Synapse Guide dr aft

Apache Synapse is a mediation framework for Webi&es. Synapse allows messages

flowing through, into, or out of an organizationlte mediated, including aspects such as:
» Logging, service lookup, performance mediation

» Versioning, failover, monitoring
» Fault management, tracing

Getting started
Although there is a cleanly defined division betw&ynapse and Axis2, the Synapse
system relies on Axis2 to run. Firstly, it uses 8¥&dOM object model, and secondly it
uses Axis2 as a listener and sender for Web seregqeests.
There are two ways to set up the Synapse server.
1. synapse.war which can be deployed in a servietaost
2. Lightweight server which can be run under Axis2is@eHTTPServer (a simple
lightweight HTTP server option that does not reguairServlet Engine)
You can either download these or build them usiray&h.
You can build the war file by using the command:
maven dist-bin
which creates both the WAR and binary distributiédrs.
If you to use synapse.war, deploy it in into yoawdrite servlet container.
Once it's exploded, you will see in WEB-INF tia@s2.xml which has been configured to
execute Synapse properly asytiapse.xml, which will hold the rules pertaining to

messages passing through Synapse.

If you wish to use the standalone server, unzifyreapse-M1-SNAPSHOT.zip. In the
bin directory you will find a script called:

synapse-lightweight [.sh or .bat]

You should also see a directory called synapsesiepg. In there you should find the
axis2.xml and synapse.xml config files. The axig#.ghould not need to be modified.

The command line for synapse-lightweight takesépesitory directory and listening
port, so:

» sh bin/synapse-lightweight.sh synapseErgpos]tory 8080
Linux

> bin\synapse-lightweight synapse—repos}tqr{ 8080
Win

Processing model
Synapse has an overall model under which therenargvays to extend the framework.
1. Using the SPI, developers can busghapse Extensions, which extend both the
functionality and the XML configuration syntax ofr&apse.
2. Using the API, developers can bultkediators, which extend the functionality of
Synapse but use the existing XML syntax.
3. There are also built-in mediators that do commeskgdike logging, redirection
etc.

Typically users of Synapse extend the functiongisiediators, while the Synapse
development team can extend the core by builditgnsions.

A synapse deployment attaches to one or more toanggieners, and mediates messages
from those listeners. One of the key decision®is to “attach” mediators to messages.

Rules

By default Synapse will execute all defined med®tgainst a given message, but this
can be affected by using simplgdes. Synapse has two predefined rules: <xpath> and
<regex> xpath evaluates and XPath expression against the messhijeregex matches
a regular expression against one of the messagietse@uch as the wsa:To address).

Synapse also has two simple rules <in> and <outehwprocess only request or
response messages (as seen by the target service).

Stages

As a message goes through the Synapse engineg,piasa through multiple stages. Each
stage is a way of grouping and organizing mediadatsrules. A stage simply gives the
group a name.

An example
At this point an example would be useful.

<stage name="stagel-all">
<!--This enables the addressing module
which looks at wsa headers -->
<addressing/>

<!-Logs the message -->
<log/>

</stage>

<stage name="stage2-service-specific" >
<regex message-address="to"
pattern="http://xmethods.*">
<header type="to"
value="http://64.124.140.30:9090/soap" />
</regex>
</stage>

<stage name="stage3-send-all">
<send/>
</stage>

This example demonstratstage, regex and some built in mediatorgg, addressing and
header. It does not demonstrate tkgath, in or out rules.

Every stage will be executed for each messagefiiestage does initial processing
including parsing the addressing headers and |ggbi& message.

The next stage is using a regex rule to redireetyemessage addresses to xmethods.com
and xmethods.net to the real SOAP address of thetiddls quote service.

Finally the last stage sends the message on. §pomees, the messages come back
through the same stages. This time the messagaatitie redirected because the “to”
address on the response will not match xmethods.

In and Out
We could have been more explicit that the redioects only designed to apply to “in”
messages by using the <in> rule.

<stage name="stagel-all">
</stage>
<in name="stage2-service-specific" >
<regex message-address="to"
pattern="http://xmethods.*">
</in>

<stage name="stage3-send-all">

</sta§é;

There is a correspondingut> rule.

References
In order to make the configuration more re-usadlery rule, stage or mediator can be
named:

<stage name="thisname”>
The name can then be used to “refer” to the mediato

So
<ref ref="thisname”/>

will cause the same processing to happen as stdge had been included at that point.

For example:
<in>
<stage name="both”>

</stage>

<stage name="1inonly”> ..</stage>
</in>
<out>

<ref ref="both”/>
</out>

[Please note this is one area where we expect tongiderable worko |

Never

This is a stage where none of the children getwrec Its purpose is to allow you to
place rules and mediations and have them not ex@tuit instead refer to them from one
or more other places.

So the following may be deemed equivalent to tlewipus example

<in>

<ref ref="both”/>

<stage name="1inonly”> ..</stage>
</in>
<out>

<ref ref="both”/>
<out>
<never>

<stage name="both”>..</stage>
</never>

Content based routing

We can further improve this example by adding steoeatent-based” routing. Using an
<xpath> rule we can make tests within the XML. Erample, we could decide not to
allow stock ticker queries against certain compamibose share prices we were jealous
of — MSFT say :-).

To do this we can add a rule:

<xpath expr="//*[Symbol="MSFT']">
<fault/>
</xpath>

This rule identifies any messages with a tag “Sylimvbose content is MSFT. The
<fault> mediator returns a fault to the client.

We can place this rule under the regex rule, ealit applies to requests aimed at
xmethods.*:

<regex message-address="to" pattern="http://xmethods.*">
<header type="to"
value="http://64.124.140.30:9090/soap" />
<xpath expr="//*[Symbol="MSFT']">
<fault/>
</xpath>
</regex>

Note that the rules, like the stages, can have thareone child. While it isn’t fixed in
Synapse, the built-in rules and mediators all bsesame “plan” to execute their children,
which involves executing in the lexical order tttsy occur in the synapse.xml.

Samples

#ﬁggsl,;gtem ships with a couple of samples. Thededa sample clients and appropriate
synapse.xml intermediary configurations.
The first sample demonstrates the logging facilitgre is a simple synapse.xmi:
<synapse xmlns="http://ws.apache.org/ns/synapse">
<addressing/>
<log/>
<send/>

</synapse>

The logging uses the Log4J/Commons Logging suppdpache. You can configure it
using log4j.properties.

The sample client is a standard Axis2 client boiltun against the XMethods Quote
Service. However, it has been modified to use femdift transport address from the Web

Services Addressing TO header. In other wordsStBAP envelope is addressed to the
XMethods service, but the actual HTTP request go&ynapse.

The sample client has three (optional) parameters:
StockQuoteClient SYMBOL XmethodsURL TransportURL
e.g.
StockQuoteClient IBM http://64.124.140.30:9090/soap \
http://localhost:8080
The sample synapse.xml can be used to demonstiatesample behaviours.
1) Firstly try this:
StockQuoteClient IBM http://64.124.140.30:9090/soap \
http://64.124.140.30:9090/soap
This will bypass Synapse and simply call XMethods.

2) Now start Synapse and try
StockQuoteClient

on its own. You should see the messages beingdoggéhey pass through Synapse.

3) This time try
StockQuoteClient IBM urn:xmethods-delayed-quotes

This should hit a regex rule which replaces thettsal URI” that is in the wsa:To header
with the real URL.

4) Now try StockQuoteClient MSFT which should hittantent-based” xpath rule.

