Jim Bromer wrote:
Ed Porter said:

It should be noted that Shruiti uses a mix of forward changing and backward
chaining, with an architecture for controlling when and how each is used.
...

My understanding that forward reasoning is reasoning from conditions to
consequences, and backward reasoning is the opposite. But I think what is a
condition and what is a consequence is not always clear, since one can use
if A then B rules to apply to situations where A occurs before B, B occurs
before A, and A and B occur at the same time. Thus I think the notion of
what is forward and backward chaining might be somewhat arbitrary, and could
be better clarified if it were based on temporal relationships. I see no
reason that Shruiti's "?" activation should not run be spread across all
those temporal relationships, and be distinguished from Shruiti's "+" and
"-" probabilistic activation by not having a probability, but just a
temporary attentional characteristic. Additional inference control mechanism
could then be added to control which directions in time to reason with in
different circumstances, if activation pruning was necessary.


This is not correct.

Forward chaining is when the inference engine starts with some facts and then uses its knowledge base to explore what consequences can be derived from those facts. Going in this direction the inference engine does not know where it will end up.

Backward chaining is when a hypothetical conclusion is given, and the engine tries to see what possible deductions might lead to this conclusion. In general, the candidates generated in this first pass are not themselves directly known to be true (their antecedents are not facts in the knowledge base), so the engine has to repeat the procedure to see what possible deductions might lead to the candidates being true. The process is repeated until it bottoms out in known facts that are definitely true or false, or until the knowledge base is exhausted, or until the end of the universe, or until the engine imposes a cutoff (this one of the most common results).

The two procedures are quite fundamentally different.


Richard Loosemore





Furthermore, Shruiti, does not use multi-level compositional hierarchies for
many of its patterns, and it only uses generalizational hierarchies for slot
fillers, not for patterns. Thus, it does not many of the general reasoning
capabilities that are necessary for NL understanding.... Much of the spreading
activation in a more general purpose AGI would be up and down compositional
and generaliztional hiearachies, which is not necessarily forward or
backward chaining, but which is important in NL understanding. So I agree
that simple forward and backward chaining are not enough to solve general
inferences problems of any considerable complexity.

-----------------------------------
Can you describe some of the kinds of systems that you think would be necessary for complex inference problems. Do you feel that all AGI problems (other than those technical problems that would be common to a variety of complicated programs that use large data bases) are essentially inference problems? Is your use of the term inference here intended to be inclusive of the various kinds of problems that would have to be dealt with or are you referring to a class of problems which are inferential in the more restricted sense of the term? (I feel that the two senses of the term are both legitimate, I am just a little curious about what it was that you were saying.)

I only glanced at a couple of papers about SHRUTI, and I may be looking at a different paper than you were talking about, but looking at the website it looks like you were talking about a connectionist model. Do you think a connectionist model (probabilistic or not) is necessary for AGI. In other words, I think a lot of us agree that some kind of complex (or complicated) system of interrelated data is necessary for AGI and this does correspond to a network of some kind, but these are not necessarily connectionist.

What were you thinking of when you talked about multi-level compositional hierarchies that you suggested were necessary for general reasoning?

If I understood what you were saying, you do not think that activation synchrony is enough to create insightful binding given the complexities that are necessary for higher level (or more sophisticated) reasoning. On the other hand you did seem to suggest that temporal synchrony spread across a rhythmic flux of relational knowledge of might be useful for detecting some significant aspects during learning. What do you think?

I guess what I am getting at is I would like you to make some speculations about the kinds of systems that could work with complicated reasoning problems. How would you go about solving the binding problem that you have been talking about? (I haven't read the paper that I think you were referring to and I only glanced at one paper on SHRUTI but I am pretty sure that I got enough of what was being discussed to talk about it.)

Jim Bromer

------------------------------------------------------------------------
*agi* | Archives <https://www.listbox.com/member/archive/303/=now> <https://www.listbox.com/member/archive/rss/303/> | Modify <https://www.listbox.com/member/?&;> Your Subscription [Powered by Listbox] <http://www.listbox.com>




-------------------------------------------
agi
Archives: https://www.listbox.com/member/archive/303/=now
RSS Feed: https://www.listbox.com/member/archive/rss/303/
Modify Your Subscription: 
https://www.listbox.com/member/?member_id=8660244&id_secret=106510220-47b225
Powered by Listbox: http://www.listbox.com

Reply via email to