manoj       99/06/22 15:26:13

  Modified:    mpm/src  Configuration.mpm
               mpm/src/main alloc.c
               mpm/src/modules/mpm Makefile.tmpl
  Added:       mpm/src/modules/mpm acceptlock.c acceptlock.h http_accept.c
                        mpm_mpmt_pthread.c scoreboard.c
  Log:
  Add the mpmt_pthread MPM. This is a port of the hybrid server in the
  apache-apr repository to the MPM module system.
  
  Revision  Changes    Path
  1.9       +2 -0      apache-2.0/mpm/src/Configuration.mpm
  
  Index: Configuration.mpm
  ===================================================================
  RCS file: /home/cvs/apache-2.0/mpm/src/Configuration.mpm,v
  retrieving revision 1.8
  retrieving revision 1.9
  diff -u -d -u -r1.8 -r1.9
  --- Configuration.mpm 1999/06/20 23:49:27     1.8
  +++ Configuration.mpm 1999/06/22 22:26:10     1.9
  @@ -1,3 +1,5 @@
  +# Add the appropriate flags to compile threaded code when using the
  +# mpmt_pthread MPM (-pthread in EXTRA_CFLAGS on Linux)
   EXTRA_CFLAGS= -Wall
   EXTRA_LDFLAGS=
   EXTRA_LIBS=
  
  
  
  1.4       +4 -0      apache-2.0/mpm/src/main/alloc.c
  
  Index: alloc.c
  ===================================================================
  RCS file: /home/cvs/apache-2.0/mpm/src/main/alloc.c,v
  retrieving revision 1.3
  retrieving revision 1.4
  diff -u -d -u -r1.3 -r1.4
  --- alloc.c   1999/06/20 21:46:12     1.3
  +++ alloc.c   1999/06/22 22:26:10     1.4
  @@ -565,6 +565,10 @@
       known_stack_point = &s;
       stack_var_init(&s);
   #endif
  +    alloc_mutex = ap_thread_mutex_new();
  +#ifdef WIN32
  +    spawn_mutex = ap_thread_mutex_new();
  +#endif
       permanent_pool = ap_make_root_pool();
   #ifdef ALLOC_STATS
       atexit(dump_stats);
  
  
  
  1.2       +15 -0     apache-2.0/mpm/src/modules/mpm/Makefile.tmpl
  
  Index: Makefile.tmpl
  ===================================================================
  RCS file: /home/cvs/apache-2.0/mpm/src/modules/mpm/Makefile.tmpl,v
  retrieving revision 1.1
  retrieving revision 1.2
  diff -u -d -u -r1.1 -r1.2
  --- Makefile.tmpl     1999/06/20 23:49:37     1.1
  +++ Makefile.tmpl     1999/06/22 22:26:11     1.2
  @@ -13,3 +13,18 @@
    $(INCDIR)/http_core.h $(INCDIR)/http_connection.h \
    $(INCDIR)/scoreboard_prefork.h $(INCDIR)/ap_mpm.h \
    $(OSDIR)/unixd.h
  +
  +mpm_mpmt_pthread.o: mpm_mpmt_pthread.c $(INCDIR)/httpd.h 
$(INCDIR)/ap_config.h \
  + $(INCDIR)/ap_mmn.h $(INCDIR)/ap_config_auto.h \
  + $(OSDIR)/os.h $(INCDIR)/ap_ctype.h \
  + $(INCDIR)/hsregex.h $(INCDIR)/alloc.h \
  + $(INCDIR)/buff.h $(INCDIR)/ap_iol.h $(INCDIR)/ap.h \
  + $(INCDIR)/apr.h $(INCDIR)/util_uri.h \
  + $(INCDIR)/http_main.h $(INCDIR)/http_log.h \
  + $(INCDIR)/http_config.h $(INCDIR)/http_core.h \
  + $(INCDIR)/http_connection.h $(INCDIR)/ap_mpm.h \
  + $(OSDIR)/unixd.h $(INCDIR)/http_accept.h acceptlock.c \
  + $(INCDIR)/http_protocol.h $(INCDIR)/http_request.h \
  + $(INCDIR)/http_conf_globals.h $(INCDIR)/http_vhost.h \
  + $(INCDIR)/util_script.h acceptlock.h \
  + http_accept.c scoreboard.c
  
  
  
  1.1                  apache-2.0/mpm/src/modules/mpm/acceptlock.c
  
  Index: acceptlock.c
  ===================================================================
  /* ====================================================================
   * Copyright (c) 1995-1999 The Apache Group.  All rights reserved.
   * 
   * Redistribution and use in source and binary forms, with or without 
   * modification, are permitted provided that the following conditions 
   * are met: 
   * 
   * 1. Redistributions of source code must retain the above copyright 
   *    notice, this list of conditions and the following disclaimer.  
   * 
   * 2. Redistributions in binary form must reproduce the above copyright 
   *    notice, this list of conditions and the following disclaimer in 
   *    the documentation and/or other materials provided with the 
   *    distribution. 
   * 
   * 3. All advertising materials mentioning features or use of this 
   *    software must display the following acknowledgment: 
   *    "This product includes software developed by the Apache Group 
   *    for use in the Apache HTTP server project (http://www.apache.org/)." 
   * 
   * 4. The names "Apache Server" and "Apache Group" must not be used to 
   *    endorse or promote products derived from this software without 
   *    prior written permission. For written permission, please contact 
   *    [EMAIL PROTECTED] 
   * 
   * 5. Products derived from this software may not be called "Apache" 
   *    nor may "Apache" appear in their names without prior written 
   *    permission of the Apache Group. 
   * 
   * 6. Redistributions of any form whatsoever must retain the following 
   *    acknowledgment: 
   *    "This product includes software developed by the Apache Group 
   *    for use in the Apache HTTP server project (http://www.apache.org/)." 
   * 
   * THIS SOFTWARE IS PROVIDED BY THE APACHE GROUP ``AS IS'' AND ANY 
   * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
   * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 
   * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE APACHE GROUP OR 
   * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 
   * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 
   * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 
   * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 
   * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 
   * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
   * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED 
   * OF THE POSSIBILITY OF SUCH DAMAGE. 
   * ==================================================================== 
   * 
   * This software consists of voluntary contributions made by many 
   * individuals on behalf of the Apache Group and was originally based 
   * on public domain software written at the National Center for 
   * Supercomputing Applications, University of Illinois, Urbana-Champaign. 
   * For more information on the Apache Group and the Apache HTTP server 
   * project, please see <http://www.apache.org/>. 
   * 
   */ 
  
  #include "httpd.h" 
  #include "http_main.h" 
  #include "http_log.h" 
  #include "http_config.h"      /* for read_config */ 
  #include "http_protocol.h"    /* for read_request */ 
  #include "http_request.h"     /* for process_request */ 
  #include "http_conf_globals.h" 
  #include "http_core.h"                /* for get_remote_host */ 
  #include "http_vhost.h" 
  #include "util_script.h"      /* to force util_script.c linking */ 
  #include "util_uri.h" 
  #include "acceptlock.h"
  #include "http_accept.h"
  #include <netinet/tcp.h> 
  #include <stdio.h> 
  
  #ifdef USE_SHMGET_SCOREBOARD
  #include <sys/types.h>
  #include <sys/ipc.h>
  #include <sys/shm.h>
  #endif
   
  #include "pthread.h" 
  
  /* Number of cross-process locks we're managing */
  static int lock_count;
  
  /* Number of intra-process locks we're managing */
  static int intra_lock_count;
  
  /* Intraprocess locking used by other serialization techniques */
  static pthread_mutex_t *intra_mutex = NULL;
  
  static void intra_mutex_cleanup(void *foo)
  {
      int i;
  
      for (i = 0; i < intra_lock_count; i++) {
          (void) pthread_mutex_destroy(&intra_mutex[i]);
      }
  }
  
  void intra_mutex_init(pool *p, int number_of_locks)
  {
      int i;
  
      intra_lock_count = number_of_locks;
      intra_mutex = (pthread_mutex_t *)ap_palloc(p, intra_lock_count * 
sizeof(pthread_mutex_t ));
      for (i = 0; i < intra_lock_count; i++) {
          if (pthread_mutex_init(&intra_mutex[i], NULL) != 0) {
              perror("intra_mutex_init");
            clean_child_exit(APEXIT_CHILDFATAL);
          }
      }
      ap_register_cleanup(p, NULL, intra_mutex_cleanup, ap_null_cleanup);
  }
  
  void intra_mutex_on(int locknum)
  {
      if ((errno = pthread_mutex_lock(&intra_mutex[locknum])) != 0) {
          ap_log_error(APLOG_MARK, APLOG_EMERG, 
                     (const server_rec *) ap_get_server_conf(),
                     "Error getting intraprocess lock. Exiting!");
      }
  }
  
  void intra_mutex_off(int locknum)
  {
      if (pthread_mutex_unlock(&intra_mutex[locknum]) != 0) {
          ap_log_error(APLOG_MARK, APLOG_EMERG, 
                     (const server_rec *) ap_get_server_conf(),
                     "Error releasing intraprocess lock. Exiting!");
      }
  }
  
  #if defined(USE_FCNTL_SERIALIZED_ACCEPT) || 
defined(USE_FLOCK_SERIALIZED_ACCEPT)
  static void init_lock_fname(pool *p)
  {
      /* XXXX possibly bogus cast */
      ap_lock_fname = ap_psprintf(p, "%s.%lu",
          ap_server_root_relative(p, ap_lock_fname), (unsigned long)getpid());
  }
  
  static char * expand_lock_fname(pool *p, int i)
  {
      return ap_psprintf(p, "%s.%d", ap_lock_fname, i);
  }
  #endif
  
  #if defined (USE_USLOCK_SERIALIZED_ACCEPT)
  /* XXX - Don't know if we need the intraprocess locks here */
  
  #include <ulocks.h>
  
  static ulock_t *uslock = NULL;
  
  
  
  void accept_mutex_init(pool *p, int number_of_locks)
  {
      ptrdiff_t old;
      usptr_t *us;
      int i;
  
      lock_count = number_of_locks;
      uslock = (ulock_t *)ap_palloc(p, lock_count * sizeof(ulock_t));
  
      for (i = 0; i < lock_count; i++) {
      /* default is 8, allocate enough for all the children plus the parent */
          if ((old = usconfig(CONF_INITUSERS, HARD_SERVER_LIMIT + 1)) == -1) {
            perror("usconfig(CONF_INITUSERS)");
            exit(-1);
        }
        
        if ((old = usconfig(CONF_LOCKTYPE, US_NODEBUG)) == -1) {
            perror("usconfig(CONF_LOCKTYPE)");
            exit(-1);
        }
        if ((old = usconfig(CONF_ARENATYPE, US_SHAREDONLY)) == -1) {
            perror("usconfig(CONF_ARENATYPE)");
            exit(-1);
        }
        if ((us = usinit("/dev/zero")) == NULL) {
            perror("usinit");
            exit(-1);
        }
        
        if ((uslock[i] = usnewlock(us)) == NULL) {
            perror("usnewlock");
            exit(-1);
        }
      }
  }
  
  void accept_mutex_on(int locknum)
  {
      switch (ussetlock(uslock[locknum])) {
      case 1:
        /* got lock */
        break;
      case 0:
        fprintf(stderr, "didn't get lock\n");
        clean_child_exit(APEXIT_CHILDFATAL);
      case -1:
        perror("ussetlock");
        clean_child_exit(APEXIT_CHILDFATAL);
      }
  }
  
  void accept_mutex_off(int locknum)
  {
      if (usunsetlock(uslock[locknum]) == -1) {
        perror("usunsetlock");
        clean_child_exit(APEXIT_CHILDFATAL);
      }
  }
  
  #elif defined (USE_PTHREAD_SERIALIZED_ACCEPT)
  
  /* This code probably only works on Solaris ... but it works really fast
   * on Solaris.  Note that pthread mutexes are *NOT* released when a task
   * dies ... the task has to free it itself.  So we block signals and
   * try to be nice about releasing the mutex.
   */
  
  #include <pthread.h>
  
  static pthread_mutex_t *accept_mutex = (void *)(caddr_t) -1;
  static int *have_accept_mutex;
  /* The sections surrounded with this ifdef are not needed because of the
   * sigwait thread. They may be turned back on, though, depending on how the
   * port to nonthreaded mode goes */
  #ifdef NEED_TO_BLOCK_SIGNALS_AROUND_PTHREAD_CALLS
  static sigset_t accept_block_mask;
  static sigset_t *accept_previous_masks = NULL;
  #endif
  
  void accept_mutex_child_cleanup(void *foo)
  {
      int i;
     
      if (accept_mutex != (void *)(caddr_t)-1) {
          for (i = 0; i < lock_count; i++) {
            if (have_accept_mutex[i]) {
                pthread_mutex_unlock(&accept_mutex[i]);
              }
        }
      }
  }
  void accept_mutex_child_init(pool *p)
  {
      ap_register_cleanup(p, NULL, accept_mutex_child_cleanup, ap_null_cleanup);
  #ifdef NEED_TO_BLOCK_SIGNALS_AROUND_PTHREAD_CALLS
      accept_previous_masks = ap_palloc(p, lock_count * sizeof(sigset_t));
  #endif
  }
  
  void accept_mutex_cleanup(void *foo)
  {
      int i;
     
      if (accept_mutex != (void *)(caddr_t)-1
          && munmap((caddr_t) accept_mutex,
                    sizeof(pthread_mutex_t) * lock_count)) {
        perror("munmap");
      }
      accept_mutex = (void *)(caddr_t)-1;
  }
  
  void accept_mutex_init(pool *p, int number_of_locks)
  {
      pthread_mutexattr_t mattr;
      int fd;
      int i;
     
      lock_count = number_of_locks;
      have_accept_mutex = (int *)ap_palloc(p, 
                    lock_count * sizeof(int));
  
      fd = open("/dev/zero", O_RDWR);
      if (fd == -1) {
          perror("open(/dev/zero)");
          exit(APEXIT_INIT);
      }
      accept_mutex = (pthread_mutex_t *) mmap((caddr_t) 0, 
                             sizeof(pthread_mutex_t) * lock_count, 
                           PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
      if (accept_mutex == (void *) (caddr_t) - 1) {
          perror("mmap");
          exit(APEXIT_INIT);
      }
      close(fd);
      if ((errno = pthread_mutexattr_init(&mattr))) {
          perror("pthread_mutexattr_init");
          exit(APEXIT_INIT);
      }
      if ((errno = pthread_mutexattr_setpshared(&mattr,
                                          PTHREAD_PROCESS_SHARED))) {
          perror("pthread_mutexattr_setpshared");
          exit(APEXIT_INIT);
      }
      for (i = 0; i < lock_count; i++) {
        if ((errno = pthread_mutex_init(&accept_mutex[i], &mattr))) {
            perror("pthread_mutex_init");
            exit(APEXIT_INIT);
        }
      }
      if ((errno = pthread_mutexattr_destroy(&mattr))) {
          perror("pthread_mutexattr_destroy");
          exit(APEXIT_INIT);
      }
  #ifdef NEED_TO_BLOCK_SIGNALS_AROUND_PTHREAD_CALLS
      sigfillset(&accept_block_mask);
      sigdelset(&accept_block_mask, SIGHUP);
      sigdelset(&accept_block_mask, SIGTERM);
      sigdelset(&accept_block_mask, SIGWINCH);
  #endif
      ap_register_cleanup(p, NULL, accept_mutex_cleanup, ap_null_cleanup);
  }
  
  void accept_mutex_on(int locknum)
  {
      int err;
  
  #ifdef NEED_TO_BLOCK_SIGNALS_AROUND_PTHREAD_CALLS
      if (pthread_sigmask(SIG_BLOCK, &accept_block_mask,
                          &accept_previous_mask[locknum])) {
        perror("pthread_sigmask(SIG_BLOCK)");
        clean_child_exit(APEXIT_CHILDFATAL);
      }
  #endif
      if ((err = pthread_mutex_lock(&accept_mutex[locknum]))) {
        errno = err;
        perror("pthread_mutex_lock");
        clean_child_exit(APEXIT_CHILDFATAL);
      }
      have_accept_mutex[locknum] = 1;
  }
  
  void accept_mutex_off(int locknum)
  {
      int err;
  
      if ((err = pthread_mutex_unlock(&accept_mutex[locknum]))) {
        errno = err;
        perror("pthread_mutex_unlock");
        clean_child_exit(APEXIT_CHILDFATAL);
      }
      /* There is a slight race condition right here... if we were to die right
       * now, we'd do another pthread_mutex_unlock.  Now, doing that would let
       * another process into the mutex.  pthread mutexes are designed to be
       * fast, as such they don't have protection for things like testing if the
       * thread owning a mutex is actually unlocking it (or even any way of
       * testing who owns the mutex).
       *
       * If we were to unset have_accept_mutex prior to releasing the mutex
       * then the race could result in the server unable to serve hits.  Doing
       * it this way means that the server can continue, but an additional
       * child might be in the critical section ... at least it's still serving
       * hits.
       */
      have_accept_mutex[locknum] = 0;
  #ifdef NEED_TO_BLOCK_SIGNALS_AROUND_PTHREAD_CALLS
      if (pthread_sigmask(SIG_SETMASK, &accept_previous_mask[locknum], NULL)) {
        perror("pthread_sigmask(SIG_SETMASK)");
        clean_child_exit(1);
      }
  #endif
  }
  
  #elif defined (USE_SYSVSEM_SERIALIZED_ACCEPT)
  
  #include <sys/types.h>
  #include <sys/ipc.h>
  #include <sys/sem.h>
  
  #ifdef NEED_UNION_SEMUN
  /* it makes no sense, but this isn't defined on solaris */
  union semun {
      long val;
      struct semid_ds *buf;
      ushort *array;
  };
  
  #endif
  
  static int *sem_id = NULL;
  static struct sembuf op_on;
  static struct sembuf op_off;
  
  /* We get a random semaphore ... the lame sysv semaphore interface
   * means we have to be sure to clean this up or else we'll leak
   * semaphores.
   */
  void accept_mutex_cleanup(void *foo)
  {
      union semun ick;
      int i;
  
      for (i = 0; i < lock_count; i++) {
          if (sem_id[i] < 0)
          return;
        /* this is ignored anyhow */
        ick.val = 0;
        semctl(sem_id[i], 0, IPC_RMID, ick);
      }
  }
  
  
  
  void accept_mutex_init(pool *p, int number_of_locks)
  {
      union semun ick;
      struct semid_ds buf;
      int i;
     
      lock_count = number_of_locks;
      sem_id = (int *)ap_palloc(p, lock_count * sizeof(int));
  
      for (i = 0; i < lock_count; i++) {
          /* acquire the semaphore */
          sem_id[i] = semget(IPC_PRIVATE, 1, IPC_CREAT | 0600);
        if (sem_id[i] < 0) {
            perror("semget");
            exit(APEXIT_INIT);
        }
        ick.val = 1;
        if (semctl(sem_id[i], 0, SETVAL, ick) < 0) {
            perror("semctl(SETVAL)");
            exit(APEXIT_INIT);
        }
        if (!getuid()) {
          /* restrict it to use only by the appropriate user_id ... not that 
this
           * stops CGIs from acquiring it and dinking around with it.
           */
            buf.sem_perm.uid = unixd_config.user_id;
            buf.sem_perm.gid = unixd_config.group_id;
            buf.sem_perm.mode = 0600;
            ick.buf = &buf;
            if (semctl(sem_id[i], 0, IPC_SET, ick) < 0) {
              perror("semctl(IPC_SET)");
              exit(APEXIT_INIT);
            }
        }
        ap_register_cleanup(p, NULL, accept_mutex_cleanup, ap_null_cleanup);
  
        /* pre-initialize these */
        op_on.sem_num = 0;
        op_on.sem_op = -1;
        op_on.sem_flg = SEM_UNDO;
        op_off.sem_num = 0;
        op_off.sem_op = 1;
        op_off.sem_flg = SEM_UNDO;
      }
  }
  
  void accept_mutex_on(int locknum)
  {
      if (semop(sem_id[locknum], &op_on, 1) < 0) {
        perror("accept_mutex_on");
        clean_child_exit(APEXIT_CHILDFATAL);
      }
  }
  
  void accept_mutex_off(int locknum)
  {
      if (semop(sem_id[locknum], &op_off, 1) < 0) {
        perror("accept_mutex_off");
        clean_child_exit(APEXIT_CHILDFATAL);
      }
  }
  
  #elif defined(USE_FCNTL_SERIALIZED_ACCEPT)
  static struct flock lock_it;
  static struct flock unlock_it;
  
  static int *lock_fd = NULL;
  
  /*
   * Initialize mutex lock.
   * Must be safe to call this on a restart.
   */
  void accept_mutex_init(pool *p, int number_of_locks)
  {
      int i;
      char * lock_fname;
  
      lock_count = number_of_locks;
      lock_fd = (int *)ap_palloc(p, lock_count * sizeof(int *));
      lock_it.l_whence = SEEK_SET;      /* from current point */
      lock_it.l_start = 0;              /* -"- */
      lock_it.l_len = 0;                        /* until end of file */
      lock_it.l_type = F_WRLCK;         /* set exclusive/write lock */
      lock_it.l_pid = 0;                        /* pid not actually interesting 
*/
      unlock_it.l_whence = SEEK_SET;    /* from current point */
      unlock_it.l_start = 0;            /* -"- */
      unlock_it.l_len = 0;              /* until end of file */
      unlock_it.l_type = F_UNLCK;               /* set exclusive/write lock */
      unlock_it.l_pid = 0;              /* pid not actually interesting */
  
      init_lock_fname(p);
      for (i = 0; i < lock_count; i++) {
          lock_fname = expand_lock_fname(p, i);
        lock_fd[i] = ap_popenf(p, lock_fname, 
                               O_CREAT | O_WRONLY | O_EXCL, 0644);
        if (lock_fd[i] == -1) {
            perror("open");
            fprintf(stderr, "Cannot open lock file: %s\n", lock_fname);
            exit(APEXIT_INIT);
        }
        unlink(lock_fname);
      }
  }
  
  void accept_mutex_on(int locknum)
  {
      int ret;
  
      while ((ret = fcntl(lock_fd[locknum], F_SETLKW, &lock_it)) < 0 && 
           errno == EINTR) {
        /* nop */
      }
  
      if (ret < 0) {
        ap_log_error(APLOG_MARK, APLOG_EMERG, (const server_rec*) 
ap_get_server_conf(),
                    "fcntl: F_SETLKW: Error getting accept lock, exiting!  "
                    "Perhaps you need to use the LockFile directive to place "
                    "your lock file on a local disk!");
        clean_child_exit(APEXIT_CHILDFATAL);
      }
  }
  
  void accept_mutex_off(int locknum)
  {
      int ret;
  
      while ((ret = fcntl(lock_fd[locknum], F_SETLKW, &unlock_it)) < 0 
           && errno == EINTR) {
        /* nop */
      }
      if (ret < 0) {
        ap_log_error(APLOG_MARK, APLOG_EMERG, (const server_rec*) 
ap_get_server_conf(),
                    "fcntl: F_SETLKW: Error freeing accept lock, exiting!  "
                    "Perhaps you need to use the LockFile directive to place "
                    "your lock file on a local disk!");
        clean_child_exit(APEXIT_CHILDFATAL);
      }
  }
  
  #elif defined(USE_FLOCK_SERIALIZED_ACCEPT)
  
  static int *lock_fd = NULL;
  
  void accept_mutex_cleanup(void *foo)
  {
      int i;
    
      char * lock_fname;
      for (i = 0; i < lock_count; i++) {
          lock_fname = expand_lock_fname(foo, i);
          unlink(lock_fname);
      }
  }
  
  /*
   * Initialize mutex lock.
   * Done by each child at it's birth
   */ 
  void accept_mutex_child_init(pool *p)
  {
      int i;
    
      for (i = 0; i < lock_count; i++) {
          char *lock_fname = expand_lock_fname(p, i);
      
          lock_fd[i] = ap_popenf(p, lock_fname, O_WRONLY, 0600);
          if (lock_fd[i] == -1) {
          ap_log_error(APLOG_MARK, APLOG_EMERG, 
                       (const server_rec *)ap_get_server_conf(),
                       "Child cannot open lock file: %s", lock_fname);
          clean_child_exit(APEXIT_CHILDINIT);
          }
      }
  }
  
  /*
   * Initialize mutex lock.
   * Must be safe to call this on a restart.
   */
  void accept_mutex_init(pool *p, int number_of_locks)
  {
      int i;
      char *lock_fname;
    
      lock_count = number_of_locks;
      lock_fd = (int *)ap_palloc(p, lock_count * sizeof(int *));
      init_lock_fname(p);
      for (i = 0; i < lock_count; i++) {
          lock_fname = expand_lock_fname(p, i);
          unlink(lock_fname);
          lock_fd[i] = ap_popenf(p, lock_fname, 
                               O_CREAT | O_WRONLY | O_EXCL, 0600);
          if (lock_fd[i] == -1) {
            ap_log_error(APLOG_MARK, APLOG_EMERG, 
                         (const server_rec *) ap_get_server_conf(), 
                         "Parent cannot open lock file: %s", lock_fname);
              exit(APEXIT_INIT);
          }
          ap_register_cleanup(p, p, accept_mutex_cleanup, ap_null_cleanup);
      }
  }
  
  void accept_mutex_on(int locknum)
  {
      int ret;
  
      while ((ret = flock(lock_fd[locknum], LOCK_EX)) < 0 && errno == EINTR)
          continue;
  
      if (ret < 0) {
          ap_log_error(APLOG_MARK, APLOG_EMERG, 
                     (const server_rec *) ap_get_server_conf(),
                     "flock: LOCK_EX: Error getting accept lock. Exiting!");
        clean_child_exit(APEXIT_CHILDFATAL);
      }
  }
  
  void accept_mutex_off(int locknum)
  {
      if (flock(lock_fd[locknum], LOCK_UN) < 0) {
          ap_log_error(APLOG_MARK, APLOG_EMERG, 
                     (const server_rec *) ap_get_server_conf(),
                     "flock: LOCK_UN: Error freeing accept lock. Exiting!");
        clean_child_exit(APEXIT_CHILDFATAL);
      }
  }
  
  #elif defined(USE_OS2SEM_SERIALIZED_ACCEPT)
  
  static HMTX *lock_sem = NULL;
  
  void accept_mutex_cleanup(void *foo)
  { 
      int i;
    
      for (i = 0; i < lock_count; i++) {
          DosReleaseMutexSem(lock_sem[i]);
        DosCloseMutexSem(lock_sem[i]);
      }
  }
  
  /*
   * Initialize mutex lock.
   * Done by each child at it's birth
   */
  void accept_mutex_child_init(pool *p)
  {
      int i;
      
      for(i = 0; i < lock_count; i++) {
          int rc = DosOpenMutexSem(NULL, &lock_sem[locknum]);
  
        if (rc != 0) {
            ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_EMERG, 
ap_get_server_conf(),
                         "Child cannot open lock semaphore, rc=%d", rc);
            clean_child_exit(APEXIT_CHILDINIT);
        }
      }
  }
  /*
   * Initialize mutex lock.
   * Must be safe to call this on a restart.
   */
  void accept_mutex_init(pool *p, int number_of_locks)
  {
      int rc;
      int i;
  
      lock_count = number_of_locks;
      lock_fd = (int *)ap_palloc(p, lock_count * sizeof(int *));
  
      for (i = 0; i < lock_count; i++) {
          rc = DosCreateMutexSem(NULL, &lock_sem[i], DC_SEM_SHARED, FALSE);
  
        if (rc != 0) {
          ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_EMERG, 
ap_get_server_conf(),
                       "Parent cannot create lock semaphore, rc=%d", rc);
          exit(APEXIT_INIT);
        }
        
        ap_register_cleanup(p, NULL, accept_mutex_cleanup, ap_null_cleanup);
      }
  }
  
  void accept_mutex_on(int locknum)
  {
      int rc = DosRequestMutexSem(lock_sem[locknum], SEM_INDEFINITE_WAIT);
  
      if (rc != 0) {
        ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_EMERG, 
ap_get_server_conf(),
                    "OS2SEM: Error %d getting accept lock. Exiting!", rc);
        clean_child_exit(APEXIT_CHILDFATAL);
      }
  }
  
  void accept_mutex_off(int locknum)
  {
      int rc = DosReleaseMutexSem(lock_sem[locknum]);
      
      if (rc != 0) {
        ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_EMERG, 
ap_get_server_conf(),
                    "OS2SEM: Error %d freeing accept lock. Exiting!", rc);
        clean_child_exit(APEXIT_CHILDFATAL);
      }
  }
  
  #elif defined(USE_TPF_CORE_SERIALIZED_ACCEPT)
  
  static int tpf_core_held;
  
  static void accept_mutex_cleanup(void *foo)
  {
      if(tpf_core_held)
          coruc(RESOURCE_KEY);
  }
  
  #define accept_mutex_init(x)
  
  static void accept_mutex_child_init(pool *p)
  {
      ap_register_cleanup(p, NULL, accept_mutex_cleanup, ap_null_cleanup);
      tpf_core_held = 0;
  }
  
  static void accept_mutex_on(void)
  {
      corhc(RESOURCE_KEY);
      tpf_core_held = 1;
      ap_check_signals();
  }
  
  static void accept_mutex_off(void)
  {
      coruc(RESOURCE_KEY);
      tpf_core_held = 0;
      ap_check_signals();
  }
  
  #else
  /* Default --- no serialization.  Other methods *could* go here,
   * as #elifs...
   */
  #if !defined(MULTITHREAD)
  /* Multithreaded systems don't complete between processes for
   * the sockets. */
  
  #endif
  #endif
  
  
  
  
  1.1                  apache-2.0/mpm/src/modules/mpm/acceptlock.h
  
  Index: acceptlock.h
  ===================================================================
  /* ====================================================================
   * Copyright (c) 1995-1999 The Apache Group.  All rights reserved.
   * 
   * Redistribution and use in source and binary forms, with or without 
   * modification, are permitted provided that the following conditions 
   * are met: 
   * 
   * 1. Redistributions of source code must retain the above copyright 
   *    notice, this list of conditions and the following disclaimer.  
   * 
   * 2. Redistributions in binary form must reproduce the above copyright 
   *    notice, this list of conditions and the following disclaimer in 
   *    the documentation and/or other materials provided with the 
   *    distribution. 
   * 
   * 3. All advertising materials mentioning features or use of this 
   *    software must display the following acknowledgment: 
   *    "This product includes software developed by the Apache Group 
   *    for use in the Apache HTTP server project (http://www.apache.org/)." 
   * 
   * 4. The names "Apache Server" and "Apache Group" must not be used to 
   *    endorse or promote products derived from this software without 
   *    prior written permission. For written permission, please contact 
   *    [EMAIL PROTECTED] 
   * 
   * 5. Products derived from this software may not be called "Apache" 
   *    nor may "Apache" appear in their names without prior written 
   *    permission of the Apache Group. 
   * 
   * 6. Redistributions of any form whatsoever must retain the following 
   *    acknowledgment: 
   *    "This product includes software developed by the Apache Group 
   *    for use in the Apache HTTP server project (http://www.apache.org/)." 
   * 
   * THIS SOFTWARE IS PROVIDED BY THE APACHE GROUP ``AS IS'' AND ANY 
   * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
   * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 
   * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE APACHE GROUP OR 
   * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 
   * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 
   * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 
   * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 
   * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 
   * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
   * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED 
   * OF THE POSSIBILITY OF SUCH DAMAGE. 
   * ==================================================================== 
   * 
   * This software consists of voluntary contributions made by many 
   * individuals on behalf of the Apache Group and was originally based 
   * on public domain software written at the National Center for 
   * Supercomputing Applications, University of Illinois, Urbana-Champaign. 
   * For more information on the Apache Group and the Apache HTTP server 
   * project, please see <http://www.apache.org/>. 
   * 
   */ 
  
  #ifndef APACHE_ACCEPT_LOCK_H
  #define APACHE_ACCEPT_LOCK_H
  
  #ifdef __cplusplus
  extern "C" {
  #endif
    
  /* Prototypes for the intraprocess accept mutex functions */
  void intra_mutex_init(pool *p, int);
  void intra_mutex_on(int);
  void intra_mutex_off(int);
  
  /* Prototyps for the accept mutex functions. */
  #if defined (USE_USLOCK_SERIALIZED_ACCEPT)
  #define accept_mutex_child_init(x)
  void accept_mutex_init(pool *, int);
  void accept_mutex_on(int);
  void accept_mutex_off(int);
  
  #elif defined (USE_PTHREAD_SERIALIZED_ACCEPT)
  void accept_mutex_child_cleanup(void *);
  void accept_mutex_child_init(pool *);
  void accept_mutex_cleanup(void *);
  void accept_mutex_init(pool *, int);
  void accept_mutex_on(int);
  void accept_mutex_off(int);
  
  #elif defined (USE_SYSVSEM_SERIALIZED_ACCEPT)
  void accept_mutex_cleanup(void *);
  #define accept_mutex_child_init(x)
  void accept_mutex_init(pool *, int);
  void accept_mutex_on(int);
  void accept_mutex_off(int);
  
  #elif defined(USE_FCNTL_SERIALIZED_ACCEPT)
  #define accept_mutex_child_init(x)
  void accept_mutex_init(pool *, int);
  void accept_mutex_on(int);
  void accept_mutex_off(int);
  
  #elif defined(USE_FLOCK_SERIALIZED_ACCEPT)
  void accept_mutex_cleanup(void *);
  void accept_mutex_child_init(pool *);
  void accept_mutex_init(pool *, int);
  void accept_mutex_on(int);
  void accept_mutex_off(int);
  
  #elif defined(USE_OS2SEM_SERIALIZED_ACCEPT)
  void accept_mutex_cleanup(void *);
  void accept_mutex_child_init(pool *);
  void accept_mutex_init(pool *, int);
  void accept_mutex_on(int);
  void accept_mutex_off(int);
  
  #else
  #if !defined(MULTITHREAD)
  /* Multithreaded systems don't complete between processes for
   * the sockets. */
  #define NO_SERIALIZED_ACCEPT
  #define accept_mutex_child_init(x)
  #define accept_mutex_init(x, y)
  #define accept_mutex_on(x)
  #define accept_mutex_off(x)
  #endif
  #endif
  
  #ifdef __cplusplus
  }
  #endif
  
  #endif /* APACHE_ACCEPT_LOCK_H */
  
  
  
  1.1                  apache-2.0/mpm/src/modules/mpm/http_accept.c
  
  Index: http_accept.c
  ===================================================================
  /* ====================================================================
   * Copyright (c) 1995-1999 The Apache Group.  All rights reserved.
   * 
   * Redistribution and use in source and binary forms, with or without 
   * modification, are permitted provided that the following conditions 
   * are met: 
   * 
   * 1. Redistributions of source code must retain the above copyright 
   *    notice, this list of conditions and the following disclaimer.  
   * 
   * 2. Redistributions in binary form must reproduce the above copyright 
   *    notice, this list of conditions and the following disclaimer in 
   *    the documentation and/or other materials provided with the 
   *    distribution. 
   * 
   * 3. All advertising materials mentioning features or use of this 
   *    software must display the following acknowledgment: 
   *    "This product includes software developed by the Apache Group 
   *    for use in the Apache HTTP server project (http://www.apache.org/)." 
   * 
   * 4. The names "Apache Server" and "Apache Group" must not be used to 
   *    endorse or promote products derived from this software without 
   *    prior written permission. For written permission, please contact 
   *    [EMAIL PROTECTED] 
   * 
   * 5. Products derived from this software may not be called "Apache" 
   *    nor may "Apache" appear in their names without prior written 
   *    permission of the Apache Group. 
   * 
   * 6. Redistributions of any form whatsoever must retain the following 
   *    acknowledgment: 
   *    "This product includes software developed by the Apache Group 
   *    for use in the Apache HTTP server project (http://www.apache.org/)." 
   * 
   * THIS SOFTWARE IS PROVIDED BY THE APACHE GROUP ``AS IS'' AND ANY 
   * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
   * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 
   * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE APACHE GROUP OR 
   * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 
   * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 
   * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 
   * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 
   * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 
   * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
   * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED 
   * OF THE POSSIBILITY OF SUCH DAMAGE. 
   * ==================================================================== 
   * 
   * This software consists of voluntary contributions made by many 
   * individuals on behalf of the Apache Group and was originally based 
   * on public domain software written at the National Center for 
   * Supercomputing Applications, University of Illinois, Urbana-Champaign. 
   * For more information on the Apache Group and the Apache HTTP server 
   * project, please see <http://www.apache.org/>. 
   * 
   */ 
   
  #include "httpd.h" 
  #include "http_log.h"
  #include "http_main.h"
  #include "http_conf_globals.h" 
  #include "acceptlock.h"
  #include "scoreboard.h"
  #include "http_accept.h"
  #include <poll.h>
  #include <netinet/tcp.h>
  
  /* Indicates that all acceptor threads are dead after SIGWINCH and the worker
   * threads can now exit */
  static int workers_may_exit = 0;
  static int requests_this_child;
  static int num_listenfds;
  
  #if defined (USE_ACCEPT_QUEUE)
  #include "fdqueue.h"
  
  #ifdef SINGLE_LISTEN_UNSERIALIZED_ACCEPT
  /* Each thread only listens to one socket in this model, so the starvation
   * problem described in manual/misc/perf-tuning.html can't occur here */
  #define SAFE_ACCEPT(stmt) 
  #else
  #define SAFE_ACCEPT(stmt) do {stmt;} while(0)
  #endif
  
  /* The queue of sockets we've accepted */
  static FDQueue csd_queue;
  
  static void * accept_thread(void * dummy)
  {
      proc_info * ti = dummy;
      int my_pid = ti->pid;
      int my_tid = ti->tid;
      int sd = ti->sd;
      int csd = 0;
      int srv, ret;
      struct sockaddr sa_client;
      size_t len = sizeof(struct sockaddr);
      struct pollfd listenfds[2];
      char pipe_read_char;
  
      free(ti);
  
      /*
       * Let's setup the socket options on the master socket.  These
       * will be inherited by any dup'ed sockets for us.  No reason to do 
       * this oce for each request.
  
      sock_disable_nagle(sd);
      */
  
      listenfds[0].fd = ap_pipe_of_death[0];
      listenfds[0].events = POLLIN;
      listenfds[0].revents = 0;
      listenfds[1].fd = sd;
      listenfds[1].events = POLLIN;
      listenfds[1].revents = 0;
  
      while ((ap_max_requests_per_child != 0 && requests_this_child > 0) ||
             (ap_max_requests_per_child == 0)) { 
          if (workers_may_exit)
              break;
          (void) ap_update_child_status(my_pid, my_tid, SERVER_ACCEPTING, 
                                    (request_rec *) NULL);
        /* lock around the accept if necessary */
        SAFE_ACCEPT(intra_mutex_on(my_tid - ap_threads_per_child));
        if (workers_may_exit) {
            SAFE_ACCEPT(intra_mutex_off(my_tid - ap_threads_per_child));
            break;
        }
        SAFE_ACCEPT(accept_mutex_on(my_tid - ap_threads_per_child));
          if (queue_full(&csd_queue)) {
              SAFE_ACCEPT(accept_mutex_off(my_tid - ap_threads_per_child));
              SAFE_ACCEPT(intra_mutex_off(my_tid - ap_threads_per_child));
              block_on_queue(&csd_queue);
              csd = -1;
          }
          else {
              for (;;) {
                  srv = poll(listenfds, 2, -1);
                  if (listenfds[0].revents & POLLIN) {
                      /* A process has gotten a signal on the shutdown pipe.
                       * Check if we're the lucky process to die. */
                      ret = read(listenfds[0].fd, &pipe_read_char, 1);
                      if (ret == -1 && errno == EAGAIN) {
                          /* It lost the lottery. It must continue to suffer
                           * through a life of servitude */
                          continue;
                      }
                      else {
                          /* It won the lottery (or something else is very
                           * wrong).  Embrace death with open arms. */
                          workers_may_exit = 1;
                          pthread_cond_broadcast(&(csd_queue.not_empty));
                          csd = -1;
                          break;
                      }
                  } else {
                      csd = ap_accept(sd, &sa_client, &len);
                      requests_this_child--;
                    break;
                  }
              }
              SAFE_ACCEPT(accept_mutex_off(my_tid - ap_threads_per_child));
              SAFE_ACCEPT(intra_mutex_off(my_tid - ap_threads_per_child));
        }
          (void) ap_update_child_status(my_pid, my_tid, SERVER_QUEUEING, 
                                      (request_rec *) NULL);
        if (csd >= 0) {
            if (queue_push(&csd_queue, csd, &sa_client) != 0) {
                ap_log_error(APLOG_MARK, APLOG_ERR, ap_get_server_conf(),
                         "queue_push:  couldn't put new connection on"
                           "queue");
            }
          } 
      }
  
      ap_update_child_status(my_pid, my_tid, SERVER_DEAD, (request_rec *) NULL);
      return NULL;
  }
  
  void accept_parent_init(pool *pconf, int listener_count)
  {
      SAFE_ACCEPT(accept_mutex_init(pconf, listener_count));
      ap_acceptors_per_child = num_listenfds = listener_count;
  }
  
  /*
   * Description:
   * Do any setup or initialization required before worker threads begin 
   * accepting connections
   * Design questions:
   * 1. what sort of arguments need to be passed on this call?
   * 2. should the queue logic be simplified?
   * 3. Pass in server_conf?
   * 4. Simply access the globals (yech...)
   */
  void accept_child_init(pool* pchild, 
                   int worker_threads_per_child)
  {
      int queue_capacity = worker_threads_per_child + ap_acceptors_per_child;
      SAFE_ACCEPT(intra_mutex_init(pchild, ap_acceptors_per_child));
      SAFE_ACCEPT(accept_mutex_child_init(pchild));
      requests_this_child = ap_max_requests_per_child;
      queue_init(&csd_queue, queue_capacity, pchild);
  }
  
  
  void start_accepting_connections(int my_child_num)
  {
      proc_info *my_info;
      pthread_t thread;
      /*
       * Yech, ap_listeners is a global declared in http_conf_globals.h 
       * and defined in http_main.c 
       */
      listen_rec *lr = ap_listeners;
  
  
      /* Warning: Subtle code ahead
       * 1. This code assumes the thing pointed to by ap_listeners is a NULL 
terminated
       * linked list. 
       *
       * 2. The scoreboard size is ap_threads_per_child + ap_acceptors_per_child
       * The acceptor entries are at the end of the scoreboard, so index into 
the
       * scoreboard beginning with ap_threads_per_child
       * Perhaps a better approach is to create a new scoreboard accessor 
method to
       * fetch the index of the next free entry? And put in some bounds checking
       * to prevent running off the end of the scoreboard? (ie, if 
next_free_entry() 
       * returns NULL and we find ourselves needing another entry, we have a 
logic
       * bug that needs to be fixed...
       * Perhaps we should create a scoreboard object with methods, etc.?
       * ap_threads_per_child is a GLOBAL...
       */
      int i = ap_threads_per_child;
      if (lr) {
          while (lr != NULL) {
  
            (void) ap_update_child_status(my_child_num, i, SERVER_STARTING, 
                                          (request_rec *) NULL);
  
            my_info = NULL;
  
            my_info = (proc_info *) malloc(sizeof(proc_info));
            my_info->pid = my_child_num;
            my_info->tid = i++;
            my_info->sd = lr->fd;
  
  
            if (pthread_create(&thread, NULL, accept_thread, my_info)) {
                ap_log_error(APLOG_MARK, APLOG_ALERT, (const server_rec*) 
ap_get_server_conf(),
                             "pthread_create: unable to create acceptor 
thread");
                /* 
                 * We failed to create a thread.  Update the scoreboard,  
                 * or it will say SERVER_STARTING forever.
                 */
                exit(1);
            } else {
              /* We let each thread update it's own scoreboard entry.  This is 
done
               * because it let's us deal with tid better.
               */
            }
            lr = lr->next;
        }
      } else {
        /* no listening sockets????  Kill the server please.  */
        exit(0);
      }
  }
  
  int get_connection(struct sockaddr *sa_client)
  {
      int csd = -1;
      int block_if_empty = 1;
  
      increase_blanks(&csd_queue);
  
      while (csd == -1) {
          if (workers_may_exit)
              block_if_empty = 0;
  
          csd = queue_pop(&csd_queue, sa_client, block_if_empty);
  
          if (workers_may_exit)
              break;
      }
  
      return csd;
  
  }
  
  #elif defined(USE_MULTI_ACCEPT)
  
  #ifdef SINGLE_LISTEN_UNSERIALIZED_ACCEPT
  #define SAFE_ACCEPT(stmt) do {if(ap_listeners->next != NULL) {stmt;}} while(0)
  #else
  #define SAFE_ACCEPT(stmt) do {stmt;} while(0)
  #endif
  
  /*
   * USE_MULTI_ACCEPT
   * Worker threads do the accept and process the request. 
   */
  static listen_rec *head_listener;
  static struct pollfd *listenfds;
  
  void accept_parent_init(pool *pconf, int listener_count)
  {
      SAFE_ACCEPT(accept_mutex_init(pconf, 1));
      num_listenfds = listener_count;
      ap_acceptors_per_child = 0;
  }
  
  void accept_child_init(pool* pchild, 
                   int worker_threads_per_child)
  {
      int i;
      listen_rec *lr;
  
      SAFE_ACCEPT(intra_mutex_init(pchild, 1));
      SAFE_ACCEPT(accept_mutex_child_init(pchild));
      requests_this_child = ap_max_requests_per_child;
      head_listener = ap_listeners;
  
      listenfds = ap_palloc(pchild, sizeof(struct pollfd) * (num_listenfds + 
1));
      listenfds[0].fd = ap_pipe_of_death[0];
      listenfds[0].events = POLLIN;
      listenfds[0].revents = 0;
      for (lr = ap_listeners, i = 1; i <= num_listenfds; lr = lr->next, ++i) {
        lr->index = i;
        listenfds[i].fd = lr->fd;
        listenfds[i].events = POLLIN; /* should we add POLLPRI ?*/
        listenfds[i].revents = 0;
      }
  }
  
  void start_accepting_connections(int my_child_num) 
  {
  }
  int get_connection(struct sockaddr *sa_client) 
  {
      int csd = -1;
      int sd;
      int srv;
      int ret;
      listen_rec *lr;
      char pipe_read_char;
  
      size_t len = sizeof(struct sockaddr);
  
      while ((ap_max_requests_per_child != 0 && requests_this_child > 0) ||
             (ap_max_requests_per_child == 0)) {
  
        SAFE_ACCEPT(intra_mutex_on(0));
        if (workers_may_exit) {
            SAFE_ACCEPT(intra_mutex_off(0));
            return -1;
        }
        SAFE_ACCEPT(accept_mutex_on(0));
  
          for (;;) {
  
              if (workers_may_exit)
                  break;
  
              srv = poll(listenfds, num_listenfds + 1, -1);
              if (listenfds[0].revents & POLLIN) {
                  /* A process has gotten a signal on the shutdown pipe.
                   * Check if we're the lucky process to die. */
                  ret = read(listenfds[0].fd, &pipe_read_char, 1);
                  if (ret == -1 && errno == EAGAIN) {
                      /* It lost the lottery. It must continue to suffer through
                       * a life of servitude */
                      continue;
                  }
                  else {
                      /* It won the lottery (or something else is very wrong).
                       * Embrace death with open arms. */
                      break;
                  }
              }
              if (workers_may_exit)
                  break;
              if (srv < 0) {
                  /* XXX - hmmmm, poll can return EINTR. - mvsk */
                  if (errno == EINTR) {
                      continue;
                  }
                  SAFE_ACCEPT(accept_mutex_off(0));
                  SAFE_ACCEPT(intra_mutex_off(0));
                  /* Single Unix documents select as returning errnos
                   * EBADF, EINTR, and EINVAL... and in none of those
                   * cases does it make sense to continue.  In fact
                   * on Linux 2.0.x we seem to end up with EFAULT
                   * occasionally, and we'd loop forever due to it.
                   */
                  ap_log_error(APLOG_MARK, APLOG_ERR, (const server_rec*) 
ap_get_server_conf(), "select: (listen)");
                  clean_child_exit(1);
              }
              
              if (srv == 0) {
                  /* Is srv == 0 a valid return? */
                  continue;
              }
  
            /* This conditional is used because the single listen case is the
             * only one where the accept might not be serialized. In that
             * case, multiple threads mucking around with the head_listener
             * pointer will be harmful */
              if (num_listenfds == 1) {
                /* only one socket, just pretend we did the other stuff */
                sd = ap_listeners->fd;
              }
              else {
                  /* find a listener */
                  /* Loop or NULL terminated list? That is the question. Be
                   * consistent across all the accept techniques */
                  lr = head_listener;
                  do {
                      /* XXX: should we check for PR_POLL_ERR ?? */
                      if (listenfds[lr->index].revents & POLLIN) {
                          /* advance to the next listener for next loop */
                          head_listener = lr->next;
                          /* hack to handle listenfds being NULL terminated 
list 
                           * rather than a loop 
                           */
                          if (head_listener == NULL) {
                              head_listener = ap_listeners;
                          }
                          goto got_lr;
                      }
                      lr = lr->next;
                      if (lr == NULL) {
                        lr = ap_listeners;
                      }
                  } while (lr != head_listener);
                  
                  /* if we don't find anything then just start again */
                  fprintf(stderr,"poll returned but we got nothing!\n");        
                  head_listener = ap_listeners; 
                  continue;
      
              got_lr:
                  sd = lr->fd;
              }
              csd = ap_accept(sd, sa_client, &len);   
              requests_this_child--;
  
              if (csd >= 0)
                  break;                /* We have a socket ready for reading */
              /* XXX: we need to deal with error conditions here */
          }
  
          SAFE_ACCEPT(accept_mutex_off(0));
          SAFE_ACCEPT(intra_mutex_off(0));
  
        if (csd >= 0) {
              return csd;
          } else{
              break;
          }
      }
      workers_may_exit = 1;
      return -1;
  }
  
  #endif
  
  
  
  
  1.1                  apache-2.0/mpm/src/modules/mpm/mpm_mpmt_pthread.c
  
  Index: mpm_mpmt_pthread.c
  ===================================================================
  /* ====================================================================
   * Copyright (c) 1995-1999 The Apache Group.  All rights reserved.
   * 
   * Redistribution and use in source and binary forms, with or without 
   * modification, are permitted provided that the following conditions 
   * are met: 
   * 
   * 1. Redistributions of source code must retain the above copyright 
   *    notice, this list of conditions and the following disclaimer.  
   * 
   * 2. Redistributions in binary form must reproduce the above copyright 
   *    notice, this list of conditions and the following disclaimer in 
   *    the documentation and/or other materials provided with the 
   *    distribution. 
   * 
   * 3. All advertising materials mentioning features or use of this 
   *    software must display the following acknowledgment: 
   *    "This product includes software developed by the Apache Group 
   *    for use in the Apache HTTP server project (http://www.apache.org/)." 
   * 
   * 4. The names "Apache Server" and "Apache Group" must not be used to 
   *    endorse or promote products derived from this software without 
   *    prior written permission. For written permission, please contact 
   *    [EMAIL PROTECTED] 
   * 
   * 5. Products derived from this software may not be called "Apache" 
   *    nor may "Apache" appear in their names without prior written 
   *    permission of the Apache Group. 
   * 
   * 6. Redistributions of any form whatsoever must retain the following 
   *    acknowledgment: 
   *    "This product includes software developed by the Apache Group 
   *    for use in the Apache HTTP server project (http://www.apache.org/)." 
   * 
   * THIS SOFTWARE IS PROVIDED BY THE APACHE GROUP ``AS IS'' AND ANY 
   * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
   * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 
   * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE APACHE GROUP OR 
   * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 
   * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 
   * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 
   * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 
   * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 
   * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
   * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED 
   * OF THE POSSIBILITY OF SUCH DAMAGE. 
   * ==================================================================== 
   * 
   * This software consists of voluntary contributions made by many 
   * individuals on behalf of the Apache Group and was originally based 
   * on public domain software written at the National Center for 
   * Supercomputing Applications, University of Illinois, Urbana-Champaign. 
   * For more information on the Apache Group and the Apache HTTP server 
   * project, please see <http://www.apache.org/>. 
   * 
   */ 
   
  #define CORE_PRIVATE 
   
  #include "httpd.h" 
  #include "http_main.h" 
  #include "http_log.h" 
  #include "http_config.h"      /* for read_config */ 
  #include "http_core.h"                /* for get_remote_host */ 
  #include "http_connection.h"
  #include "ap_mpm.h"
  #include "unixd.h"
  #include "scoreboard.h" 
  
  #include "http_accept.h"
  #include <netinet/tcp.h> 
  #include "pthread.h" 
  
  /*
   * Actual definitions of config globals
   */
  
  static int ap_threads_per_child=0;         /* Worker threads per child */
  static int ap_acceptors_per_child=0;       /* Accept threads per child */
  static int ap_max_requests_per_child=0;
  static char *ap_pid_fname=NULL;
  static char *ap_scoreboard_fname=NULL;
  static char *ap_lock_fname;
  static struct in_addr ap_bind_address; /* ZZZZZ Abstract out the in_addr */
  static int ap_daemons_to_start=0;
  static int ap_daemons_min_free=0;
  static int ap_daemons_max_free=0;
  static int ap_daemons_limit=0;
  static time_t ap_restart_time=0;
  static int ap_listenbacklog;
  API_VAR_EXPORT int ap_extended_status = 0;
  
  
  /*
   * The max child slot ever assigned, preserved across restarts.  Necessary
   * to deal with MaxClients changes across SIGWINCH restarts.  We use this
   * value to optimize routines that have to scan the entire scoreboard.
   */
  static int max_daemons_limit = -1;
  
  /*
   * During config time, listeners is treated as a NULL-terminated list.
   * ;child_main previously would start at the beginning of the list each time
   * through the loop, so a socket early on in the list could easily starve out
   * sockets later on in the list.  The solution is to start at the listener
   * after the last one processed.  But to do that fast/easily in child_main 
it's
   * way more convenient for listeners to be a ring that loops back on itself.
   * The routine setup_listeners() is called after config time to both open up
   * the sockets and to turn the NULL-terminated list into a ring that loops 
back
   * on itself.
   *
   * head_listener is used by each child to keep track of what they consider
   * to be the "start" of the ring.  It is also set by make_child to ensure
   * that new children also don't starve any sockets.
   *
   * Note that listeners != NULL is ensured by read_config().
   */
  listen_rec *ap_listeners;
  
  static char ap_coredump_dir[MAX_STRING_LEN];
  
  int ap_pipe_of_death[2];
  
  /* *Non*-shared http_main globals... */
  
  static server_rec *server_conf;
  
  /* one_process --- debugging mode variable; can be set from the command line
   * with the -X flag.  If set, this gets you the child_main loop running
   * in the process which originally started up (no detach, no make_child),
   * which is a pretty nice debugging environment.  (You'll get a SIGHUP
   * early in standalone_main; just continue through.  This is the server
   * trying to kill off any child processes which it might have lying
   * around --- Apache doesn't keep track of their pids, it just sends
   * SIGHUP to the process group, ignoring it in the root process.
   * Continue through and you'll be fine.).
   */
  
  static int one_process = 0;
  
  #ifdef DEBUG_SIGSTOP
  int raise_sigstop_flags;
  #endif
  
  #ifdef HAS_OTHER_CHILD
  /* used to maintain list of children which aren't part of the scoreboard */
  typedef struct other_child_rec other_child_rec;
  struct other_child_rec {
      other_child_rec *next;
      int pid;
      void (*maintenance) (int, void *, ap_wait_t);
      void *data;
      int write_fd;
  };
  static other_child_rec *other_children;
  #endif
  
  static pool *pconf;           /* Pool for config stuff */
  static pool *pchild;          /* Pool for httpd child stuff */
  
  static int my_pid; /* Linux getpid() doesn't work except in main thread. Use
                        this instead */
  /* Keep track of the number of worker threads currently active */
  static int worker_thread_count;
  static pthread_mutex_t worker_thread_count_mutex;
  
  /* Global, alas, so http_core can talk to us */
  enum server_token_type ap_server_tokens = SrvTk_FULL;
  
  API_EXPORT(const server_rec *) ap_get_server_conf(void)
  {
      return (server_conf);
  }
  
  API_EXPORT(int) ap_get_max_daemons(void)
  {
      return max_daemons_limit;
  }
  
  /* a clean exit from a child with proper cleanup 
     static void clean_child_exit(int code) __attribute__ ((noreturn)); */
  void clean_child_exit(int code)
  {
      if (pchild) {
        ap_destroy_pool(pchild);
      }
      exit(code);
  }
  
  /*****************************************************************
   * dealing with other children
   */
  
  #ifdef HAS_OTHER_CHILD
  API_EXPORT(void) ap_register_other_child(int pid,
                       void (*maintenance) (int reason, void *, ap_wait_t 
status),
                          void *data, int write_fd)
  {
      other_child_rec *ocr;
  
      ocr = ap_palloc(pconf, sizeof(*ocr));
      ocr->pid = pid;
      ocr->maintenance = maintenance;
      ocr->data = data;
      ocr->write_fd = write_fd;
      ocr->next = other_children;
      other_children = ocr;
  }
  
  /* note that since this can be called by a maintenance function while we're
   * scanning the other_children list, all scanners should protect themself
   * by loading ocr->next before calling any maintenance function.
   */
  API_EXPORT(void) ap_unregister_other_child(void *data)
  {
      other_child_rec **pocr, *nocr;
  
      for (pocr = &other_children; *pocr; pocr = &(*pocr)->next) {
        if ((*pocr)->data == data) {
            nocr = (*pocr)->next;
            (*(*pocr)->maintenance) (OC_REASON_UNREGISTER, (*pocr)->data, -1);
            *pocr = nocr;
            /* XXX: um, well we've just wasted some space in pconf ? */
            return;
        }
      }
  }
  
  /* test to ensure that the write_fds are all still writable, otherwise
   * invoke the maintenance functions as appropriate */
  static void probe_writable_fds(void)
  {
      return;
  #if 0
      fd_set writable_fds;
      int fd_max;
      other_child_rec *ocr, *nocr;
      struct timeval tv;
      int rc;
  
      if (other_children == NULL)
        return;
  
      fd_max = 0;
      FD_ZERO(&writable_fds);
      do {
        for (ocr = other_children; ocr; ocr = ocr->next) {
            if (ocr->write_fd == -1)
                continue;
            FD_SET(ocr->write_fd, &writable_fds);
            if (ocr->write_fd > fd_max) {
                fd_max = ocr->write_fd;
            }
        }
        if (fd_max == 0)
            return;
  
        tv.tv_sec = 0;
        tv.tv_usec = 0;
        rc = ap_select(fd_max + 1, NULL, &writable_fds, NULL, &tv);
      } while (rc == -1 && errno == EINTR);
  
      if (rc == -1) {
        /* XXX: uhh this could be really bad, we could have a bad file
         * descriptor due to a bug in one of the maintenance routines */
        ap_log_unixerr("probe_writable_fds", "select",
                    "could not probe writable fds", server_conf);
        return;
      }
      if (rc == 0)
        return;
  
      for (ocr = other_children; ocr; ocr = nocr) {
        nocr = ocr->next;
        if (ocr->write_fd == -1)
            continue;
        if (FD_ISSET(ocr->write_fd, &writable_fds))
            continue;
        (*ocr->maintenance) (OC_REASON_UNWRITABLE, ocr->data, -1);
      }
  #endif
  }
  
  /* possibly reap an other_child, return 0 if yes, -1 if not */
  static int reap_other_child(int pid, ap_wait_t status)
  {
      other_child_rec *ocr, *nocr;
  
      for (ocr = other_children; ocr; ocr = nocr) {
        nocr = ocr->next;
        if (ocr->pid != pid)
            continue;
        ocr->pid = -1;
        (*ocr->maintenance) (OC_REASON_DEATH, ocr->data, status);
        return 0;
      }
      return -1;
  }
  #endif
  
  static void reclaim_child_processes(int terminate)
  {
      int i, status;
      long int waittime = 1024 * 16;    /* in usecs */
      struct timeval tv;
      int waitret, tries;
      int not_dead_yet;
  #ifdef HAS_OTHER_CHILD
      other_child_rec *ocr, *nocr;
  #endif
  
      ap_sync_scoreboard_image();
  
      for (tries = terminate ? 4 : 1; tries <= 9; ++tries) {
        /* don't want to hold up progress any more than 
         * necessary, but we need to allow children a few moments to exit.
         * Set delay with an exponential backoff.
         */
        tv.tv_sec = waittime / 1000000;
        tv.tv_usec = waittime % 1000000;
        waittime = waittime * 4;
        ap_select(0, NULL, NULL, NULL, &tv);
  
        /* now see who is done */
        not_dead_yet = 0;
        for (i = 0; i < max_daemons_limit; ++i) {
            int pid = ap_scoreboard_image->parent[i].pid;
  
            if (pid == my_pid || pid == 0)
                continue;
  
            waitret = waitpid(pid, &status, WNOHANG);
            if (waitret == pid || waitret == -1) {
                ap_scoreboard_image->parent[i].pid = 0;
                continue;
            }
            ++not_dead_yet;
            switch (tries) {
            case 1:     /*  16ms */
            case 2:     /*  82ms */
                break;
            case 3:     /* 344ms */
            case 4:     /*  16ms */
            case 5:     /*  82ms */
            case 6:     /* 344ms */
            case 7:     /* 1.4sec */
                /* ok, now it's being annoying */
                ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_WARNING,
                            server_conf,
                   "child process %d still did not exit, sending a SIGTERM",
                            pid);
                kill(pid, SIGTERM);
                break;
            case 8:     /*  6 sec */
                /* die child scum */
                ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_ERR, server_conf,
                   "child process %d still did not exit, sending a SIGKILL",
                            pid);
                kill(pid, SIGKILL);
                break;
            case 9:     /* 14 sec */
                /* gave it our best shot, but alas...  If this really 
                 * is a child we are trying to kill and it really hasn't
                 * exited, we will likely fail to bind to the port
                 * after the restart.
                 */
                ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_ERR, server_conf,
                            "could not make child process %d exit, "
                            "attempting to continue anyway", pid);
                break;
            }
        }
  #ifdef HAS_OTHER_CHILD
        for (ocr = other_children; ocr; ocr = nocr) {
            nocr = ocr->next;
            if (ocr->pid == -1)
                continue;
  
            waitret = waitpid(ocr->pid, &status, WNOHANG);
            if (waitret == ocr->pid) {
                ocr->pid = -1;
                (*ocr->maintenance) (OC_REASON_DEATH, ocr->data, status);
            }
            else if (waitret == 0) {
                (*ocr->maintenance) (OC_REASON_RESTART, ocr->data, -1);
                ++not_dead_yet;
            }
            else if (waitret == -1) {
                /* uh what the heck? they didn't call unregister? */
                ocr->pid = -1;
                (*ocr->maintenance) (OC_REASON_LOST, ocr->data, -1);
            }
        }
  #endif
        if (!not_dead_yet) {
            /* nothing left to wait for */
            break;
        }
      }
  }
  
  /* Finally, this routine is used by the caretaker process to wait for
   * a while...
   */
  
  /* number of calls to wait_or_timeout between writable probes */
  #ifndef INTERVAL_OF_WRITABLE_PROBES
  #define INTERVAL_OF_WRITABLE_PROBES 10
  #endif
  static int wait_or_timeout_counter;
  
  static int wait_or_timeout(ap_wait_t *status)
  {
      struct timeval tv;
      int ret;
  
      ++wait_or_timeout_counter;
      if (wait_or_timeout_counter == INTERVAL_OF_WRITABLE_PROBES) {
        wait_or_timeout_counter = 0;
  #ifdef HAS_OTHER_CHILD
        probe_writable_fds();
  #endif
      }
      ret = waitpid(-1, status, WNOHANG);
      if (ret == -1 && errno == EINTR) {
        return -1;
      }
      if (ret > 0) {
        return ret;
      }
      tv.tv_sec = SCOREBOARD_MAINTENANCE_INTERVAL / 1000000;
      tv.tv_usec = SCOREBOARD_MAINTENANCE_INTERVAL % 1000000;
      ap_select(0, NULL, NULL, NULL, &tv);
      return -1;
  }
  
  #if defined(NSIG)
  #define NumSIG NSIG
  #elif defined(_NSIG)
  #define NumSIG _NSIG
  #elif defined(__NSIG)
  #define NumSIG __NSIG
  #else
  #define NumSIG 32   /* for 1998's unixes, this is still a good assumption */
  #endif
  
  #ifdef SYS_SIGLIST /* platform has sys_siglist[] */
  #define INIT_SIGLIST()  /*nothing*/
  #else /* platform has no sys_siglist[], define our own */
  #define SYS_SIGLIST ap_sys_siglist
  #define INIT_SIGLIST() siglist_init();
  
  const char *ap_sys_siglist[NumSIG];
  
  static void siglist_init(void)
  {
      int sig;
  
      ap_sys_siglist[0] = "Signal 0";
  #ifdef SIGHUP
      ap_sys_siglist[SIGHUP] = "Hangup";
  #endif
  #ifdef SIGINT
      ap_sys_siglist[SIGINT] = "Interrupt";
  #endif
  #ifdef SIGQUIT
      ap_sys_siglist[SIGQUIT] = "Quit";
  #endif
  #ifdef SIGILL
      ap_sys_siglist[SIGILL] = "Illegal instruction";
  #endif
  #ifdef SIGTRAP
      ap_sys_siglist[SIGTRAP] = "Trace/BPT trap";
  #endif
  #ifdef SIGIOT
      ap_sys_siglist[SIGIOT] = "IOT instruction";
  #endif
  #ifdef SIGABRT
      ap_sys_siglist[SIGABRT] = "Abort";
  #endif
  #ifdef SIGEMT
      ap_sys_siglist[SIGEMT] = "Emulator trap";
  #endif
  #ifdef SIGFPE
      ap_sys_siglist[SIGFPE] = "Arithmetic exception";
  #endif
  #ifdef SIGKILL
      ap_sys_siglist[SIGKILL] = "Killed";
  #endif
  #ifdef SIGBUS
      ap_sys_siglist[SIGBUS] = "Bus error";
  #endif
  #ifdef SIGSEGV
      ap_sys_siglist[SIGSEGV] = "Segmentation fault";
  #endif
  #ifdef SIGSYS
      ap_sys_siglist[SIGSYS] = "Bad system call";
  #endif
  #ifdef SIGPIPE
      ap_sys_siglist[SIGPIPE] = "Broken pipe";
  #endif
  #ifdef SIGALRM
      ap_sys_siglist[SIGALRM] = "Alarm clock";
  #endif
  #ifdef SIGTERM
      ap_sys_siglist[SIGTERM] = "Terminated";
  #endif
  #ifdef SIGUSR1
      ap_sys_siglist[SIGUSR1] = "User defined signal 1";
  #endif
  #ifdef SIGUSR2
      ap_sys_siglist[SIGUSR2] = "User defined signal 2";
  #endif
  #ifdef SIGCLD
      ap_sys_siglist[SIGCLD] = "Child status change";
  #endif
  #ifdef SIGCHLD
      ap_sys_siglist[SIGCHLD] = "Child status change";
  #endif
  #ifdef SIGPWR
      ap_sys_siglist[SIGPWR] = "Power-fail restart";
  #endif
  #ifdef SIGWINCH
      ap_sys_siglist[SIGWINCH] = "Window changed";
  #endif
  #ifdef SIGURG
      ap_sys_siglist[SIGURG] = "urgent socket condition";
  #endif
  #ifdef SIGPOLL
      ap_sys_siglist[SIGPOLL] = "Pollable event occurred";
  #endif
  #ifdef SIGIO
      ap_sys_siglist[SIGIO] = "socket I/O possible";
  #endif
  #ifdef SIGSTOP
      ap_sys_siglist[SIGSTOP] = "Stopped (signal)";
  #endif
  #ifdef SIGTSTP
      ap_sys_siglist[SIGTSTP] = "Stopped";
  #endif
  #ifdef SIGCONT
      ap_sys_siglist[SIGCONT] = "Continued";
  #endif
  #ifdef SIGTTIN
      ap_sys_siglist[SIGTTIN] = "Stopped (tty input)";
  #endif
  #ifdef SIGTTOU
      ap_sys_siglist[SIGTTOU] = "Stopped (tty output)";
  #endif
  #ifdef SIGVTALRM
      ap_sys_siglist[SIGVTALRM] = "virtual timer expired";
  #endif
  #ifdef SIGPROF
      ap_sys_siglist[SIGPROF] = "profiling timer expired";
  #endif
  #ifdef SIGXCPU
      ap_sys_siglist[SIGXCPU] = "exceeded cpu limit";
  #endif
  #ifdef SIGXFSZ
      ap_sys_siglist[SIGXFSZ] = "exceeded file size limit";
  #endif
      for (sig=0; sig < sizeof(ap_sys_siglist)/sizeof(ap_sys_siglist[0]); ++sig)
          if (ap_sys_siglist[sig] == NULL)
              ap_sys_siglist[sig] = "";
  }
  #endif /* platform has sys_siglist[] */
  
  /* handle all varieties of core dumping signals */
  static void sig_coredump(int sig)
  {
      chdir(ap_coredump_dir);
      signal(sig, SIG_DFL);
      kill(getpid(), sig);
      /* At this point we've got sig blocked, because we're still inside
       * the signal handler.  When we leave the signal handler it will
       * be unblocked, and we'll take the signal... and coredump or whatever
       * is appropriate for this particular Unix.  In addition the parent
       * will see the real signal we received -- whereas if we called
       * abort() here, the parent would only see SIGABRT.
       */
  }
  
  static void just_die(int sig)
  {
      clean_child_exit(0);
  }
  
  /*****************************************************************
   * Connection structures and accounting...
   */
  
  /* volatile just in case */
  static int volatile shutdown_pending;
  static int volatile restart_pending;
  static int volatile is_graceful;
  ap_generation_t volatile ap_my_generation;
  
  /*
   * ap_start_shutdown() and ap_start_restart(), below, are a first stab at
   * functions to initiate shutdown or restart without relying on signals. 
   * Previously this was initiated in sig_term() and restart() signal handlers, 
   * but we want to be able to start a shutdown/restart from other sources --
   * e.g. on Win32, from the service manager. Now the service manager can
   * call ap_start_shutdown() or ap_start_restart() as appropiate.  Note that
   * these functions can also be called by the child processes, since global
   * variables are no longer used to pass on the required action to the parent.
   *
   * These should only be called from the parent process itself, since the
   * parent process will use the shutdown_pending and restart_pending variables
   * to determine whether to shutdown or restart. The child process should
   * call signal_parent() directly to tell the parent to die -- this will
   * cause neither of those variable to be set, which the parent will
   * assume means something serious is wrong (which it will be, for the
   * child to force an exit) and so do an exit anyway.
   */
  
  void ap_start_shutdown(void)
  {
      if (shutdown_pending == 1) {
        /* Um, is this _probably_ not an error, if the user has
         * tried to do a shutdown twice quickly, so we won't
         * worry about reporting it.
         */
        return;
      }
      shutdown_pending = 1;
  }
  
  /* do a graceful restart if graceful == 1 */
  void ap_start_restart(int graceful)
  {
  
      if (restart_pending == 1) {
        /* Probably not an error - don't bother reporting it */
        return;
      }
      restart_pending = 1;
      is_graceful = graceful;
  }
  
  static void sig_term(int sig)
  {
      ap_start_shutdown();
  }
  
  static void restart(int sig)
  {
  #ifndef WIN32
      ap_start_restart(sig == SIGWINCH);
  #else
      ap_start_restart(1);
  #endif
  }
  
  static void set_signals(void)
  {
  #ifndef NO_USE_SIGACTION
      struct sigaction sa;
  
      sigemptyset(&sa.sa_mask);
      sa.sa_flags = 0;
  
      if (!one_process) {
        sa.sa_handler = sig_coredump;
  #if defined(SA_ONESHOT)
        sa.sa_flags = SA_ONESHOT;
  #elif defined(SA_RESETHAND)
        sa.sa_flags = SA_RESETHAND;
  #endif
        if (sigaction(SIGSEGV, &sa, NULL) < 0)
            ap_log_error(APLOG_MARK, APLOG_WARNING, server_conf, 
"sigaction(SIGSEGV)");
  #ifdef SIGBUS
        if (sigaction(SIGBUS, &sa, NULL) < 0)
            ap_log_error(APLOG_MARK, APLOG_WARNING, server_conf, 
"sigaction(SIGBUS)");
  #endif
  #ifdef SIGABORT
        if (sigaction(SIGABORT, &sa, NULL) < 0)
            ap_log_error(APLOG_MARK, APLOG_WARNING, server_conf, 
"sigaction(SIGABORT)");
  #endif
  #ifdef SIGABRT
        if (sigaction(SIGABRT, &sa, NULL) < 0)
            ap_log_error(APLOG_MARK, APLOG_WARNING, server_conf, 
"sigaction(SIGABRT)");
  #endif
  #ifdef SIGILL
        if (sigaction(SIGILL, &sa, NULL) < 0)
            ap_log_error(APLOG_MARK, APLOG_WARNING, server_conf, 
"sigaction(SIGILL)");
  #endif
        sa.sa_flags = 0;
      }
      sa.sa_handler = sig_term;
      if (sigaction(SIGTERM, &sa, NULL) < 0)
        ap_log_error(APLOG_MARK, APLOG_WARNING, server_conf, 
"sigaction(SIGTERM)");
  #ifdef SIGINT
      if (sigaction(SIGINT, &sa, NULL) < 0)
          ap_log_error(APLOG_MARK, APLOG_WARNING, server_conf, 
"sigaction(SIGINT)");
  #endif
  #ifdef SIGXCPU
      sa.sa_handler = SIG_DFL;
      if (sigaction(SIGXCPU, &sa, NULL) < 0)
        ap_log_error(APLOG_MARK, APLOG_WARNING, server_conf, 
"sigaction(SIGXCPU)");
  #endif
  #ifdef SIGXFSZ
      sa.sa_handler = SIG_DFL;
      if (sigaction(SIGXFSZ, &sa, NULL) < 0)
        ap_log_error(APLOG_MARK, APLOG_WARNING, server_conf, 
"sigaction(SIGXFSZ)");
  #endif
  #ifdef SIGPIPE
      sa.sa_handler = SIG_IGN;
      if (sigaction(SIGPIPE, &sa, NULL) < 0)
        ap_log_error(APLOG_MARK, APLOG_WARNING, server_conf, 
"sigaction(SIGPIPE)");
  #endif
  
      /* we want to ignore HUPs and WINCH while we're busy processing one */
      sigaddset(&sa.sa_mask, SIGHUP);
      sigaddset(&sa.sa_mask, SIGWINCH);
      sa.sa_handler = restart;
      if (sigaction(SIGHUP, &sa, NULL) < 0)
        ap_log_error(APLOG_MARK, APLOG_WARNING, server_conf, 
"sigaction(SIGHUP)");
      if (sigaction(SIGWINCH, &sa, NULL) < 0)
        ap_log_error(APLOG_MARK, APLOG_WARNING, server_conf, 
"sigaction(SIGWINCH)");
  #else
      if (!one_process) {
        signal(SIGSEGV, sig_coredump);
  #ifdef SIGBUS
        signal(SIGBUS, sig_coredump);
  #endif /* SIGBUS */
  #ifdef SIGABORT
        signal(SIGABORT, sig_coredump);
  #endif /* SIGABORT */
  #ifdef SIGABRT
        signal(SIGABRT, sig_coredump);
  #endif /* SIGABRT */
  #ifdef SIGILL
        signal(SIGILL, sig_coredump);
  #endif /* SIGILL */
  #ifdef SIGXCPU
        signal(SIGXCPU, SIG_DFL);
  #endif /* SIGXCPU */
  #ifdef SIGXFSZ
        signal(SIGXFSZ, SIG_DFL);
  #endif /* SIGXFSZ */
      }
  
      signal(SIGTERM, sig_term);
  #ifdef SIGHUP
      signal(SIGHUP, restart);
  #endif /* SIGHUP */
  #ifdef SIGWINCH
      signal(SIGWINCH, restart);
  #endif /* SIGWINCH */
  #ifdef SIGPIPE
      signal(SIGPIPE, SIG_IGN);
  #endif /* SIGPIPE */
  
  #endif
  }
  
  /*****************************************************************
   * Here follows a long bunch of generic server bookkeeping stuff...
   */
  
  /*****************************************************************
   * Connection structures and accounting...
   */
  
  
  static conn_rec *new_connection(pool *p, server_rec *server, BUFF *inout,
                                  const struct sockaddr_in *remaddr,   /* ZZZ */
                                  const struct sockaddr_in *saddr,     /* ZZZ */
                             int child_num, int thread_num)
  {
      conn_rec *conn = (conn_rec *) ap_pcalloc(p, sizeof(conn_rec));
  
      /* Got a connection structure, so initialize what fields we can
       * (the rest are zeroed out by pcalloc).
       */
  
      conn->child_num = child_num;
      conn->thread_num = thread_num;
  
      conn->pool = p;
      conn->local_addr = *saddr;
      conn->base_server = server;
      conn->client = inout;
  
      conn->remote_addr = *remaddr;
      conn->remote_ip = ap_pstrdup(conn->pool,
                              inet_ntoa(conn->remote_addr.sin_addr));
  
      return conn;
  }
  
  #if defined(TCP_NODELAY) && !defined(MPE) && !defined(TPF)
  static void sock_disable_nagle(int s) /* ZZZ abstract */
  {
      /* The Nagle algorithm says that we should delay sending partial
       * packets in hopes of getting more data.  We don't want to do
       * this; we are not telnet.  There are bad interactions between
       * persistent connections and Nagle's algorithm that have very severe
       * performance penalties.  (Failing to disable Nagle is not much of a
       * problem with simple HTTP.)
       *
       * In spite of these problems, failure here is not a shooting offense.
       */
      int just_say_no = 1;
  
      if (setsockopt(s, IPPROTO_TCP, TCP_NODELAY, (char *) &just_say_no,
                   sizeof(int)) < 0) {
        ap_log_error(APLOG_MARK, APLOG_WARNING, server_conf,
                    "setsockopt: (TCP_NODELAY)");
      }
  }
  
  #else
  #define sock_disable_nagle(s) /* NOOP */
  #endif
  
  
  static int make_sock(pool *p, const struct sockaddr_in *server) 
       /* abstract sockaddr_in */
  {
      int s;
      int one = 1;
      char addr[512];
  
      if (server->sin_addr.s_addr != htonl(INADDR_ANY))
        ap_snprintf(addr, sizeof(addr), "address %s port %d",
                inet_ntoa(server->sin_addr), ntohs(server->sin_port));
      else
        ap_snprintf(addr, sizeof(addr), "port %d", ntohs(server->sin_port));
  
      /* note that because we're about to slack we don't use psocket */
      if ((s = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP)) == -1) {
        ap_log_error(APLOG_MARK, APLOG_CRIT, server_conf,
                    "make_sock: failed to get a socket for %s", addr);
          printf("make_sock: failed to get socket for %s\n", addr);
        exit(1);
      }
  
      /* Solaris (probably versions 2.4, 2.5, and 2.5.1 with various levels
       * of tcp patches) has some really weird bugs where if you dup the
       * socket now it breaks things across SIGHUP restarts.  It'll either
       * be unable to bind, or it won't respond.
       */
  #if defined (SOLARIS2) && SOLARIS2 < 260
  #define WORKAROUND_SOLARIS_BUG
  #endif
  
      /* PR#1282 Unixware 1.x appears to have the same problem as solaris */
  #if defined (UW) && UW < 200
  #define WORKAROUND_SOLARIS_BUG
  #endif
  
      /* PR#1973 NCR SVR4 systems appear to have the same problem */
  #if defined (MPRAS)
  #define WORKAROUND_SOLARIS_BUG
  #endif
  
  #ifndef WORKAROUND_SOLARIS_BUG
      s = ap_slack(s, AP_SLACK_HIGH);
  
      ap_note_cleanups_for_socket(p, s);        /* arrange to close on exec or 
restart */
  #endif
  
  #ifndef MPE
  /* MPE does not support SO_REUSEADDR and SO_KEEPALIVE */
  #ifndef _OSD_POSIX
      if (setsockopt(s, SOL_SOCKET, SO_REUSEADDR, (char *) &one, sizeof(int)) < 
0) {
        ap_log_error(APLOG_MARK, APLOG_CRIT, server_conf,
                    "make_sock: for %s, setsockopt: (SO_REUSEADDR)", addr);
          printf("make_sock: failed to setsockopt for %s\n", addr);
        close(s);
        return 0; 
      }
  #endif /*_OSD_POSIX*/
      one = 1;
  #ifndef BEOS
  /* BeOS does not support SO_KEEPALIVE */
      if (setsockopt(s, SOL_SOCKET, SO_KEEPALIVE, (char *) &one, sizeof(int)) < 
0) {
        ap_log_error(APLOG_MARK, APLOG_CRIT, server_conf,
                    "make_sock: for %s, setsockopt: (SO_KEEPALIVE)", addr);
        close(s);
        return 0;
      }
  #endif
  #endif
  
      sock_disable_nagle(s);
  /*    sock_enable_linger(s);  XXX - Need to reenable? - Manoj */
  
  
  
      /*
       * To send data over high bandwidth-delay connections at full
       * speed we must force the TCP window to open wide enough to keep the
       * pipe full.  The default window size on many systems
       * is only 4kB.  Cross-country WAN connections of 100ms
       * at 1Mb/s are not impossible for well connected sites.
       * If we assume 100ms cross-country latency,
       * a 4kB buffer limits throughput to 40kB/s.
       *
       * To avoid this problem I've added the SendBufferSize directive
       * to allow the web master to configure send buffer size.
       *
       * The trade-off of larger buffers is that more kernel memory
       * is consumed.  YMMV, know your customers and your network!
       *
       * -John Heidemann <[EMAIL PROTECTED]> 25-Oct-96
       *
       * If no size is specified, use the kernel default.
       */
  #ifndef BEOS                  /* BeOS does not support SO_SNDBUF */
      if (server_conf->send_buffer_size) {
        if (setsockopt(s, SOL_SOCKET, SO_SNDBUF,
                (char *) &server_conf->send_buffer_size, sizeof(int)) < 0) {
            ap_log_error(APLOG_MARK, APLOG_WARNING, server_conf,
                        "make_sock: failed to set SendBufferSize for %s, "
                        "using default", addr);
            /* not a fatal error */
        }
      }
  #endif
  
  #ifdef MPE
  /* MPE requires CAP=PM and GETPRIVMODE to bind to ports less than 1024 */
      if (ntohs(server->sin_port) < 1024)
        GETPRIVMODE();
  #endif
      if (bind(s, (struct sockaddr *) server, sizeof(struct sockaddr_in)) == 
-1) {
        ap_log_error(APLOG_MARK, APLOG_CRIT, server_conf,
            "make_sock: could not bind to %s", addr);
  #ifdef MPE
        if (ntohs(server->sin_port) < 1024)
            GETUSERMODE();
  #endif
        close(s);
        exit(1);
      }
  #ifdef MPE
      if (ntohs(server->sin_port) < 1024)
        GETUSERMODE();
  #endif
  
      if (listen(s, ap_listenbacklog) == -1) {
        ap_log_error(APLOG_MARK, APLOG_ERR, server_conf,
            "make_sock: unable to listen for connections on %s", addr);
        close(s);
        exit(1);
      }
  
  #ifdef WORKAROUND_SOLARIS_BUG
      s = ap_slack(s, AP_SLACK_HIGH);
  
      ap_note_cleanups_for_socket(p, s);        /* arrange to close on exec or 
restart */
  #endif
  
  #ifdef CHECK_FD_SETSIZE
      /* protect various fd_sets */
      if (s >= FD_SETSIZE) {
        ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_WARNING, NULL,
            "make_sock: problem listening on %s, filedescriptor (%u) "
            "larger than FD_SETSIZE (%u) "
            "found, you probably need to rebuild Apache with a "
            "larger FD_SETSIZE", addr, s, FD_SETSIZE);
        close(s);
        return 0;
      }
  #endif
  
      return s;
  }
  
  
  /*
   * During a restart we keep track of the old listeners here, so that we
   * can re-use the sockets.  We have to do this because we won't be able
   * to re-open the sockets ("Address already in use").
   *
   * Unlike the listeners ring, old_listeners is a NULL terminated list.
   *
   * copy_listeners() makes the copy, find_listener() finds an old listener
   * and close_unused_listener() cleans up whatever wasn't used.
   */
  static listen_rec *old_listeners;
  
  /* unfortunately copy_listeners may be called before listeners is a ring */
  static void copy_listeners(pool *p)
  {
      listen_rec *lr;
  
      ap_assert(old_listeners == NULL);
      if (ap_listeners == NULL) {
        return;
      }
      lr = ap_listeners;
      do {
        listen_rec *nr = malloc(sizeof *nr);
        if (nr == NULL) {
            fprintf(stderr, "Ouch!  malloc failed in copy_listeners()\n");
            exit(1);
        }
        *nr = *lr;
        ap_kill_cleanups_for_socket(p, nr->fd);
          nr->next = old_listeners;
        old_listeners = nr;
        lr = lr->next;
      } while (lr && lr != ap_listeners);
  }
  
  
  static int find_listener(listen_rec *lr)
  {
      listen_rec *or;
      for (or = old_listeners; or; or = or->next) {
        if (!memcmp(&or->local_addr, &lr->local_addr, sizeof(or->local_addr))) {
            or->used = 1;
              return or->fd;
        }
      }
      return -1;
  }
  
  
  static void close_unused_listeners(void)
  {
      listen_rec *or, *next;
  
      for (or = old_listeners; or; or = next) {
        next = or->next;
        if (!or->used) 
            closesocket(or->fd);
        free(or);
      }
      old_listeners = NULL;
  }
  
  
  /* open sockets, and turn the listeners list into a singly linked ring */
  static int setup_listeners(pool *p)
  {
      listen_rec *lr;
      int fd;
      int listener_count = 0;
  
      lr = ap_listeners;
      for (;;) {
        fd = find_listener(lr);
        if (fd < 0) {
            fd = make_sock(p, &lr->local_addr);
        }
        else {
            ap_note_cleanups_for_socket(p, fd);
        }
        if (fd >= 0) {
              ++listener_count;
        }
        lr->fd = fd;
        if (lr->next == NULL)
            break;
        lr = lr->next;
      }
      /* turn the list into a ring */
      /*
      lr->next = ap_listeners;
      head_listener = ap_listeners;
      */
  
      close_unused_listeners();
  
  #ifdef NO_SERIALIZED_ACCEPT
      /* warn them about the starvation problem if they're using multiple
       * sockets
       */
      if (ap_listeners->next != ap_listeners) {
        ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_CRIT, NULL,
                    "You cannot use multiple Listens safely on your system, "
                    "proceeding anyway.  See src/PORTING, search for "
                    "SERIALIZED_ACCEPT.");
      }
  #endif
      return listener_count;
  }
  
  int ap_graceful_stop_signalled(void)
  {
      /* XXX - Does this really work? - Manoj */
      return is_graceful;
  }
  
  /*****************************************************************
   * Child process main loop.
   */
  
  static void process_socket(pool *p, struct sockaddr *sa_client, int csd, int 
my_child_num, int my_thread_num)
  {
      struct sockaddr sa_server; /* ZZZZ */
      size_t len = sizeof(struct sockaddr);
      BUFF *conn_io;
      conn_rec *current_conn;
  
      ap_note_cleanups_for_fd(p, csd);
  
      /* ZZZ change to AP func */
      if (getsockname(csd, &sa_server, &len) < 0) { 
        ap_log_error(APLOG_MARK, APLOG_ERR, server_conf, "getsockname");
        return;
      }
      (void) ap_update_child_status(my_child_num, my_thread_num,  
                                  SERVER_BUSY_READ, (request_rec *) NULL);
      conn_io = ap_bcreate(p, B_RDWR | B_SOCKET);
      ap_bpushfd(conn_io, csd);
  
      current_conn = new_connection(p, server_conf, conn_io,
                                    (const struct sockaddr_in *) sa_client, 
                                    (const struct sockaddr_in *) &sa_server, 
                                    my_child_num, my_thread_num);
  
      ap_process_connection(current_conn);
  }
  
  static void * worker_thread(void * dummy)
  {
      proc_info * ti = dummy;
      int process_slot = ti->pid;
      int thread_slot = ti->tid;
      pool *tpool = ti->tpool;
      struct sockaddr sa_client;
      int csd;
      pool *ptrans;             /* Pool for per-transaction stuff */
  
      free(ti);
  
      ptrans = ap_make_sub_pool(tpool);
  
      pthread_mutex_lock(&worker_thread_count_mutex);
      worker_thread_count++;
      pthread_mutex_unlock(&worker_thread_count_mutex);
  
      while (1) {
          (void) ap_update_child_status(process_slot, thread_slot, 
SERVER_READY, 
                                  (request_rec *) NULL);
          csd = get_connection(&sa_client);
        if (csd < 0) {
              break;
          } 
          process_socket(ptrans, &sa_client, csd, process_slot, thread_slot);
        ap_clear_pool(ptrans);
      }
  
      ap_destroy_pool(tpool);
      ap_update_child_status(process_slot, thread_slot, SERVER_DEAD,
          (request_rec *) NULL);
      pthread_mutex_lock(&worker_thread_count_mutex);
      worker_thread_count--;
      if (worker_thread_count == 0) {
          /* All the threads have exited, now finish the shutdown process
           * by signalling the sigwait thread */
          kill(my_pid, SIGTERM);
      }
      pthread_mutex_unlock(&worker_thread_count_mutex);
  
      return NULL;
  }
  
  
  static void child_main(int child_num_arg)
  {
      sigset_t sig_mask;
      int signal_received;
      pthread_t thread;
      pthread_attr_t thread_attr;
      int i;
      int my_child_num = child_num_arg;
      proc_info *my_info = NULL;
  
      my_pid = getpid();
      pchild = ap_make_sub_pool(pconf);
  
      /*stuff to do before we switch id's, so we have permissions.*/
      reopen_scoreboard(pchild);
  
      if (unixd_setup_child()) {
        clean_child_exit(APEXIT_CHILDFATAL);
      }
  
      accept_child_init(pchild, ap_threads_per_child);
      ap_child_init_hook(pchild, server_conf);
  
      /*done with init critical section */
  
      /* All threads should mask signals out, accoring to sigwait(2) man page */
      sigemptyset(&sig_mask);
  
      if (pthread_sigmask(SIG_SETMASK, &sig_mask, NULL) != 0) {
          ap_log_error(APLOG_MARK, APLOG_ALERT, server_conf, "pthread_sigmask");
      }
  
      /* Setup worker threads */
  
      worker_thread_count = 0;
      pthread_mutex_init(&worker_thread_count_mutex, NULL);
      pthread_attr_init(&thread_attr);
      pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_DETACHED);
      for (i=0; i < ap_threads_per_child; i++) {
  
        my_info = (proc_info *)malloc(sizeof(proc_info));
          if (my_info == NULL) {
              ap_log_error(APLOG_MARK, APLOG_ALERT, server_conf,
                         "malloc: out of memory");
              clean_child_exit(APEXIT_CHILDFATAL);
          }
        my_info->pid = my_child_num;
          my_info->tid = i;
        my_info->sd = 0;
        my_info->tpool = ap_make_sub_pool(pchild);
        
        /* We are creating threads right now */
        (void) ap_update_child_status(my_child_num, i, SERVER_STARTING, 
                                      (request_rec *) NULL);
        if (pthread_create(&thread, &thread_attr, worker_thread, my_info)) {
            ap_log_error(APLOG_MARK, APLOG_ALERT, server_conf,
                         "pthread_create: unable to create worker thread");
              /* In case system resources are maxxed out, we don't want
                 Apache running away with the CPU trying to fork over and
                 over and over again if we exit. */
              sleep(10);
            clean_child_exit(APEXIT_CHILDFATAL);
        }
  
        /* We let each thread update it's own scoreboard entry.  This is done
         * because it let's us deal with tid better.
         */
      }
  
      pthread_attr_destroy(&thread_attr);
      start_accepting_connections(my_child_num);
  
      /* This thread will be the one responsible for handling signals */
      sigemptyset(&sig_mask);
      sigaddset(&sig_mask, SIGTERM);
      sigaddset(&sig_mask, SIGINT);
      sigwait(&sig_mask, &signal_received);
      switch (signal_received) {
          case SIGTERM:
          case SIGINT:
              just_die(signal_received);
              break;
          default:
              ap_log_error(APLOG_MARK, APLOG_ALERT, server_conf,
              "received impossible signal: %d", signal_received);
              just_die(SIGTERM);
      }
  }
  
  static int make_child(server_rec *s, int slot, time_t now) /* ZZZ */
  {
      int pid;
  
      if (ap_acceptors_per_child + ap_threads_per_child  > HARD_THREAD_LIMIT) {
          ap_log_error(APLOG_MARK, APLOG_ERR, s,
                     "Worker threads plus acceptor threads is greater than 
HARD_THREAD_LIMIT, please correct");
        exit(-1);
      }
  
  
      if (slot + 1 > max_daemons_limit) {
        max_daemons_limit = slot + 1;
      }
  
      if (one_process) {
        set_signals();
          ap_scoreboard_image->parent[slot].pid = getpid();
        child_main(slot);
      }
  
      if ((pid = fork()) == -1) {
          ap_log_error(APLOG_MARK, APLOG_ERR, s, "fork: Unable to fork new 
process");
        /* In case system resources are maxxed out, we don't want
           Apache running away with the CPU trying to fork over and
           over and over again. */
        sleep(10);
  
        return -1;
      }
  
      if (!pid) {
  #ifdef AIX_BIND_PROCESSOR
        /* By default, AIX binds to a single processor.  This bit unbinds
         children which will then bind to another CPU.
        */
  #include <sys/processor.h>
          int status = bindprocessor(BINDPROCESS, (int)getpid(),
                               PROCESSOR_CLASS_ANY);
        if (status != OK)
            ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_WARNING, server_conf,
                         "processor unbind failed %d", status);
  #endif
  
          RAISE_SIGSTOP(MAKE_CHILD);
  
        /* XXX - For an unthreaded server, a signal handler will be necessary
          signal(SIGTERM, just_die);
        */
          child_main(slot);
  
        return 0;
      }
      /* else */
      ap_scoreboard_image->parent[slot].pid = pid;
      return 0;
  }
  
  /* start up a bunch of children */
  static void startup_children(int number_to_start)
  {
      int i;
  
      for (i = 0; number_to_start && i < ap_daemons_limit; ++i) {
        if (ap_scoreboard_image->parent[i].pid != 0) {
            continue;
        }
        if (make_child(server_conf, i, 0) < 0) {
            break;
        }
        --number_to_start;
      }
  }
  
  
  /*
   * idle_spawn_rate is the number of children that will be spawned on the
   * next maintenance cycle if there aren't enough idle servers.  It is
   * doubled up to MAX_SPAWN_RATE, and reset only when a cycle goes by
   * without the need to spawn.
   */
  static int idle_spawn_rate = 1;
  #ifndef MAX_SPAWN_RATE
  #define MAX_SPAWN_RATE        (32)
  #endif
  static int hold_off_on_exponential_spawning;
  
  static void perform_idle_server_maintenance(void)
  {
      int i, j;
      int idle_count_ceil, idle_count_floor, idle_thread_count;
      thread_score *ss;
      time_t now = 0;
      int free_length;
      int free_slots[MAX_SPAWN_RATE];
      int last_non_dead;
      int total_non_dead;
  
      /* initialize the free_list */
      free_length = 0;
  
      idle_count_ceil = 0;
      idle_count_floor = 0;
      idle_thread_count = 0;
      last_non_dead = -1;
      total_non_dead = 0;
  
      ap_check_signals();
  
      ap_sync_scoreboard_image();
      for (i = 0; i < ap_daemons_limit; ++i) {
        /* Initialization to satisfy the compiler. It doesn't know
         * that ap_threads_per_child is always > 0 */
        int status = SERVER_DEAD;
        int any_dying_threads = 0;
        int all_dead_threads = 1;
        int idle_thread_addition = 0;
  
        if (i >= max_daemons_limit && free_length == idle_spawn_rate)
            break;
        for (j = 0; j < ap_threads_per_child; j++) {
              ss = &ap_scoreboard_image->servers[i][j];
            status = ss->status;
  
            any_dying_threads = any_dying_threads || (status == SERVER_DEAD)
                                      || (status == SERVER_GRACEFUL);
            all_dead_threads = all_dead_threads && (status == SERVER_DEAD);
  
            /* We consider a starting server as idle because we started it
             * at least a cycle ago, and if it still hasn't finished starting
             * then we're just going to swamp things worse by forking more.
             * So we hopefully won't need to fork more if we count it.
             * This depends on the ordering of SERVER_READY and SERVER_STARTING.
             */
            if (status <= SERVER_READY) {
                ++idle_thread_addition;
            }
        }
        if (all_dead_threads && free_length < idle_spawn_rate) {
            free_slots[free_length] = i;
            ++free_length;
        }
        if (!all_dead_threads) {
              last_non_dead = i;
        }
          if (!any_dying_threads) {
              ++total_non_dead;
            idle_thread_count += idle_thread_addition;
          }
      }
      max_daemons_limit = last_non_dead + 1;
      idle_count_floor = idle_thread_count / ap_threads_per_child;
      idle_count_ceil = idle_count_floor;
      if (idle_thread_count % ap_threads_per_child) {
          idle_count_ceil++;
      }
  
      if (idle_count_ceil > ap_daemons_max_free) {
          /* Kill off one child */
          char char_of_death = '!';
          if (write(ap_pipe_of_death[1], &char_of_death, 1) == -1) {
              ap_log_error(APLOG_MARK, APLOG_WARNING, server_conf, "write 
ap_pipe_of_death");
          }
          idle_spawn_rate = 1;
      }
      else if (idle_count_floor < ap_daemons_min_free) {
          /* terminate the free list */
          if (free_length == 0) {
            /* only report this condition once */
            static int reported = 0;
            
            if (!reported) {
                ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_ERR, server_conf,
                             "server reached MaxClients setting, consider"
                             " raising the MaxClients setting");
                reported = 1;
            }
            idle_spawn_rate = 1;
        }
        else {
            /* ZZZZ */
            
            if (idle_spawn_rate >= 8) {
                ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_INFO, server_conf,
                             "server seems busy, (you may need "
                             "to increase StartServers, or 
Min/MaxSpareServers), "
                             "spawning %d children, there are %d idle, and "
                             "%d total children", idle_spawn_rate,
                             idle_count_floor, total_non_dead);
            }
            for (i = 0; i < free_length; ++i) {
                make_child(server_conf, free_slots[i], now);
            }
            /* the next time around we want to spawn twice as many if this
             * wasn't good enough, but not if we've just done a graceful
             */
            if (hold_off_on_exponential_spawning) {
                --hold_off_on_exponential_spawning;
            }
            else if (idle_spawn_rate < MAX_SPAWN_RATE) {
                idle_spawn_rate *= 2;
            }
        }
      }
      else {
        idle_spawn_rate = 1;
      }
  }
  
  static void server_main_loop(int remaining_children_to_start)
  {
      int child_slot;
      ap_wait_t status;
      int pid;
      int i;
  
      while (!restart_pending && !shutdown_pending) {
          pid = wait_or_timeout(&status);
          
          if (pid >= 0) {
              child_slot = find_child_by_pid(pid);
              if (child_slot >= 0) {
                  for (i = 0; i < ap_threads_per_child + 
ap_acceptors_per_child; i++)
                      ap_update_child_status(child_slot, i, SERVER_DEAD, 
(request_rec *) NULL);
                  
                if (remaining_children_to_start
                    && child_slot < ap_daemons_limit) {
                    /* we're still doing a 1-for-1 replacement of dead
                       * children with new children
                       */
                      /* ZZZ abstract out for AP funcs. */
                    make_child(server_conf, child_slot, time(NULL));
                    --remaining_children_to_start;
                }
  #ifdef HAS_OTHER_CHILD
            }
            else if (reap_other_child(pid, status) == 0) {
                /* handled */
  #endif
            }
            else if (is_graceful) {
                /* Great, we've probably just lost a slot in the
                    * scoreboard.  Somehow we don't know about this
                    * child.
                    */
                ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_WARNING, 
server_conf,
                            "long lost child came home! (pid %d)", pid);
            }
            /* Don't perform idle maintenance when a child dies,
               * only do it when there's a timeout.  Remember only a
               * finite number of children can die, and it's pretty
               * pathological for a lot to die suddenly.
               */
            continue;
        }
        else if (remaining_children_to_start) {
            /* we hit a 1 second timeout in which none of the previous
             * generation of children needed to be reaped... so assume
             * they're all done, and pick up the slack if any is left.
             */
            startup_children(remaining_children_to_start);
            remaining_children_to_start = 0;
            /* In any event we really shouldn't do the code below because
             * few of the servers we just started are in the IDLE state
             * yet, so we'd mistakenly create an extra server.
             */
            continue;
        }
  
        perform_idle_server_maintenance();
      }
  }
  
  int ap_mpm_run(pool *_pconf, pool *plog, server_rec *s)
  {
      int remaining_children_to_start;
      int listener_count;
  
      pconf = _pconf;
      server_conf = s;
      if (pipe(ap_pipe_of_death) == -1) {
          ap_log_error(APLOG_MARK, APLOG_ERR,
                       (const server_rec*) server_conf,
                       "pipe: (pipe_of_death)");
          exit(1);
      }
      ap_note_cleanups_for_fd(pconf, ap_pipe_of_death[0]);
      ap_note_cleanups_for_fd(pconf, ap_pipe_of_death[1]);
      if (fcntl(ap_pipe_of_death[0], F_SETFD, O_NONBLOCK) == -1) {
          ap_log_error(APLOG_MARK, APLOG_ERR,
                       (const server_rec*) server_conf,
                       "fcntl: O_NONBLOCKing (pipe_of_death)");
          exit(1);
      }
      server_conf = s;
      listener_count = setup_listeners(pconf);
      ap_clear_pool(plog);
      ap_open_logs(server_conf, plog);
      ap_log_pid(pconf, ap_pid_fname);
      accept_parent_init(pconf, listener_count);
      if (!is_graceful) {
        reinit_scoreboard(pconf);
      }
  
      set_signals();
      /* set up get_socket */
  
      if (ap_daemons_max_free < ap_daemons_min_free + 1)        /* Don't 
thrash... */
        ap_daemons_max_free = ap_daemons_min_free + 1;
  
      /* If we're doing a graceful_restart then we're going to see a lot
       * of children exiting immediately when we get into the main loop
       * below (because we just sent them SIGWINCH).  This happens pretty
       * rapidly... and for each one that exits we'll start a new one until
       * we reach at least daemons_min_free.  But we may be permitted to
       * start more than that, so we'll just keep track of how many we're
       * supposed to start up without the 1 second penalty between each fork.
       */
      remaining_children_to_start = ap_daemons_to_start;
      if (remaining_children_to_start > ap_daemons_limit) {
        remaining_children_to_start = ap_daemons_limit;
      }
      if (!is_graceful) {
        startup_children(remaining_children_to_start);
        remaining_children_to_start = 0;
      }
      else {
        /* give the system some time to recover before kicking into
            * exponential mode */
        hold_off_on_exponential_spawning = 10;
      }
  
      ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_NOTICE, server_conf,
                "%s configured -- resuming normal operations",
                ap_get_server_version());
      ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_INFO, server_conf,
                "Server built: %s", ap_get_server_built());
      restart_pending = shutdown_pending = 0;
  
      server_main_loop(remaining_children_to_start);
  
      if (shutdown_pending) {
          /* Time to gracefully shut down:
           * Kill child processes, tell them to call child_exit, etc...
           */
          if (ap_killpg(getpgrp(), SIGTERM) < 0) {
              ap_log_error(APLOG_MARK, APLOG_WARNING, server_conf, "killpg 
SIGTERM");
          }
          reclaim_child_processes(1);           /* Start with SIGTERM */
      
          /* cleanup pid file on normal shutdown */
          {
              const char *pidfile = NULL;
              pidfile = ap_server_root_relative (pconf, ap_pid_fname);
              if ( pidfile != NULL && unlink(pidfile) == 0)
                  ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_INFO,
                         server_conf,
                         "removed PID file %s (pid=%ld)",
                         pidfile, (long)getpid());
          }
      
          ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_NOTICE, server_conf,
              "caught SIGTERM, shutting down");
      
        return 1;
      }
  
      /* we've been told to restart */
      signal(SIGHUP, SIG_IGN);
  
      if (one_process) {
        /* not worth thinking about */
        return 1;
      }
  
      /* advance to the next generation */
      /* XXX: we really need to make sure this new generation number isn't in
       * use by any of the children.
       */
      ++ap_my_generation;
      ap_scoreboard_image->global.running_generation = ap_my_generation;
      update_scoreboard_global();
  
      if (is_graceful) {
        int i, j;
          char char_of_death = '!';
  
        ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_NOTICE, server_conf,
                    "SIGWINCH received.  Doing graceful restart");
  
        /* kill off the idle ones */
          for (i = 0; i < ap_daemons_limit; ++i) {
              if (write(ap_pipe_of_death[1], &char_of_death, 1) == -1) {
                  ap_log_error(APLOG_MARK, APLOG_WARNING, server_conf, "write 
ap_pipe_of_death");
              }
          }
  
        /* This is mostly for debugging... so that we know what is still
           * gracefully dealing with existing request.
           */
        
        for (i = 0; i < ap_daemons_limit; ++i) {
            for (j = 0; j < ap_threads_per_child + ap_acceptors_per_child; 
                 j++) { 
                if (ap_scoreboard_image->servers[i][j].status != SERVER_DEAD) {
                    ap_scoreboard_image->servers[i][j].status = SERVER_GRACEFUL;
                }
            } 
        }
      }
      else {
        /* Kill 'em all.  Since the child acts the same on the parents SIGTERM 
         * and a SIGHUP, we may as well use the same signal, because some user
         * pthreads are stealing signals from us left and right.
         */
        if (ap_killpg(getpgrp(), SIGTERM) < 0) {
            ap_log_error(APLOG_MARK, APLOG_WARNING, server_conf, "killpg 
SIGTERM");
        }
          reclaim_child_processes(1);           /* Start with SIGTERM */
        ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_NOTICE, server_conf,
                    "SIGHUP received.  Attempting to restart");
      }
      copy_listeners(pconf);
      if (!is_graceful) {
          ap_restart_time = time(NULL); /* ZZZZZ */
      }
      return 0;
  }
  
  static void mpmt_pthread_pre_command_line(pool *pcommands)
  {
      INIT_SIGLIST()
      one_process = 0;
  }
  
  static void mpmt_pthread_pre_config(pool *pconf, pool *plog, pool *ptemp)
  {
      static int restart_num = 0;
  
      one_process = ap_exists_config_define("ONE_PROCESS");
  
      /* sigh, want this only the second time around */
      if (restart_num++ == 1) {
        is_graceful = 0;
  
        if (!one_process) {
            unixd_detach();
        }
  
        my_pid = getpid();
      }
  
      unixd_pre_config();
      ap_daemons_to_start = DEFAULT_START_DAEMON;
      ap_daemons_min_free = DEFAULT_MIN_FREE_DAEMON;
      ap_daemons_max_free = DEFAULT_MAX_FREE_DAEMON;
      ap_daemons_limit = HARD_SERVER_LIMIT;
      ap_threads_per_child = DEFAULT_THREADS_PER_CHILD;
      ap_pid_fname = DEFAULT_PIDLOG;
      ap_scoreboard_fname = DEFAULT_SCOREBOARD;
      ap_lock_fname = DEFAULT_LOCKFILE;
      ap_max_requests_per_child = DEFAULT_MAX_REQUESTS_PER_CHILD;
      /* ZZZ  Initialize the Network Address here. */
      ap_bind_address.s_addr = htonl(INADDR_ANY);
      ap_listeners = NULL;
      ap_listenbacklog = DEFAULT_LISTENBACKLOG;
      ap_extended_status = 0;
  
      ap_cpystrn(ap_coredump_dir, ap_server_root, sizeof(ap_coredump_dir));
  }
  
  static void mpmt_pthread_post_config(pool *pconf, pool *plog, pool *ptemp, 
server_rec *s)
  {
      if (ap_listeners == NULL) {
        /* allocate a default listener */
        listen_rec *new;
  
        new = ap_pcalloc(pconf, sizeof(listen_rec));
        new->local_addr.sin_family = AF_INET;
        new->local_addr.sin_addr = ap_bind_address;
        new->local_addr.sin_port = htons(s->port ? s->port : DEFAULT_HTTP_PORT);
        new->fd = -1;
        new->next = NULL;
        ap_listeners = new;
      }
  }
  
  
  static const char *set_pidfile(cmd_parms *cmd, void *dummy, char *arg) 
  {
      const char *err = ap_check_cmd_context(cmd, GLOBAL_ONLY);
      if (err != NULL) {
          return err;
      }
  
      if (cmd->server->is_virtual) {
        return "PidFile directive not allowed in <VirtualHost>";
      }
      ap_pid_fname = arg;
      return NULL;
  }
  
  static const char *set_scoreboard(cmd_parms *cmd, void *dummy, char *arg) 
  {
      const char *err = ap_check_cmd_context(cmd, GLOBAL_ONLY);
      if (err != NULL) {
          return err;
      }
  
      ap_scoreboard_fname = arg;
      return NULL;
  }
  
  static const char *set_lockfile(cmd_parms *cmd, void *dummy, char *arg) 
  {
      const char *err = ap_check_cmd_context(cmd, GLOBAL_ONLY);
      if (err != NULL) {
          return err;
      }
  
      ap_lock_fname = arg;
      return NULL;
  }
  
  static const char *set_daemons_to_start(cmd_parms *cmd, void *dummy, char 
*arg) 
  {
      const char *err = ap_check_cmd_context(cmd, GLOBAL_ONLY);
      if (err != NULL) {
          return err;
      }
  
      ap_daemons_to_start = atoi(arg);
      return NULL;
  }
  
  static const char *set_min_free_servers(cmd_parms *cmd, void *dummy, char 
*arg)
  {
      const char *err = ap_check_cmd_context(cmd, GLOBAL_ONLY);
      if (err != NULL) {
          return err;
      }
  
      ap_daemons_min_free = atoi(arg);
      if (ap_daemons_min_free <= 0) {
         fprintf(stderr, "WARNING: detected MinSpareServers set to 
non-positive.\n");
         fprintf(stderr, "Resetting to 1 to avoid almost certain Apache 
failure.\n");
         fprintf(stderr, "Please read the documentation.\n");
         ap_daemons_min_free = 1;
      }
         
      return NULL;
  }
  
  static const char *set_max_free_servers(cmd_parms *cmd, void *dummy, char 
*arg)
  {
      const char *err = ap_check_cmd_context(cmd, GLOBAL_ONLY);
      if (err != NULL) {
          return err;
      }
  
      ap_daemons_max_free = atoi(arg);
      return NULL;
  }
  
  static const char *set_server_limit (cmd_parms *cmd, void *dummy, char *arg) 
  {
      const char *err = ap_check_cmd_context(cmd, GLOBAL_ONLY);
      if (err != NULL) {
          return err;
      }
  
      ap_daemons_limit = atoi(arg);
      if (ap_daemons_limit > HARD_SERVER_LIMIT) {
         fprintf(stderr, "WARNING: MaxClients of %d exceeds compile time limit "
             "of %d servers,\n", ap_daemons_limit, HARD_SERVER_LIMIT);
         fprintf(stderr, " lowering MaxClients to %d.  To increase, please "
             "see the\n", HARD_SERVER_LIMIT);
         fprintf(stderr, " HARD_SERVER_LIMIT define in src/include/httpd.h.\n");
         ap_daemons_limit = HARD_SERVER_LIMIT;
      } 
      else if (ap_daemons_limit < 1) {
        fprintf(stderr, "WARNING: Require MaxClients > 0, setting to 1\n");
        ap_daemons_limit = 1;
      }
      return NULL;
  }
  
  static const char *set_threads_per_child (cmd_parms *cmd, void *dummy, char 
*arg) 
  {
      const char *err = ap_check_cmd_context(cmd, GLOBAL_ONLY);
      if (err != NULL) {
          return err;
      }
  
      ap_threads_per_child = atoi(arg);
      if (ap_threads_per_child < 1) {
        fprintf(stderr, "WARNING: Require ThreadsPerChild > 0, setting to 1\n");
        ap_threads_per_child = 1;
      }
      return NULL;
  }
  
  static const char *set_max_requests(cmd_parms *cmd, void *dummy, char *arg) 
  {
      const char *err = ap_check_cmd_context(cmd, GLOBAL_ONLY);
      if (err != NULL) {
          return err;
      }
  
      ap_max_requests_per_child = atoi(arg);
  
      return NULL;
  }
  
  static const char *set_coredumpdir (cmd_parms *cmd, void *dummy, char *arg) 
  {
      struct stat finfo;
      const char *fname;
      const char *err = ap_check_cmd_context(cmd, GLOBAL_ONLY);
      if (err != NULL) {
          return err;
      }
  
      fname = ap_server_root_relative(cmd->pool, arg);
      /* ZZZ change this to the AP func FileInfo*/
      if ((stat(fname, &finfo) == -1) || !S_ISDIR(finfo.st_mode)) {
        return ap_pstrcat(cmd->pool, "CoreDumpDirectory ", fname, 
                          " does not exist or is not a directory", NULL);
      }
      ap_cpystrn(ap_coredump_dir, fname, sizeof(ap_coredump_dir));
      return NULL;
  }
  
  static const char *set_listenbacklog(cmd_parms *cmd, void *dummy, char *arg) 
  {
      int b;
  
      const char *err = ap_check_cmd_context(cmd, GLOBAL_ONLY);
      if (err != NULL) {
          return err;
      }
  
      b = atoi(arg);
      if (b < 1) {
          return "ListenBacklog must be > 0";
      }
      ap_listenbacklog = b;
      return NULL;
  }
  
  static const char *set_listener(cmd_parms *cmd, void *dummy, char *ips)
  {
      listen_rec *new;
      char *ports;
      unsigned short port;
  
      const char *err = ap_check_cmd_context(cmd, GLOBAL_ONLY);
      if (err != NULL) {
          return err;
      }
  
      ports = strchr(ips, ':');
      if (ports != NULL) {
        if (ports == ips) {
            return "Missing IP address";
        }
        else if (ports[1] == '\0') {
            return "Address must end in :<port-number>";
        }
        *(ports++) = '\0';
      }
      else {
        ports = ips;
      }
  
      new=ap_pcalloc(cmd->pool, sizeof(listen_rec));
      /* ZZZ let's set this using the AP funcs. */
      new->local_addr.sin_family = AF_INET;
      if (ports == ips) { /* no address */
        /*  ZZZ Initialize the Network Address */
        new->local_addr.sin_addr.s_addr = htonl(INADDR_ANY);
      }
      else {
        new->local_addr.sin_addr.s_addr = ap_get_virthost_addr(ips, NULL);
      }
      port = atoi(ports);
      if (!port) {
        return "Port must be numeric";
      }
      /* ZZZ change to AP funcs.*/
      new->local_addr.sin_port = htons(port);
      new->fd = -1;    /*ZZZ change to NULL */
      new->used = 0;
      new->next = ap_listeners;
      ap_listeners = new;
      return NULL;
  }
  
  struct ap_thread_mutex {
      pthread_mutex_t mutex;
  };
  
  API_EXPORT(ap_thread_mutex *) ap_thread_mutex_new(void)
  {
      ap_thread_mutex *mtx;
  
      mtx = malloc(sizeof(ap_thread_mutex));
      pthread_mutex_init(&(mtx->mutex), NULL);
      return mtx;
  }
  
  API_EXPORT(void) ap_thread_mutex_lock(ap_thread_mutex *mtx)
  {
      /* Ignoring error conditions here. :( */
      pthread_mutex_lock(&(mtx->mutex));
  }
  
  API_EXPORT(void) ap_thread_mutex_unlock(ap_thread_mutex *mtx)
  {
      /* Here too. */
      pthread_mutex_unlock(&(mtx->mutex));
  }
  
  API_EXPORT(void) ap_thread_mutex_destroy(ap_thread_mutex *mtx)
  {
      /* Here too. */
      pthread_mutex_destroy(&(mtx->mutex));
      free(mtx);
  }
  
  
  static const command_rec mpmt_pthread_cmds[] = {
  { "PidFile", set_pidfile, NULL, RSRC_CONF, TAKE1,
      "A file for logging the server process ID"},
  { "ScoreBoardFile", set_scoreboard, NULL, RSRC_CONF, TAKE1,
      "A file for Apache to maintain runtime process management information"},
  { "LockFile", set_lockfile, NULL, RSRC_CONF, TAKE1,
      "The lockfile used when Apache needs to lock the accept() call"},
  { "StartServers", set_daemons_to_start, NULL, RSRC_CONF, TAKE1,
    "Number of child processes launched at server startup" },
  { "MinSpareServers", set_min_free_servers, NULL, RSRC_CONF, TAKE1,
    "Minimum number of idle children, to handle request spikes" },
  { "MaxSpareServers", set_max_free_servers, NULL, RSRC_CONF, TAKE1,
    "Maximum number of idle children" },
  { "MaxClients", set_server_limit, NULL, RSRC_CONF, TAKE1,
    "Maximum number of children alive at the same time" },
  { "ThreadsPerChild", set_threads_per_child, NULL, RSRC_CONF, TAKE1,
    "Number of threads each child creates" },
  { "MaxRequestsPerChild", set_max_requests, NULL, RSRC_CONF, TAKE1,
    "Maximum number of requests a particular child serves before dying." },
  { "CoreDumpDirectory", set_coredumpdir, NULL, RSRC_CONF, TAKE1,
    "The location of the directory Apache changes to before dumping core" },
  { "ListenBacklog", set_listenbacklog, NULL, RSRC_CONF, TAKE1,
    "Maximum length of the queue of pending connections, as used by listen(2)" 
},
  { "Listen", set_listener, NULL, RSRC_CONF, TAKE1,
    "A port number or a numeric IP address and a port number"},
  { NULL }
  };
  
  module MODULE_VAR_EXPORT mpm_mpmt_pthread_module = {
      STANDARD20_MODULE_STUFF,
      mpmt_pthread_pre_command_line,    /* pre_command_line */
      mpmt_pthread_pre_config,          /* pre_config */
      mpmt_pthread_post_config, /* post_config */
      NULL,                     /* open_logs */
      NULL,                     /* child_init */
      NULL,                     /* create per-directory config structure */
      NULL,                     /* merge per-directory config structures */
      NULL,                     /* create per-server config structure */
      NULL,                     /* merge per-server config structures */
      mpmt_pthread_cmds,                /* command table */
      NULL,                     /* handlers */
      NULL,                     /* translate_handler */
      NULL,                     /* check_user_id */
      NULL,                     /* check auth */
      NULL,                     /* check access */
      NULL,                     /* type_checker */
      NULL,                     /* pre-run fixups */
      NULL,                     /* logger */
      NULL,                     /* header parser */
      NULL                      /* post_read_request */
  };
  
  /* force Expat to be linked into the server executable */
  #if defined(USE_EXPAT) && !defined(SHARED_CORE_BOOTSTRAP)
  #include "xmlparse.h"
  const XML_LChar *suck_in_expat(void);
  const XML_LChar *suck_in_expat(void)
  {
      return XML_ErrorString(XML_ERROR_NONE);
  }
  #endif /* USE_EXPAT */
  
  #include "acceptlock.c"
  #include "http_accept.c"
  #include "scoreboard.c"
  
  
  
  1.1                  apache-2.0/mpm/src/modules/mpm/scoreboard.c
  
  Index: scoreboard.c
  ===================================================================
  #include "httpd.h"
  #include "http_log.h"
  #include "http_main.h"
  #include "http_core.h"
  #include "http_conf_globals.h"
  #include "scoreboard.h"
  #ifdef USE_SHMGET_SCOREBOARD
  #include <sys/types.h>
  #include <sys/ipc.h>
  #include <sys/shm.h>
  #endif
  
  #ifdef USE_OS2_SCOREBOARD
      /* Add MMAP style functionality to OS/2 */
  #define INCL_DOSMEMMGR
  #define INCL_DOSEXCEPTIONS
  #define INCL_DOSSEMAPHORES
  #include <os2.h>
  #include <umalloc.h>
  #include <stdio.h>
  caddr_t create_shared_heap(const char *, size_t);
  caddr_t get_shared_heap(const char *);
  #endif
  
  scoreboard *ap_scoreboard_image = NULL;
  static char *ap_server_argv0=NULL;
  extern pool * pconf;
  
  /*****************************************************************
   *
   * Dealing with the scoreboard... a lot of these variables are global
   * only to avoid getting clobbered by the longjmp() that happens when
   * a hard timeout expires...
   *
   * We begin with routines which deal with the file itself... 
   */
  
  #ifdef MULTITHREAD
  /*
   * In the multithreaded mode, have multiple threads - not multiple
   * processes that need to talk to each other. Just use a simple
   * malloc. But let the routines that follow, think that you have
   * shared memory (so they use memcpy etc.)
   */
  
  void reinit_scoreboard(pool *p)
  {
      ap_assert(!ap_scoreboard_image);
      ap_scoreboard_image = (scoreboard *) malloc(SCOREBOARD_SIZE);
      if (ap_scoreboard_image == NULL) {
          fprintf(stderr, "Ouch! Out of memory reiniting scoreboard!\n");
      }
      memset(ap_scoreboard_image, 0, SCOREBOARD_SIZE);
  }
  
  void cleanup_scoreboard(void)
  {
      ap_assert(ap_scoreboard_image);
      free(ap_scoreboard_image);
      ap_scoreboard_image = NULL;
  }
  
  API_EXPORT(void) ap_sync_scoreboard_image(void)
  {
  }
  
  
  #else /* MULTITHREAD */
  #if defined(USE_OS2_SCOREBOARD)
  
  /* The next two routines are used to access shared memory under OS/2.  */
  /* This requires EMX v09c to be installed.                           */
  
  caddr_t create_shared_heap(const char *name, size_t size)
  {
      ULONG rc;
      void *mem;
      Heap_t h;
  
      rc = DosAllocSharedMem(&mem, name, size,
                           PAG_COMMIT | PAG_READ | PAG_WRITE);
      if (rc != 0)
        return NULL;
      h = _ucreate(mem, size, !_BLOCK_CLEAN, _HEAP_REGULAR | _HEAP_SHARED,
                 NULL, NULL);
      if (h == NULL)
        DosFreeMem(mem);
      return (caddr_t) h;
  }
  
  caddr_t get_shared_heap(const char *Name)
  {
  
      PVOID BaseAddress;                /* Pointer to the base address of
                                   the shared memory object */
      ULONG AttributeFlags;     /* Flags describing characteristics
                                   of the shared memory object */
      APIRET rc;                        /* Return code */
  
      /* Request read and write access to */
      /*   the shared memory object       */
      AttributeFlags = PAG_WRITE | PAG_READ;
  
      rc = DosGetNamedSharedMem(&BaseAddress, Name, AttributeFlags);
  
      if (rc != 0) {
        printf("DosGetNamedSharedMem error: return code = %ld", rc);
        return 0;
      }
  
      return BaseAddress;
  }
  
  static void setup_shared_mem(pool *p)
  {
      caddr_t m;
  
      int rc;
  
      m = (caddr_t) create_shared_heap("\\SHAREMEM\\SCOREBOARD", 
SCOREBOARD_SIZE);
      if (m == 0) {
        fprintf(stderr, "%s: Could not create OS/2 Shared memory pool.\n",
                ap_server_argv0);
        exit(APEXIT_INIT);
      }
  
      rc = _uopen((Heap_t) m);
      if (rc != 0) {
        fprintf(stderr,
                "%s: Could not uopen() newly created OS/2 Shared memory 
pool.\n",
                ap_server_argv0);
      }
      ap_scoreboard_image = (scoreboard *) m;
      ap_scoreboard_image->global.running_generation = 0;
  }
  
  API_EXPORT(void) reopen_scoreboard(pool *p)
  {
      caddr_t m;
      int rc;
  
      m = (caddr_t) get_shared_heap("\\SHAREMEM\\SCOREBOARD");
      if (m == 0) {
        fprintf(stderr, "%s: Could not find existing OS/2 Shared memory 
pool.\n",
                ap_server_argv0);
        exit(APEXIT_INIT);
      }
  
      rc = _uopen((Heap_t) m);
      ap_scoreboard_image = (scoreboard *) m;
  }
  
  #elif defined(USE_POSIX_SCOREBOARD)
  #include <sys/mman.h>
  /* 
   * POSIX 1003.4 style
   *
   * Note 1: 
   * As of version 4.23A, shared memory in QNX must reside under /dev/shmem,
   * where no subdirectories allowed.
   *
   * POSIX shm_open() and shm_unlink() will take care about this issue,
   * but to avoid confusion, I suggest to redefine scoreboard file name
   * in httpd.conf to cut "logs/" from it. With default setup actual name
   * will be "/dev/shmem/logs.apache_status". 
   * 
   * If something went wrong and Apache did not unlinked this object upon
   * exit, you can remove it manually, using "rm -f" command.
   * 
   * Note 2:
   * <sys/mman.h> in QNX defines MAP_ANON, but current implementation 
   * does NOT support BSD style anonymous mapping. So, the order of 
   * conditional compilation is important: 
   * this #ifdef section must be ABOVE the next one (BSD style).
   *
   * I tested this stuff and it works fine for me, but if it provides 
   * trouble for you, just comment out USE_MMAP_SCOREBOARD in QNX section
   * of ap_config.h
   *
   * June 5, 1997, 
   * Igor N. Kovalenko -- [EMAIL PROTECTED]
   */
  
  static void cleanup_shared_mem(void *d)
  {
      shm_unlink(ap_scoreboard_fname);
  }
  
  static void setup_shared_mem(pool *p)
  {
      char buf[512];
      caddr_t m;
      int fd;
  
      fd = shm_open(ap_scoreboard_fname, O_RDWR | O_CREAT, S_IRUSR | S_IWUSR);
      if (fd == -1) {
        ap_snprintf(buf, sizeof(buf), "%s: could not open(create) scoreboard",
                    ap_server_argv0);
        perror(buf);
        exit(APEXIT_INIT);
      }
      if (ltrunc(fd, (off_t) SCOREBOARD_SIZE, SEEK_SET) == -1) {
        ap_snprintf(buf, sizeof(buf), "%s: could not ltrunc scoreboard",
                    ap_server_argv0);
        perror(buf);
        shm_unlink(ap_scoreboard_fname);
        exit(APEXIT_INIT);
      }
      if ((m = (caddr_t) mmap((caddr_t) 0,
                            (size_t) SCOREBOARD_SIZE, PROT_READ | PROT_WRITE,
                            MAP_SHARED, fd, (off_t) 0)) == (caddr_t) - 1) {
        ap_snprintf(buf, sizeof(buf), "%s: cannot mmap scoreboard",
                    ap_server_argv0);
        perror(buf);
        shm_unlink(ap_scoreboard_fname);
        exit(APEXIT_INIT);
      }
      close(fd);
      ap_register_cleanup(p, NULL, cleanup_shared_mem, ap_null_cleanup);
      ap_scoreboard_image = (scoreboard *) m;
      ap_scoreboard_image->global.running_generation = 0;
  }
  
  API_EXPORT(void) reopen_scoreboard(pool *p)
  {
  }
  
  #elif defined(USE_MMAP_SCOREBOARD)
  
  static void setup_shared_mem(pool *p)
  {
      caddr_t m;
  
  #if defined(MAP_ANON)
  /* BSD style */
  #ifdef CONVEXOS11
      /*
       * 9-Aug-97 - Jeff Venters ([EMAIL PROTECTED])
       * ConvexOS maps address space as follows:
       *   0x00000000 - 0x7fffffff : Kernel
       *   0x80000000 - 0xffffffff : User
       * Start mmapped area 1GB above start of text.
       *
       * Also, the length requires a pointer as the actual length is
       * returned (rounded up to a page boundary).
       */
      {
        unsigned len = SCOREBOARD_SIZE;
  
        m = mmap((caddr_t) 0xC0000000, &len,
                 PROT_READ | PROT_WRITE, MAP_ANON | MAP_SHARED, NOFD, 0);
      }
  #elif defined(MAP_TMPFILE)
      {
        char mfile[] = "/tmp/apache_shmem_XXXX";
        int fd = mkstemp(mfile);
        if (fd == -1) {
            perror("open");
            fprintf(stderr, "%s: Could not open %s\n", ap_server_argv0, mfile);
            exit(APEXIT_INIT);
        }
        m = mmap((caddr_t) 0, SCOREBOARD_SIZE,
                PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
        if (m == (caddr_t) - 1) {
            perror("mmap");
            fprintf(stderr, "%s: Could not mmap %s\n", ap_server_argv0, mfile);
            exit(APEXIT_INIT);
        }
        close(fd);
        unlink(mfile);
      }
  #else
      m = mmap((caddr_t) 0, SCOREBOARD_SIZE,
             PROT_READ | PROT_WRITE, MAP_ANON | MAP_SHARED, -1, 0);
  #endif
      if (m == (caddr_t) - 1) {
        perror("mmap");
        fprintf(stderr, "%s: Could not mmap memory\n", ap_server_argv0);
        exit(APEXIT_INIT);
      }
  #else
  /* Sun style */
      int fd;
  
      fd = open("/dev/zero", O_RDWR);
      if (fd == -1) {
        perror("open");
        fprintf(stderr, "%s: Could not open /dev/zero\n", ap_server_argv0);
        exit(APEXIT_INIT);
      }
      m = mmap((caddr_t) 0, SCOREBOARD_SIZE,
             PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
      if (m == (caddr_t) - 1) {
        perror("mmap");
        fprintf(stderr, "%s: Could not mmap /dev/zero\n", ap_server_argv0);
        exit(APEXIT_INIT);
      }
      close(fd);
  #endif
      ap_scoreboard_image = (scoreboard *) m;
      ap_scoreboard_image->global.running_generation = 0;
  }
  
  API_EXPORT(void) reopen_scoreboard(pool *p)
  {
  }
  
  #elif defined(USE_SHMGET_SCOREBOARD)
  static key_t shmkey = IPC_PRIVATE;
  static int shmid = -1;
  
  static void setup_shared_mem(pool *p)
  {
      struct shmid_ds shmbuf;
      const server_rec * server_conf = ap_get_server_conf();
  #ifdef MOVEBREAK
      char *obrk;
  #endif
  
      if ((shmid = shmget(shmkey, SCOREBOARD_SIZE, IPC_CREAT | SHM_R | SHM_W)) 
== -1) {
  #ifdef LINUX
        if (errno == ENOSYS) {
            ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_EMERG, server_conf,
                         "Your kernel was built without CONFIG_SYSVIPC\n"
                         "%s: Please consult the Apache FAQ for details",
                         ap_server_argv0);
        }
  #endif
        ap_log_error(APLOG_MARK, APLOG_EMERG, server_conf,
                    "could not call shmget");
        exit(APEXIT_INIT);
      }
  
      ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_INFO, server_conf,
                "created shared memory segment #%d", shmid);
  
  #ifdef MOVEBREAK
      /*
       * Some SysV systems place the shared segment WAY too close
       * to the dynamic memory break point (sbrk(0)). This severely
       * limits the use of malloc/sbrk in the program since sbrk will
       * refuse to move past that point.
       *
       * To get around this, we move the break point "way up there",
       * attach the segment and then move break back down. Ugly
       */
      if ((obrk = sbrk(MOVEBREAK)) == (char *) -1) {
        ap_log_error(APLOG_MARK, APLOG_ERR, server_conf,
            "sbrk() could not move break");
      }
  #endif
  
  #define BADSHMAT      ((scoreboard *)(-1))
      if ((ap_scoreboard_image = (scoreboard *) shmat(shmid, 0, 0)) == 
BADSHMAT) {
        ap_log_error(APLOG_MARK, APLOG_EMERG, server_conf, "shmat error");
        /*
         * We exit below, after we try to remove the segment
         */
      }
      else {                    /* only worry about permissions if we attached 
the segment */
        if (shmctl(shmid, IPC_STAT, &shmbuf) != 0) {
            ap_log_error(APLOG_MARK, APLOG_ERR, server_conf,
                "shmctl() could not stat segment #%d", shmid);
        }
        else {
            shmbuf.shm_perm.uid = unixd_config.user_id;
            shmbuf.shm_perm.gid = unixd_config.group_id;
            if (shmctl(shmid, IPC_SET, &shmbuf) != 0) {
                ap_log_error(APLOG_MARK, APLOG_ERR, server_conf,
                    "shmctl() could not set segment #%d", shmid);
            }
        }
      }
      /*
       * We must avoid leaving segments in the kernel's
       * (small) tables.
       */
      if (shmctl(shmid, IPC_RMID, NULL) != 0) {
        ap_log_error(APLOG_MARK, APLOG_WARNING, server_conf,
                "shmctl: IPC_RMID: could not remove shared memory segment #%d",
                shmid);
      }
      if (ap_scoreboard_image == BADSHMAT)      /* now bailout */
        exit(APEXIT_INIT);
  
  #ifdef MOVEBREAK
      if (obrk == (char *) -1)
        return;                 /* nothing else to do */
      if (sbrk(-(MOVEBREAK)) == (char *) -1) {
        ap_log_error(APLOG_MARK, APLOG_ERR, server_conf,
            "sbrk() could not move break back");
      }
  #endif
      ap_scoreboard_image->global.running_generation = 0;
  }
  
  API_EXPORT(void) reopen_scoreboard(pool *p)
  {
  }
  
  #else
  #define SCOREBOARD_FILE
  static scoreboard _scoreboard_image;
  static int scoreboard_fd = -1;
  
  /* XXX: things are seriously screwed if we ever have to do a partial
   * read or write ... we could get a corrupted scoreboard
   */
  static int force_write(int fd, void *buffer, int bufsz)
  {
      int rv, orig_sz = bufsz;
  
      do {
        rv = write(fd, buffer, bufsz);
        if (rv > 0) {
            buffer = (char *) buffer + rv;
            bufsz -= rv;
        }
      } while ((rv > 0 && bufsz > 0) || (rv == -1 && errno == EINTR));
  
      return rv < 0 ? rv : orig_sz - bufsz;
  }
  
  static int force_read(int fd, void *buffer, int bufsz)
  {
      int rv, orig_sz = bufsz;
  
      do {
        rv = read(fd, buffer, bufsz);
        if (rv > 0) {
            buffer = (char *) buffer + rv;
            bufsz -= rv;
        }
      } while ((rv > 0 && bufsz > 0) || (rv == -1 && errno == EINTR));
  
      return rv < 0 ? rv : orig_sz - bufsz;
  }
  
  static void cleanup_scoreboard_file(void *foo)
  {
      unlink(ap_scoreboard_fname);
  }
  
  API_EXPORT(void) reopen_scoreboard(pool *p)
  {
      if (scoreboard_fd != -1)
        ap_pclosef(p, scoreboard_fd);
  
      scoreboard_fd = ap_popenf(p, ap_scoreboard_fname, O_CREAT | O_BINARY | 
O_RDWR, 0666);
      if (scoreboard_fd == -1) {
        perror(ap_scoreboard_fname);
        fprintf(stderr, "Cannot open scoreboard file:\n");
        clean_child_exit(1);
      }
  }
  #endif
  
  /* Called by parent process */
  void reinit_scoreboard(pool *p)
  {
      int running_gen = 0;
      if (ap_scoreboard_image)
        running_gen = ap_scoreboard_image->global.running_generation;
  
  #ifndef SCOREBOARD_FILE
      if (ap_scoreboard_image == NULL) {
        setup_shared_mem(p);
      }
      memset(ap_scoreboard_image, 0, SCOREBOARD_SIZE);
      ap_scoreboard_image->global.running_generation = running_gen;
  #else
      ap_scoreboard_image = &_scoreboard_image;
      ap_scoreboard_fname = ap_server_root_relative(p, ap_scoreboard_fname);
  
      scoreboard_fd = ap_popenf(p, ap_scoreboard_fname, O_CREAT | O_BINARY | 
O_RDWR, 0644);
      if (scoreboard_fd == -1) {
        perror(ap_scoreboard_fname);
        fprintf(stderr, "Cannot open scoreboard file:\n");
        exit(APEXIT_INIT);
      }
      ap_register_cleanup(p, NULL, cleanup_scoreboard_file, ap_null_cleanup);
  
      memset((char *) ap_scoreboard_image, 0, sizeof(*ap_scoreboard_image));
      ap_scoreboard_image->global.running_generation = running_gen;
      force_write(scoreboard_fd, ap_scoreboard_image, 
sizeof(*ap_scoreboard_image));
  #endif
  }
  
  /* Routines called to deal with the scoreboard image
   * --- note that we do *not* need write locks, since update_child_status
   * only updates a *single* record in place, and only one process writes to
   * a given scoreboard slot at a time (either the child process owning that
   * slot, or the parent, noting that the child has died).
   *
   * As a final note --- setting the score entry to getpid() is always safe,
   * since when the parent is writing an entry, it's only noting SERVER_DEAD
   * anyway.
   */
  
  ap_inline void ap_sync_scoreboard_image(void)
  {
  #ifdef SCOREBOARD_FILE
      lseek(scoreboard_fd, 0L, 0);
      force_read(scoreboard_fd, ap_scoreboard_image, 
sizeof(*ap_scoreboard_image));
  #endif
  }
  
  #endif /* MULTITHREAD */
  
  API_EXPORT(int) ap_exists_scoreboard_image(void)
  {
      return (ap_scoreboard_image ? 1 : 0);
  }
  
  static ap_inline void put_scoreboard_info(int child_num, int thread_num, 
                                       thread_score *new_score_rec)
  {
      /* XXX - needs to be fixed to account for threads */
  #ifdef SCOREBOARD_FILE
      lseek(scoreboard_fd, (long) child_num * sizeof(thread_score), 0);
      force_write(scoreboard_fd, new_score_rec, sizeof(thread_score));
  #endif
  }
  
  void update_scoreboard_global(void)
  {
  #ifdef SCOREBOARD_FILE
      lseek(scoreboard_fd,
          (char *) &ap_scoreboard_image->global -(char *) ap_scoreboard_image, 
0);
      force_write(scoreboard_fd, &ap_scoreboard_image->global,
                sizeof ap_scoreboard_image->global);
  #endif
  }
  
  void increment_counts(int child_num, int thread_num, request_rec *r)
  {
      long int bs = 0;
      thread_score *ss;
  
      ss = &ap_scoreboard_image->servers[child_num][thread_num];
  
      if (r->sent_bodyct)
        ap_bgetopt(r->connection->client, BO_BYTECT, &bs);
  
  #ifndef NO_TIMES
      times(&ss->times);
  #endif
      ss->access_count++;
      ss->my_access_count++;
      ss->conn_count++;
      ss->bytes_served += (unsigned long) bs;
      ss->my_bytes_served += (unsigned long) bs;
      ss->conn_bytes += (unsigned long) bs;
  
      put_scoreboard_info(child_num, thread_num, ss);
  
  }
  
  API_EXPORT(int) find_child_by_pid(int pid)
  {
      int i;
      int max_daemons_limit = ap_get_max_daemons();
  
      for (i = 0; i < max_daemons_limit; ++i)
        if (ap_scoreboard_image->parent[i].pid == pid)
            return i;
  
      return -1;
  }
  
  int ap_update_child_status(int child_num, int thread_num, int status, 
request_rec *r)
  {
      int old_status;
      thread_score *ss;
      parent_score *ps;
  
      if (child_num < 0)
        return -1;
  
      ss = &ap_scoreboard_image->servers[child_num][thread_num];
      old_status = ss->status;
      ss->status = status;
  
      ps = &ap_scoreboard_image->parent[child_num];
      
      if ((status == SERVER_READY  || status == SERVER_ACCEPTING)
        && old_status == SERVER_STARTING) {
          ss->tid = pthread_self();
        ps->worker_threads = ap_threads_per_child;
        ps->acceptor_threads = ap_acceptors_per_child;
      }
  
      if (ap_extended_status) {
        if (status == SERVER_READY || status == SERVER_DEAD) {
            /*
             * Reset individual counters
             */
            if (status == SERVER_DEAD) {
                ss->my_access_count = 0L;
                ss->my_bytes_served = 0L;
            }
            ss->conn_count = (unsigned short) 0;
            ss->conn_bytes = (unsigned long) 0;
        }
        if (r) {
            conn_rec *c = r->connection;
            ap_cpystrn(ss->client, ap_get_remote_host(c, r->per_dir_config,
                                  REMOTE_NOLOOKUP), sizeof(ss->client));
            if (r->the_request == NULL) {
                    ap_cpystrn(ss->request, "NULL", sizeof(ss->request));
            } else if (r->parsed_uri.password == NULL) {
                    ap_cpystrn(ss->request, r->the_request, 
sizeof(ss->request));
            } else {
                /* Don't reveal the password in the server-status view */
                    ap_cpystrn(ss->request, ap_pstrcat(r->pool, r->method, " ",
                                               
ap_unparse_uri_components(r->pool, &r->parsed_uri, UNP_OMITPASSWORD),
                                               r->assbackwards ? NULL : " ", 
r->protocol, NULL),
                                       sizeof(ss->request));
            }
            ss->vhostrec =  r->server;
        }
      }
      
      put_scoreboard_info(child_num, thread_num, ss);
      return old_status;
  }
  
  void ap_time_process_request(int child_num, int thread_num, int status)
  {
      thread_score *ss;
  
      if (child_num < 0)
        return;
  
      ss = &ap_scoreboard_image->servers[child_num][thread_num];
  
      if (status == START_PREQUEST) {
        /*ss->start_time = GetCurrentTime(); ZZZ return time in uS since the 
        epoch. Some platforms do not support gettimeofday. Create a routine 
        to get the current time is some useful units. */
          if (gettimeofday(&ss->start_time, (struct timezone *) 0) < 0) {
              ss->start_time.tv_sec = ss->start_time.tv_usec = 0L;
          }
      }
      else if (status == STOP_PREQUEST) {
        /*ss->stop_time = GetCurrentTime(); 
        ZZZ return time in uS since the epoch */
          
          if (gettimeofday(&ss->stop_time, (struct timezone *) 0) < 0) {
              ss->start_time.tv_sec = ss->start_time.tv_usec = 0L;
          }
      }
      put_scoreboard_info(child_num, thread_num, ss);
  }
  
  
  

Reply via email to