How do I tell Open MPI to use processor and/or memory affinity?

Assuming that your system supports processor and memory affinity (check ompi_info for "paffinity" and "maffinity" components), you can explicitly tell Open MPI to use them when running MPI jobs.

Note that memory affinity support is enabled only when processor affinity is enabled. Specifically: using memory affinity does not make sense if processor affinity is not enabled because processes may allocate local memory and then move to a different processor, potentially remote from the memory that it just allocated.

Also note that processor and memory affinity is meaningless (but harmless) on uniprocessor machines.

Open MPI has three ways to set paffinity:

1. OMPI_PAFFINITY_ALONE

Simple way to set paffinity is by ompi_paffinity_alone parameter. It is best if the processes in an Open MPI job using processor affinity are the only intensive processes running on the nodes being used for the job. Specifically, since most schedulers do not (yet) provide information on which processors should be used for specific processes, Open MPI can only assume that its processes are "alone" on the node and it can exclusively claim CPUs starting with the first one. Hence, if two processor-affinity-enabled jobs are running on the same node, they will both attempt to claim the first processor(s) on the node, resulting in CPU thrashing (and severely degraded performance).

To enable processor (and potentially memory) affinity, set the MCA parameter "ompi_paffinity_alone" to 1.

For example:

#mpirun --mca ompi_paffinity_alone 1 -np 4 ./a.out

(Just like any other MCA parameter, ompi_paffinity_alone can be set via any of the normal MCA parameter mechanisms)

2. RANKFILE

Paffinity also can be set by rankmap file. In this file we can tell Open MPI where exactly we want each and every rank to be set. This scenario is suitable for situation when we know exactly what we have and where we want our ranks to be placed. To do so we need to provide Open MPI a file with the correct map of ranks.

The syntax of the file is very simple and intuitive

rank i=host_x slot=j.

Let’s check the fallowing example:

#mpirun -np 4 -hostfile hostfile -mca rmaps_rank_file_path rankfile ./app

#cat rankfile

rank 1=host1 slot=1:0,1

rank 0=host2 slot=0:*

rank 2=host4 slot=1-2

rank 3=host3 slot=0:1,1:0-2

This means that

a. rank 1 will run on host1 bounded to socket1:core0 and socket1:core1

b. rank 0 will run on host2 bounded to any core on socket0

c. rank 2 will run on host4 bounded to CPU1 and CPU2 (see notes below)

d. rank 3 will run on host3 bounded to socket0:core1 and socket1:core0, socket1:core1, socket1:core2

Notes:

* There is a user's responsibility to provide the correct number of CPU, Socket or Core to be bind to.

* Also it's user's responsibility to provide correct hostname.

* It is highly recommended to map all ranks in the job. Otherwise you may experience oversubscribing.

* There are machines with not sequential socket numbering.

* use cat /proc/cpuinfo to check CPU, socket and core numbering on your machine.

Example (see explanations as comments /* ... */): # cat /proc/cpuinfo

processor : 3

/* CPU number */

vendor_id : GenuineIntel?

cpu family : 6

model : 15

model name :

Intel(R) Xeon(R) CPU 5110 @ 1.60GHz

stepping : 6

cpu MHz : 1595.957

cache size : 4096 KB

physical id : 3

/* Socket id */

siblings : 2

core id : 1

/* Core id */

cpu cores : 2

fpu : yes

fpu_exception : yes

cpuid level : 10

wp : yes

flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm syscall nx lm constant_tsc pni monitor ds_cpl vmx tm2 cx16 xtpr dca lahf_lm

bogomips : 3192.10

clflush size : 64

cache_alignment : 64

address sizes : 36 bits physical, 48 bits virtual

power management:

This means that CPU3 is actually refers to socket3:core1.

3. rmaps_base_slot_list
Setting rmaps_base_slot_list parameter. This is very suitable for the situation when we have one or few jobs on the multi processor machine, when each job can run on the different processor of the machine. For instance 4 parallel jobs on cluster with Dual Core Dual CPU machines, when jobA runs on CPU#0 of each machine, jobB runs on CPU#1 on each machine in the cluster e.t.c.

This actually is a modified version of ompi_paffinity_alone for multi job tasks.

Ex:

#mpirun -np 4 -hostfile hostfile -mca rmaps_base_slot_list "0:1" ./app

In this case app will run on each and every host from the hostfile on socket0:core1.

Note:

* Make sure that each job runs only one copy of it on every node. Otherwise you will be oversubscribing the CPU !!!

Assumedly, this job is running on a single 4-way SMP or two 2-way SMPs. Setting ompi_paffinity_alone will tell Open MPI to bind each process to a specific processor, and if memory affinity is supported, to attempt to use general and specific memory affinity as described in a different FAQ entry.

Finally, note that Open MPI will automatically disable processor affinity on any node that is oversubscribed (i.e., where more Open MPI processes are launched in a single job on a node than it has processors) and will print out warnings to that effect.

Note, however, that processor affinity is not exclusionary with Degraded performance mode. Degraded mode is usually only used when oversubscribing nodes (i.e., running more processes on a node than it has processors -- see this FAQ entry for more details about oversubscribing, as well as a definition of Degraded performance mode). It is possible to manually select Degraded performance mode and use processor affinity as long as you are not oversubscribing.
