@Mridul: Does it work for k = 50? On Oct 5, 5:09 am, Mridul Malpani <malpanimri...@gmail.com> wrote: > use log properties (mantissa) to calculate the first k digit of n^n. > > i am giving u working code, which gives answer in answer variable, > > double dummy =0; > f= (double)pow(10,modf((double)n*log10((double)n),&dummy)+k-1); > answer=(int)f; > > On Oct 4, 9:03 pm, navin <navin.myhr...@gmail.com> wrote: > > > > >http://www.codechef.com/problems/MARCHA4/ > > > for this problem i took idea from topcoder > > forumshttp://forums.topcoder.com/?module=Thread&threadID=672262&start=0&mc=... > > > and from > > algogeekshttp://www.mail-archive.com/algogeeks@googlegroups.com/msg06159.html > > > sorry that it was already discussed. > > my problem is it gives me precision error. > > > input: > > 11 > > 4 2 > > 9 3 > > 999 5 > > 457474575 9 > > 1000000000 9 > > 999999999 9 > > 19 9 > > 28 8 > > 27 1 > > 19423474 8 > > 19423474 9 > > > output: > > 25 56 > > 387 489 > > 36806 98999 > > 278661176 380859375 > > 100000000 000000000 > > 367880063 999999999 > > 197841965 589123979 > > 33145523 05812736 > > 4 3 > > 16307491 26110976 > > 163074912 826110976 > > > myouput > > 25 56 > > 387 489 > > 36806 98999 > > 278660870 380859375 > > 100000000 000000000 > > 367880063 999999999 > > 197841965 589123979 > > 33145523 05812736 > > 4 3 > > 16307490 26110976 > > 163074908 826110976 > > > test cases taken from comments. > > > see for the last 2 test case two digits are varying. > > I dont know how to correct the precision error while taking log10. > > > can you help me. > > > here follows my code. > > > #include<iostream> > > #include<vector> > > #include<cmath> > > #include<cstring> > > using namespace std; > > > long long modular_exponential(long long a, long long k, long long mod) > > { > > if ( k == 1 ) > > return a; > > else > > { > > if ( k%2 == 1 ) > > { > > return a * modular_exponential( a , k-1 , mod ) % > > mod ; > > } > > else > > { > > long long val = modular_exponential( a , k/2 , mod ) % > > mod ; > > return (val*val) % mod; > > } > > }} > > > main() > > { > > int t; > > cin >> t; > > while ( t-- ) > > { > > > long long n; > > int k; > > > cin >> n >> k; > > > double v = n*log10(n); > > double dummy; > > //cout << "v = " << v << endl ; > > double ff = modf(v,&dummy); > > //cout << "ff = " << ff << endl ; > > double val = pow(10.0,ff); > > long long mod = 1; > > for(int i = 0 ; i < k-1 ; i ++ ) > > { > > val = val*10; > > mod = mod*10; > > } > > mod = mod*10; > > > cout <<(int) val << " "; > > > long long vv = modular_exponential( n , n , mod ) ; > > > if ( vv == 0 ) > > { > > for(int i = 0 ; i < k ; i ++ ) > > { > > cout <<"0"; > > } > > > } > > else > > { > > char str[100]; > > sprintf(str,"%lld",vv); > > > int l = strlen(str); > > > if ( l == k ) > > cout << vv; > > else > > { > > int diff = k-l; > > for(int i = 0 ; i < diff ; i ++ ) > > cout << "0" ; > > cout << vv ; > > } > > } > > cout << endl ; > > } > > > }- Hide quoted text - > > - Show quoted text -
-- You received this message because you are subscribed to the Google Groups "Algorithm Geeks" group. To post to this group, send email to algoge...@googlegroups.com. To unsubscribe from this group, send email to algogeeks+unsubscr...@googlegroups.com. For more options, visit this group at http://groups.google.com/group/algogeeks?hl=en.