 0 2 -1.60375 0 3 -0.184649 0 4 0.958887 0 5 -0.165971 1 0 -0.0216472 1 1 0.157346 1 2 -0.372853 1 3 0.2576 1 4 0.654506 2 0 0.139453 2 1 -0.204437 2 2 0.151606 2 3 0.271027 3 0 0.222327 3 1 0.921501 3 2 0.500956 4 0 0.104108 4 1 0.415777 5 0 0.244248 -- View this message in context: http://www.nabble.com/3D-histogram-tp16986530p20268667.html Sent from the matplotlib - users mailing list archive at Nabble.com. ------------------------------------------------------------------------- This SF.Net email is sponsored by the Moblin Your Move Developer's challenge Build the coolest Linux based applications with Moblin SDK & win great prizes Grand prize is a trip for two to an Open Source event anywhere in the world http://moblin-contest.org/redirect.php?banner_id=100&url=/ _______________________________________________ Matplotlib-users mailing list Matplotlib-users@lists.sourceforge.net https://lists.sourceforge.net/lists/listinfo/matplotlib-users