
Update distributed_credential_protection.md
Xuelei Fan authored 3 days ago

ef39bc42

Design a distributed credential protecion scheme so that the credential generated and proected in one
server node could be used in an entire cluster.

For TLS protocols, an initial connection will negotiate the security parameters and then establishe the
security channel between client and server. The initial connection is expensive because a lot of
cryptographic operations are involved. The negotiated parameters could be cached in a protected
credential. The credential could be reused for subsequent connections. The credential reuse could
significantly improve the performance the the subsequent connections.

We want to extend the benefit from connections between the same client and server to connections
between the same client and an entire cluster. Although the credential is created and protected in one
server node, it must be usable on any server node in the cluster. As require that each node should share
the secrets/keys that are used to protec the credential.

The distributed credential protection scheme should take care of the key genetation, key rotation and
synchronization across the clusters of computers.

A hash function is any function that can be used to map data of arbitrary size to fixed-size values. A
secure hash algorithm is a hash function that is suitable for use in cryptography.

 HASH(m) -> MD

 Options:
 Hash a hash function; HashLen donotes the length of the
 hash function output in octets.
 Input:
 m the message

 Output:
 MD a fixed-size message digest (of HashLen octets)

 The output MD is calculated by mapping the input message to
 fixed-size values with specific hash algorithm. The output
 could be notated as follows:

 MD = HASH(m)

! distributed_credential_protection.md 11.6 KB

Distributed Credential Protection

Summary

Motivation

Related Cryptographic Algorithms and Terms

Secure hash function

Keyed-Hash Message Authentication Code (HMAC)

https://orahub.oci.oraclecorp.com/xuelei_fan/needle/-/commit/ef39bc42614346ad0d78e87f1c059e95227348ad
https://orahub.oci.oraclecorp.com/xuelei_fan

In cryptography, an HMAC(Keyed-hash message authentication code) is a specific type of message
authentication code (MAC) involving a cryptographic hash function and a secret cryptographic key.

HKDF is a HMAC-based key derivation function (KDF). It is used to take some source of initial keying
material and derive from it one or more cryptographically strong secret keys.

HKDF follows the "extract-then-expand" paradigm, where the KDF logically consists of two modules.
The first stage takes the input keying material and "extracts" from it a fixed-length pseudorandom key K.
The second stage "expands" the key K into several additional pseudorandom keys (the output of the
KDF).

1. HKDF-Extract(salt, IKM) -> PRK

2. HKDF-Expand(PRK, info, L) -> OKM

 HMAC-Hash(m, K) -> MAC

 Options:
 Hash a hash function; HashLen donotes the length of the
 hash function output in octets.
 Input:
 m the message
 K the secret key

 Output:
 MAC a fixed-size message authentication code (of HashLen octets)

 The output MAC could be notated as follows:

 MAC = HMAC-Hash(m, K)

 Options:
 Hash a hash function; HashLen denotes the length of the
 hash function output in octets

 Inputs:
 salt optional salt value (a non-secret random value);
 if not provided, it is set to a string of HashLen zeros.
 IKM input keying material

 Output:
 PRK a pseudorandom key (of HashLen octets)

 The output PRK is calculated as follows:

 PRK = HMAC-Hash(salt, IKM)

 or notated as follows:

 PRK = HKDF-Extract(salt, IKM)

 Options:
 Hash a hash function; HashLen denotes the length of the
 hash function output in octets

 Inputs:
 PRK a pseudorandom key of at least HashLen octets
 (usually, the output from the extract step)

HMAC-based key derivation function (HKDF)

Authenticated encryption with associated data (AEAD) is a form of encryption which simultaneously
assure the confidentiality and authenticity of data.

The basic idea of this proposal is deriving credential protecion key from the server authentication
possessions. In general, the server possesses some private information for the server authentication on
TLS connections, for example, the RSA/EC private key. Every server in the distributed system should be
able to access the possession.

With the proposed scheme, the credential protecion keys will be automatically generated and rotated in
each server, and automatically synchronized among the distributed system.

This proposal can be considered as a triple stage process.

1. Select the server possessions for key generation;
2. Design the key rotation scheme;
3. Design the credential protecion scheme.

Each node in the cluster should possesses some private information for server authentication. In TLS
context, we select to used the private key and public key as the server possessions, which is the same
in each server node in the cluster.

 info optional context and application specific information
 (can be a zero-length string)
 L length of output keying material in octets
 (<= 255*HashLen)

 Output:
 OKM output keying material (of L octets)

 The output OKM could be notated as follows:

 OKM = HKDF-Expand(PRK, info, L)

 AEAD-Encrypt(key, nonce, additional_data, plaintext) -> AEADEncrypted

 Input:
 key the secret key for the encryption
 nonce a unique value for each encryption operation
 additional_data the associated data
 plaintext the message to be encrypted

 Output:
 AEADEncrypted the ciphertext

 AEAD-Decrypt(key, nonce,
 additional_data, AEADEncrypted) -> plaintext

 Input:
 key the secret key for the encryption
 nonce a unique value for each encryption operation
 additional_data the associated data
 AEADEncrypted the ciphertext

 Output:
 plaintext the decrypted message

Authenticated encryption with associated data (AEAD)

Distributed Credential Protecion Scheme

Select the possessions and derive the master key derivation key.

The server possessions cannot be used directly for credential protection. Instead, the keying material
should be generated from the server possessions.

server possession

hash algorithm

possession label

shared key materials

key derivation algorithm

key derivation label

the master key derivation key

If the maximum key use is limited, or could be exceeded, the key should be rotated before reach the
limit. At a time, each node in the cluster should use the credential protection key. The secret key should
be updated and synchronized among the cluster. A key rotation scheme defines the key update and
synchronization policy so that the credential protection keys do not exceed the maximum use-limit or
the timeout limit.

 Possession: encoded public key | encoded private key

 Option:
 Hash: hash algorithm
 Label: a choosen octests label for key derivation
 Input:
 Possession: the server possession

 // Derive the shared key materials from the server possession
 SKM = HASH(Possession || SKMLabel)
 Hash: the hash algorithm
 SKMLabel: label for this derivation

 // Derive the master key derivation key.
 KDK = HKDF_Extract(KDKLabel, SKM)
 KDKLabel: label for this derivation, as salf for HKDF_Extract

 // Clean the shared key materials
 SKM = zeros

Time based key rotation scheme

The time based key rotation schme based on the follow two assumptions:

1. The system clock in each node should be synchronized. It is doable by using the Network Time
Protocol (NTP).

2. If the system clock is not precise synchronized, the secure parameters could be re-negotiated,
without breaking the connection.

Here is the time-based key rotation schme:

1. Define the key rotation timeout, for example one week, or two weeks.

2. When a node inserted into the system, calculate how many periods (or timeouts) have passed since
a past-time (for example, 01/01/1970).

3. Derive the secret key with a deterministic key derivation algorithm (for example, HKDF).

4. When the system clock moving onto the next period, update the credential encryption key, as
described in #3.

If combining the server possession part together, the scenarios is as showned in the following diagram:

private static final long KEY_DERIVATION_PERIOD = TimeUnit.DAYS.toMillis(7);

long periodsSince1970 = System.currentTimeMillis() / KEY_DERIVATION_PERIOD;

 Option:
 Hash: hash algorithm used for the key derivation

 Input:
 PRK a pseudorandom key, which is derived from the server possessions.
 info the periods since a past time.
 L length of output keying material in octets.

 // Derive the credential encryption key.
 TEK = HKDF-Expand(PRK, info, L)

SecretKey credentialEncryptionKey = HKDF.of(scheme.hashAlg).expand(
 ppk,
 Utilities.toByteArray(periodsSince1970),
 keyScheme.keySize, keyScheme.keyAlg);

rotate

server possession

hash algorithm

possession label

shared key materials

key derivation algorithm

key derivation label

the master key derivation key

key derivation algorithm

the periods since a past time

the credential encryption key

The protected credential is defined as:

Here is the scheme for the credential creation:

 Credential: periods | nonce | EncryptedParameters
 periods : how many periods (or timeouts) have passed since a past-time
 nonce : a random number for each encryption (for AEAD cipher)
 EncryptedParameters : encrypted negotiated-parameters for the initial connection

 Input:
 key : the credential encryption key
 nonce : a random number for each encryption

Credential protecion scheme

Here is the scheme for credential reuse:

 plaintextParameters : plaintext parameters before encryption.
 periods : the peirods have passed since a past-time.

 Output:
 the protected credential

 // Protect the negotiated parameters
 //
 // additional_data: the millis at the end of the peirods since a past time.
 EncryptedParameters =
 AEAD-Encrypt(key, nonce, additional_data, plaintextParameters)

 // Construct the protected credential
 ProtectedCredential = periods | nonce | EncryptedParameters

 Input:
 ProtectedCredential : the protected credential

 Output:
 plaintext parameters before encryption, and the peirods have passed since a past-time

 // Decapsulate the protected credential, and get the peirods, nonce and EncryptedParameters.
 periods | nonce | EncryptedParameters

 // Get the key specified for this periods.
 ondutyKey = ... // Rotate the key if needed.

 // Decrypt the EncryptedParameters
 //
 // additional_data: the millis at the end of the peirods since a past time.
 plaintextParameters =
 AEAD-Decrypt(ondutyKey, nonce, additional_data, EncryptedParameters)

