Date: Thursday, March 3, 2022 @ 20:26:11 Author: felixonmars Revision: 1141165
archrelease: copy trunk to community-staging-x86_64 Added: haskell-random-fu/repos/community-staging-x86_64/ haskell-random-fu/repos/community-staging-x86_64/PKGBUILD (from rev 1141164, haskell-random-fu/trunk/PKGBUILD) haskell-random-fu/repos/community-staging-x86_64/ghc9.patch (from rev 1141164, haskell-random-fu/trunk/ghc9.patch) ------------+ PKGBUILD | 46 + ghc9.patch | 1744 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 2 files changed, 1790 insertions(+) Copied: haskell-random-fu/repos/community-staging-x86_64/PKGBUILD (from rev 1141164, haskell-random-fu/trunk/PKGBUILD) =================================================================== --- community-staging-x86_64/PKGBUILD (rev 0) +++ community-staging-x86_64/PKGBUILD 2022-03-03 20:26:11 UTC (rev 1141165) @@ -0,0 +1,46 @@ +# Maintainer: Felix Yan <felixonm...@archlinux.org> + +_hkgname=random-fu +pkgname=haskell-random-fu +pkgver=0.2.7.7 +pkgrel=111 +pkgdesc="Random number generation" +url="https://github.com/mokus0/random-fu" +license=("custom:PublicDomain") +arch=('x86_64') +depends=('ghc-libs' 'haskell-erf' 'haskell-math-functions' 'haskell-monad-loops' 'haskell-random' + 'haskell-random-shuffle' 'haskell-random-source' 'haskell-rvar' 'haskell-syb' + 'haskell-vector') +makedepends=('ghc') +source=("https://hackage.haskell.org/packages/archive/$_hkgname/$pkgver/$_hkgname-$pkgver.tar.gz" + ghc9.patch) +sha256sums=('8466bcfb5290bdc30a571c91e1eb526c419ea9773bc118996778b516cfc665ca' + 'b96a87ecadea4d1897b3250b43445d22a56fef90ae12645d573e6c92456e921f') + +prepare() { + patch -d $_hkgname-$pkgver -p2 < ghc9.patch +} + +build() { + cd $_hkgname-$pkgver + + runhaskell Setup configure -O --enable-shared --enable-executable-dynamic --disable-library-vanilla \ + --prefix=/usr --docdir=/usr/share/doc/$pkgname --enable-tests \ + --dynlibdir=/usr/lib --libsubdir=\$compiler/site-local/\$pkgid --ghc-option=-fllvm \ + --ghc-option=-optl-Wl\,-z\,relro\,-z\,now \ + --ghc-option='-pie' + + runhaskell Setup build $MAKEFLAGS + runhaskell Setup register --gen-script + runhaskell Setup unregister --gen-script + sed -i -r -e "s|ghc-pkg.*update[^ ]* |&'--force' |" register.sh + sed -i -r -e "s|ghc-pkg.*unregister[^ ]* |&'--force' |" unregister.sh +} + +package() { + cd $_hkgname-$pkgver + + install -D -m744 register.sh "$pkgdir"/usr/share/haskell/register/$pkgname.sh + install -D -m744 unregister.sh "$pkgdir"/usr/share/haskell/unregister/$pkgname.sh + runhaskell Setup copy --destdir="$pkgdir" +} Copied: haskell-random-fu/repos/community-staging-x86_64/ghc9.patch (from rev 1141164, haskell-random-fu/trunk/ghc9.patch) =================================================================== --- community-staging-x86_64/ghc9.patch (rev 0) +++ community-staging-x86_64/ghc9.patch 2022-03-03 20:26:11 UTC (rev 1141165) @@ -0,0 +1,1744 @@ +From 268e66b778157e64f508d9d2018f8252034cc14d Mon Sep 17 00:00:00 2001 +From: Alexey Kuleshevich <ale...@kuleshevi.ch> +Date: Sat, 3 Apr 2021 23:20:22 +0300 +Subject: [PATCH 1/3] Remove trailing whitespaces and switch to newer lts + +--- + random-fu/src/Data/Random/Distribution.hs | 40 +++---- + .../src/Data/Random/Distribution/Bernoulli.hs | 10 +- + .../Data/Random/Distribution/Categorical.hs | 52 ++++----- + .../src/Data/Random/Distribution/Dirichlet.hs | 2 +- + random-fu/src/Data/Random/Distribution/F.hs | 1 - + .../src/Data/Random/Distribution/Gamma.hs | 13 ++- + .../Data/Random/Distribution/Multinomial.hs | 4 +- + .../src/Data/Random/Distribution/Normal.hs | 42 ++++---- + .../src/Data/Random/Distribution/Rayleigh.hs | 4 +- + .../Data/Random/Distribution/Triangular.hs | 4 +- + .../src/Data/Random/Distribution/Ziggurat.hs | 100 +++++++++--------- + random-fu/src/Data/Random/Internal/Find.hs | 16 +-- + random-fu/src/Data/Random/Internal/Fixed.hs | 4 +- + random-fu/src/Data/Random/Internal/TH.hs | 27 +++-- + random-fu/src/Data/Random/Lift.hs | 5 +- + random-fu/src/Data/Random/List.hs | 5 +- + random-fu/src/Data/Random/RVar.hs | 2 +- + random-fu/src/Data/Random/Sample.hs | 4 +- + rvar/src/Data/RVar.hs | 58 +++++----- + stack.yaml | 10 +- + tests/speed/Bench.hs | 16 +-- + tests/speed/speed-tests.cabal | 2 +- + 22 files changed, 210 insertions(+), 211 deletions(-) + +diff --git a/random-fu/src/Data/Random/Distribution.hs b/random-fu/src/Data/Random/Distribution.hs +index 15ece3c..0c460f3 100644 +--- a/random-fu/src/Data/Random/Distribution.hs ++++ b/random-fu/src/Data/Random/Distribution.hs +@@ -13,7 +13,7 @@ import Data.Random.RVar + -- > data Normal a + -- > = StdNormal + -- > | Normal a a +--- ++-- + -- Where the two parameters of the 'Normal' data constructor are the mean and + -- standard deviation of the random variable, respectively. To make use of + -- the 'Normal' type, one can convert it to an 'rvar' and manipulate it or +@@ -21,39 +21,39 @@ import Data.Random.RVar + -- + -- > x <- sample (rvar (Normal 10 2)) + -- > x <- sample (Normal 10 2) +--- ++-- + -- A 'Distribution' is typically more transparent than an 'RVar' +--- but less composable (precisely because of that transparency). There are ++-- but less composable (precisely because of that transparency). There are + -- several practical uses for types implementing 'Distribution': +--- +--- * Typically, a 'Distribution' will expose several parameters of a standard ++-- ++-- * Typically, a 'Distribution' will expose several parameters of a standard + -- mathematical model of a probability distribution, such as mean and std deviation for + -- the normal distribution. Thus, they can be manipulated analytically using + -- mathematical insights about the distributions they represent. For example, + -- a collection of bernoulli variables could be simplified into a (hopefully) smaller + -- collection of binomial variables. +--- ++-- + -- * Because they are generally just containers for parameters, they can be +--- easily serialized to persistent storage or read from user-supplied ++-- easily serialized to persistent storage or read from user-supplied + -- configurations (eg, initialization data for a simulation). +--- ++-- + -- * If a type additionally implements the 'CDF' subclass, which extends + -- 'Distribution' with a cumulative density function, an arbitrary random + -- variable 'x' can be tested against the distribution by testing + -- @fmap (cdf dist) x@ for uniformity. +--- ++-- + -- On the other hand, most 'Distribution's will not be closed under all the + -- same operations as 'RVar' (which, being a monad, has a fully turing-complete +--- internal computational model). The sum of two uniformly-distributed +--- variables, for example, is not uniformly distributed. To support general +--- composition, the 'Distribution' class defines a function 'rvar' to +--- construct the more-abstract and more-composable 'RVar' representation ++-- internal computational model). The sum of two uniformly-distributed ++-- variables, for example, is not uniformly distributed. To support general ++-- composition, the 'Distribution' class defines a function 'rvar' to ++-- construct the more-abstract and more-composable 'RVar' representation + -- of a random variable. + class Distribution d t where + -- |Return a random variable with this distribution. + rvar :: d t -> RVar t + rvar = rvarT +- ++ + -- |Return a random variable with the given distribution, pre-lifted to an arbitrary 'RVarT'. + -- Any arbitrary 'RVar' can also be converted to an 'RVarT m' for an arbitrary 'm', using + -- either 'lift' or 'sample'. +@@ -66,7 +66,7 @@ class Distribution d t => PDF d t where + pdf d = exp . logPdf d + logPdf :: d t -> t -> Double + logPdf d = log . pdf d +- ++ + + class Distribution d t => CDF d t where + -- |Return the cumulative distribution function of this distribution. +@@ -76,19 +76,19 @@ class Distribution d t => CDF d t where + -- + -- In the case where 't' is an instance of Ord, 'cdf' should correspond + -- to the CDF with respect to that order. +- -- ++ -- + -- In other cases, 'cdf' is only required to satisfy the following law: + -- @fmap (cdf d) (rvar d)@ + -- must be uniformly distributed over (0,1). Inclusion of either endpoint is optional, + -- though the preferred range is (0,1]. +- -- +- -- Note that this definition requires that 'cdf' for a product type +- -- should _not_ be a joint CDF as commonly defined, as that definition ++ -- ++ -- Note that this definition requires that 'cdf' for a product type ++ -- should _not_ be a joint CDF as commonly defined, as that definition + -- violates both conditions. + -- Instead, it should be a univariate CDF over the product type. That is, + -- it should represent the CDF with respect to the lexicographic order + -- of the product. +- -- ++ -- + -- The present specification is probably only really useful for testing + -- conformance of a variable to its target distribution, and I am open to + -- suggestions for more-useful specifications (especially with regard to +diff --git a/random-fu/src/Data/Random/Distribution/Bernoulli.hs b/random-fu/src/Data/Random/Distribution/Bernoulli.hs +index 446916a..1027fd8 100644 +--- a/random-fu/src/Data/Random/Distribution/Bernoulli.hs ++++ b/random-fu/src/Data/Random/Distribution/Bernoulli.hs +@@ -57,7 +57,7 @@ generalBernoulliCDF gte f t p x + + newtype Bernoulli b a = Bernoulli b + +-instance (Fractional b, Ord b, Distribution StdUniform b) ++instance (Fractional b, Ord b, Distribution StdUniform b) + => Distribution (Bernoulli b) Bool + where + rvarT (Bernoulli p) = boolBernoulli p +@@ -67,7 +67,7 @@ instance (Distribution (Bernoulli b) Bool, Real b) + cdf (Bernoulli p) = boolBernoulliCDF p + + $( replicateInstances ''Int integralTypes [d| +- instance Distribution (Bernoulli b) Bool ++ instance Distribution (Bernoulli b) Bool + => Distribution (Bernoulli b) Int + where + rvarT (Bernoulli p) = generalBernoulli 0 1 p +@@ -78,7 +78,7 @@ $( replicateInstances ''Int integralTypes [d| + |] ) + + $( replicateInstances ''Float realFloatTypes [d| +- instance Distribution (Bernoulli b) Bool ++ instance Distribution (Bernoulli b) Bool + => Distribution (Bernoulli b) Float + where + rvarT (Bernoulli p) = generalBernoulli 0 1 p +@@ -89,11 +89,11 @@ $( replicateInstances ''Float realFloatTypes [d| + |] ) + + instance (Distribution (Bernoulli b) Bool, Integral a) +- => Distribution (Bernoulli b) (Ratio a) ++ => Distribution (Bernoulli b) (Ratio a) + where + rvarT (Bernoulli p) = generalBernoulli 0 1 p + instance (CDF (Bernoulli b) Bool, Integral a) +- => CDF (Bernoulli b) (Ratio a) ++ => CDF (Bernoulli b) (Ratio a) + where + cdf (Bernoulli p) = generalBernoulliCDF (>=) 0 1 p + instance (Distribution (Bernoulli b) Bool, RealFloat a) +diff --git a/random-fu/src/Data/Random/Distribution/Categorical.hs b/random-fu/src/Data/Random/Distribution/Categorical.hs +index 10051d1..575a0a2 100644 +--- a/random-fu/src/Data/Random/Distribution/Categorical.hs ++++ b/random-fu/src/Data/Random/Distribution/Categorical.hs +@@ -37,7 +37,7 @@ import qualified Data.Vector.Mutable as MV + categorical :: (Num p, Distribution (Categorical p) a) => [(p,a)] -> RVar a + categorical = rvar . fromList + +--- |Construct a 'Categorical' random process from a list of probabilities ++-- |Construct a 'Categorical' random process from a list of probabilities + -- and categories, where the probabilities all sum to 1. + categoricalT :: (Num p, Distribution (Categorical p) a) => [(p,a)] -> RVarT m a + categoricalT = rvarT . fromList +@@ -47,7 +47,7 @@ categoricalT = rvarT . fromList + weightedCategorical :: (Fractional p, Eq p, Distribution (Categorical p) a) => [(p,a)] -> RVar a + weightedCategorical = rvar . fromWeightedList + +--- |Construct a 'Categorical' random process from a list of weights ++-- |Construct a 'Categorical' random process from a list of weights + -- and categories. The weights do /not/ have to sum to 1. + weightedCategoricalT :: (Fractional p, Eq p, Distribution (Categorical p) a) => [(p,a)] -> RVarT m a + weightedCategoricalT = rvarT . fromWeightedList +@@ -73,14 +73,14 @@ totalWeight (Categorical ds) + numEvents :: Categorical p a -> Int + numEvents (Categorical ds) = V.length ds + +--- |Construct a 'Categorical' distribution from a list of weighted categories, ++-- |Construct a 'Categorical' distribution from a list of weighted categories, + -- where the weights do not necessarily sum to 1. + fromWeightedList :: (Fractional p, Eq p) => [(p,a)] -> Categorical p a + fromWeightedList = normalizeCategoricalPs . fromList + + -- |Construct a 'Categorical' distribution from a list of observed outcomes. + -- Equivalent events will be grouped and counted, and the probabilities of each +--- event in the returned distribution will be proportional to the number of ++-- event in the returned distribution will be proportional to the number of + -- occurrences of that event. + fromObservations :: (Fractional p, Eq p, Ord a) => [a] -> Categorical p a + fromObservations = fromWeightedList . map (genericLength &&& head) . group . sort +@@ -91,10 +91,10 @@ fromObservations = fromWeightedList . map (genericLength &&& head) . group . sor + -- binary search. + + -- |Categorical distribution; a list of events with corresponding probabilities. +--- The sum of the probabilities must be 1, and no event should have a zero ++-- The sum of the probabilities must be 1, and no event should have a zero + -- or negative probability (at least, at time of sampling; very clever users +--- can do what they want with the numbers before sampling, just make sure +--- that if you're one of those clever ones, you at least eliminate negative ++-- can do what they want with the numbers before sampling, just make sure ++-- that if you're one of those clever ones, you at least eliminate negative + -- weights before sampling). + newtype Categorical p a = Categorical (V.Vector (p, a)) + deriving Eq +@@ -117,19 +117,19 @@ instance (Fractional p, Ord p, Distribution Uniform p) => Distribution (Categori + | n == 1 = return (snd (V.head ds)) + | otherwise = do + u <- uniformT 0 (fst (V.last ds)) +- ++ + let -- by construction, p is monotone; (i < j) ==> (p i <= p j) + p i = fst (ds V.! i) + x i = snd (ds V.! i) +- ++ + -- findEvent + -- =========== + -- invariants: (i <= j), (u <= p j), ((i == 0) || (p i < u)) + -- (the last one means 'i' does not increase unless it bounds 'p' below 'u') + -- variant: either i increases or j decreases. + -- upon termination: ∀ k. if (k < j) then (p k < u) else (u <= p k) +- -- (that is, the chosen event 'x j' is the first one whose +- -- associated cumulative probability 'p j' is greater than ++ -- (that is, the chosen event 'x j' is the first one whose ++ -- associated cumulative probability 'p j' is greater than + -- or equal to 'u') + findEvent i j + | j <= i = x j +@@ -139,7 +139,7 @@ instance (Fractional p, Ord p, Distribution Uniform p) => Distribution (Categori + -- midpoint rounding down + -- (i < j) ==> (m < j) + m = (i + j) `div` 2 +- ++ + return $! if u <= 0 then x 0 else findEvent 0 (n-1) + where n = V.length ds + +@@ -156,22 +156,22 @@ instance Traversable (Categorical p) where + + instance Fractional p => Monad (Categorical p) where + return x = Categorical (V.singleton (1, x)) +- ++ + -- I'm not entirely sure whether this is a valid form of failure; see next + -- set of comments. + #if __GLASGOW_HASKELL__ < 808 + fail _ = Categorical V.empty + #endif +- ++ + -- Should the normalize step be included here, or should normalization + -- be assumed? It seems like there is (at least) 1 valid situation where +- -- non-normal results would arise: the distribution being modeled is +- -- "conditional" and some event arose that contradicted the assumed +- -- condition and thus was eliminated ('f' returned an empty or ++ -- non-normal results would arise: the distribution being modeled is ++ -- "conditional" and some event arose that contradicted the assumed ++ -- condition and thus was eliminated ('f' returned an empty or + -- zero-probability consequent, possibly by 'fail'ing). +- -- ++ -- + -- It seems reasonable to continue in such circumstances, but should there +- -- be any renormalization? If so, does it make a difference when that ++ -- be any renormalization? If so, does it make a difference when that + -- renormalization is done? I'm pretty sure it does, actually. So, the + -- normalization will be omitted here for now, as it's easier for the + -- user (who really better know what they mean if they're returning +@@ -180,7 +180,7 @@ instance Fractional p => Monad (Categorical p) where + xs >>= f = {- normalizeCategoricalPs . -} fromList $ do + (p, x) <- toList xs + (q, y) <- toList (f x) +- ++ + return (p * q, y) + + instance Fractional p => Applicative (Categorical p) where +@@ -191,7 +191,7 @@ instance Fractional p => Applicative (Categorical p) where + mapCategoricalPs :: (Num p, Num q) => (p -> q) -> Categorical p e -> Categorical q e + mapCategoricalPs f = fromList . map (first f) . toList + +--- |Adjust all the weights of a categorical distribution so that they ++-- |Adjust all the weights of a categorical distribution so that they + -- sum to unity and remove all events whose probability is zero. + normalizeCategoricalPs :: (Fractional p, Eq p) => Categorical p e -> Categorical p e + normalizeCategoricalPs orig@(Categorical ds) +@@ -200,13 +200,13 @@ normalizeCategoricalPs orig@(Categorical ds) + lastP <- newSTRef 0 + nDups <- newSTRef 0 + normalized <- V.thaw ds +- ++ + let n = V.length ds + skip = modifySTRef' nDups (1+) + save i p x = do + d <- readSTRef nDups + MV.write normalized (i-d) (p, x) +- ++ + sequence_ + [ do + let (p,x) = ds V.! i +@@ -218,7 +218,7 @@ normalizeCategoricalPs orig@(Categorical ds) + writeSTRef lastP $! p + | i <- [0..n-1] + ] +- ++ + -- force last element to 1 + d <- readSTRef nDups + let n' = n-d +@@ -242,14 +242,14 @@ modifySTRef' x f = do + -- event will have a probability equal to the sum of all the originals). + collectEvents :: (Ord e, Num p, Ord p) => Categorical p e -> Categorical p e + collectEvents = collectEventsBy compare ((sum *** head) . unzip) +- ++ + -- |Simplify a categorical distribution by combining equivalent events (the new + -- event will have a weight equal to the sum of all the originals). + -- The comparator function is used to identify events to combine. Once chosen, + -- the events and their weights are combined by the provided probability and + -- event aggregation function. + collectEventsBy :: Num p => (e -> e -> Ordering) -> ([(p,e)] -> (p,e))-> Categorical p e -> Categorical p e +-collectEventsBy compareE combine = ++collectEventsBy compareE combine = + fromList . map combine . groupEvents . sortEvents . toList + where + groupEvents = groupBy (\x y -> snd x `compareE` snd y == EQ) +diff --git a/random-fu/src/Data/Random/Distribution/Dirichlet.hs b/random-fu/src/Data/Random/Distribution/Dirichlet.hs +index 3388ff8..7dbc4cc 100644 +--- a/random-fu/src/Data/Random/Distribution/Dirichlet.hs ++++ b/random-fu/src/Data/Random/Distribution/Dirichlet.hs +@@ -18,7 +18,7 @@ fractionalDirichlet [_] = return [1] + fractionalDirichlet as = do + xs <- sequence [gammaT a 1 | a <- as] + let total = foldl1' (+) xs +- ++ + return (map (* recip total) xs) + + dirichlet :: Distribution Dirichlet [a] => [a] -> RVar [a] +diff --git a/random-fu/src/Data/Random/Distribution/Gamma.hs b/random-fu/src/Data/Random/Distribution/Gamma.hs +index ef89a44..bd27050 100644 +--- a/random-fu/src/Data/Random/Distribution/Gamma.hs ++++ b/random-fu/src/Data/Random/Distribution/Gamma.hs +@@ -9,10 +9,10 @@ + module Data.Random.Distribution.Gamma + ( Gamma(..) + , gamma, gammaT +- ++ + , Erlang(..) + , erlang, erlangT +- ++ + , mtGamma + ) where + +@@ -31,10 +31,10 @@ import Numeric.SpecFunctions + {-# SPECIALIZE mtGamma :: Float -> Float -> RVarT m Float #-} + mtGamma + :: (Floating a, Ord a, +- Distribution StdUniform a, ++ Distribution StdUniform a, + Distribution Normal a) + => a -> a -> RVarT m a +-mtGamma a b ++mtGamma a b + | a < 1 = do + u <- stdUniformT + mtGamma (1+a) $! (b * u ** recip a) +@@ -42,11 +42,11 @@ mtGamma a b + where + !d = a - fromRational (1%3) + !c = recip (sqrt (9*d)) +- ++ + go = do + x <- stdNormalT + let !v = 1 + c*x +- ++ + if v <= 0 + then go + else do +@@ -89,4 +89,3 @@ instance (Integral a, Floating b, Ord b, Distribution Normal b, Distribution Std + + instance (Integral a, Real b, Distribution (Erlang a) b) => CDF (Erlang a) b where + cdf (Erlang a) x = incompleteGamma (fromIntegral a) (realToFrac x) +- +diff --git a/random-fu/src/Data/Random/Distribution/Multinomial.hs b/random-fu/src/Data/Random/Distribution/Multinomial.hs +index 6e8971a..af4c9fa 100644 +--- a/random-fu/src/Data/Random/Distribution/Multinomial.hs ++++ b/random-fu/src/Data/Random/Distribution/Multinomial.hs +@@ -24,9 +24,9 @@ instance (Num a, Eq a, Fractional p, Distribution (Binomial p) a) => Distributio + go n (p:ps) (psum:psums) f = do + x <- binomialT n (p / psum) + go (n-x) ps psums (f . (x:)) +- ++ + go _ _ _ _ = error "rvar/Multinomial: programming error! this case should be impossible!" +- ++ + -- less wasteful version of (map sum . tails) + tailSums [] = [0] + tailSums (x:xs) = case tailSums xs of +diff --git a/random-fu/src/Data/Random/Distribution/Normal.hs b/random-fu/src/Data/Random/Distribution/Normal.hs +index 960414a..90b9e11 100644 +--- a/random-fu/src/Data/Random/Distribution/Normal.hs ++++ b/random-fu/src/Data/Random/Distribution/Normal.hs +@@ -1,6 +1,6 @@ + {-# LANGUAGE + MultiParamTypeClasses, FlexibleInstances, FlexibleContexts, +- UndecidableInstances, ForeignFunctionInterface, BangPatterns, ++ UndecidableInstances, ForeignFunctionInterface, BangPatterns, + RankNTypes + #-} + +@@ -10,13 +10,13 @@ module Data.Random.Distribution.Normal + ( Normal(..) + , normal, normalT + , stdNormal, stdNormalT +- ++ + , doubleStdNormal + , floatStdNormal + , realFloatStdNormal +- ++ + , normalTail +- ++ + , normalPair + , boxMullerNormalPair + , knuthPolarNormalPair +@@ -44,7 +44,7 @@ normalPair = boxMullerNormalPair + + -- |A random variable that produces a pair of independent + -- normally-distributed values, computed using the Box-Muller method. +--- This algorithm is slightly slower than Knuth's method but using a ++-- This algorithm is slightly slower than Knuth's method but using a + -- constant amount of entropy (Knuth's method is a rejection method). + -- It is also slightly more general (Knuth's method require an 'Ord' + -- instance). +@@ -55,27 +55,27 @@ boxMullerNormalPair = do + t <- stdUniform + let r = sqrt (-2 * log u) + theta = (2 * pi) * t +- ++ + x = r * cos theta + y = r * sin theta + return (x,y) + + -- |A random variable that produces a pair of independent + -- normally-distributed values, computed using Knuth's polar method. +--- Slightly faster than 'boxMullerNormalPair' when it accepts on the ++-- Slightly faster than 'boxMullerNormalPair' when it accepts on the + -- first try, but does not always do so. + {-# INLINE knuthPolarNormalPair #-} + knuthPolarNormalPair :: (Floating a, Ord a, Distribution Uniform a) => RVar (a,a) + knuthPolarNormalPair = do + v1 <- uniform (-1) 1 + v2 <- uniform (-1) 1 +- ++ + let s = v1*v1 + v2*v2 + if s >= 1 + then knuthPolarNormalPair + else return $ if s == 0 + then (0,0) +- else let scale = sqrt (-2 * log s / s) ++ else let scale = sqrt (-2 * log s / s) + in (v1 * scale, v2 * scale) + + -- |Draw from the tail of a normal distribution (the region beyond the provided value) +@@ -110,7 +110,7 @@ normalFInv :: Floating a => a -> a + normalFInv y = sqrt ((-2) * log y) + -- | integral of 'normalF' + normalFInt :: (Floating a, Erf a, Ord a) => a -> a +-normalFInt x ++normalFInt x + | x <= 0 = 0 + | otherwise = normalFVol * erf (x * sqrt 0.5) + -- | volume of 'normalF' +@@ -120,8 +120,8 @@ normalFVol = sqrt (0.5 * pi) + -- |A random variable sampling from the standard normal distribution + -- over any 'RealFloat' type (subject to the rest of the constraints - + -- it builds and uses a 'Ziggurat' internally, which requires the 'Erf' +--- class). +--- ++-- class). ++-- + -- Because it computes a 'Ziggurat', it is very expensive to use for + -- just one evaluation, or even for multiple evaluations if not used and + -- reused monomorphically (to enable the ziggurat table to be let-floated +@@ -135,10 +135,10 @@ normalFVol = sqrt (0.5 * pi) + -- @Distribution Normal@ instance declaration. + realFloatStdNormal :: (RealFloat a, Erf a, Distribution Uniform a) => RVarT m a + realFloatStdNormal = runZiggurat (normalZ p getIU `asTypeOf` (undefined :: Ziggurat V.Vector a)) +- where ++ where + p :: Int + p = 6 +- ++ + getIU :: (Num a, Distribution Uniform a) => RVarT m (Int, a) + getIU = do + i <- getRandomWord8 +@@ -159,12 +159,12 @@ doubleStdNormalV = 2.4567663515413507e-3 + + {-# NOINLINE doubleStdNormalZ #-} + doubleStdNormalZ :: Ziggurat UV.Vector Double +-doubleStdNormalZ = mkZiggurat_ True +- normalF normalFInv +- doubleStdNormalC doubleStdNormalR doubleStdNormalV ++doubleStdNormalZ = mkZiggurat_ True ++ normalF normalFInv ++ doubleStdNormalC doubleStdNormalR doubleStdNormalV + getIU + (normalTail doubleStdNormalR) +- where ++ where + getIU :: RVarT m (Int, Double) + getIU = do + !w <- getRandomWord64 +@@ -185,9 +185,9 @@ floatStdNormalV = 2.4567663515413507e-3 + + {-# NOINLINE floatStdNormalZ #-} + floatStdNormalZ :: Ziggurat UV.Vector Float +-floatStdNormalZ = mkZiggurat_ True +- normalF normalFInv +- floatStdNormalC floatStdNormalR floatStdNormalV ++floatStdNormalZ = mkZiggurat_ True ++ normalF normalFInv ++ floatStdNormalC floatStdNormalR floatStdNormalV + getIU + (normalTail floatStdNormalR) + where +diff --git a/random-fu/src/Data/Random/Distribution/Rayleigh.hs b/random-fu/src/Data/Random/Distribution/Rayleigh.hs +index c3d16a5..94ab61f 100644 +--- a/random-fu/src/Data/Random/Distribution/Rayleigh.hs ++++ b/random-fu/src/Data/Random/Distribution/Rayleigh.hs +@@ -1,5 +1,5 @@ + {-# LANGUAGE +- MultiParamTypeClasses, ++ MultiParamTypeClasses, + FlexibleInstances, FlexibleContexts, + UndecidableInstances + #-} +@@ -19,7 +19,7 @@ floatingRayleigh s = do + + -- |The rayleigh distribution with a specified mode (\"sigma\") parameter. + -- Its mean will be @sigma*sqrt(pi/2)@ and its variance will be @sigma^2*(4-pi)/2@ +--- ++-- + -- (therefore if you want one with a particular mean @m@, @sigma@ should be @m*sqrt(2/pi)@) + newtype Rayleigh a = Rayleigh a + +diff --git a/random-fu/src/Data/Random/Distribution/Triangular.hs b/random-fu/src/Data/Random/Distribution/Triangular.hs +index 4653f39..272c5a7 100644 +--- a/random-fu/src/Data/Random/Distribution/Triangular.hs ++++ b/random-fu/src/Data/Random/Distribution/Triangular.hs +@@ -52,8 +52,8 @@ triangularCDF a b c x + = realToFrac (1 - (c - x)^(2 :: Int) / ((c - a) * (c - b))) + | otherwise + = 1 +- ++ + instance (RealFloat a, Ord a, Distribution StdUniform a) => Distribution Triangular a where + rvarT (Triangular a b c) = floatingTriangular a b c + instance (RealFrac a, Distribution Triangular a) => CDF Triangular a where +- cdf (Triangular a b c) = triangularCDF a b c +\ No newline at end of file ++ cdf (Triangular a b c) = triangularCDF a b c +diff --git a/random-fu/src/Data/Random/Distribution/Ziggurat.hs b/random-fu/src/Data/Random/Distribution/Ziggurat.hs +index ca0e3e9..3d680d6 100644 +--- a/random-fu/src/Data/Random/Distribution/Ziggurat.hs ++++ b/random-fu/src/Data/Random/Distribution/Ziggurat.hs +@@ -7,16 +7,16 @@ + + -- |A generic \"ziggurat algorithm\" implementation. Fairly rough right + -- now. +--- ++-- + -- There is a lot of room for improvement in 'findBin0' especially. + -- It needs a fair amount of cleanup and elimination of redundant + -- calculation, as well as either a justification for using the simple +--- 'findMinFrom' or a proper root-finding algorithm. +--- +--- It would also be nice to add (preferably by pulling in an +--- external package) support for numerical integration and +--- differentiation, so that tables can be derived from only a +--- PDF (if the end user is willing to take the performance and ++-- 'findMinFrom' or a proper root-finding algorithm. ++-- ++-- It would also be nice to add (preferably by pulling in an ++-- external package) support for numerical integration and ++-- differentiation, so that tables can be derived from only a ++-- PDF (if the end user is willing to take the performance and + -- accuracy hit for the convenience). + module Data.Random.Distribution.Ziggurat + ( Ziggurat(..) +@@ -48,10 +48,10 @@ import qualified Data.Vector.Unboxed as UV + data Ziggurat v t = Ziggurat { + -- |The X locations of each bin in the distribution. Bin 0 is the + -- 'infinite' one. +- -- ++ -- + -- In the case of bin 0, the value given is sort of magical - x[0] is +- -- defined to be V/f(R). It's not actually the location of any bin, +- -- but a value computed to make the algorithm more concise and slightly ++ -- defined to be V/f(R). It's not actually the location of any bin, ++ -- but a value computed to make the algorithm more concise and slightly + -- faster by not needing to specially-handle bin 0 quite as often. + -- If you really need to know why it works, see the 'runZiggurat' + -- source or \"the literature\" - it's a fairly standard setup. +@@ -64,8 +64,8 @@ data Ziggurat v t = Ziggurat { + -- + -- * a bin index, uniform over [0,c) :: Int (where @c@ is the + -- number of bins in the tables) +- -- +- -- * a uniformly distributed fractional value, from -1 to 1 ++ -- ++ -- * a uniformly distributed fractional value, from -1 to 1 + -- if not mirrored, from 0 to 1 otherwise. + -- + -- This is provided as a single 'RVar' because it can be implemented +@@ -74,21 +74,21 @@ data Ziggurat v t = Ziggurat { + -- a double (using 52 bits) and a bin number (using up to 12 bits), + -- for example. + zGetIU :: !(forall m. RVarT m (Int, t)), +- ++ + -- |The distribution for the final \"virtual\" bin + -- (the ziggurat algorithm does not handle distributions + -- that wander off to infinity, so another distribution is needed + -- to handle the last \"bin\" that stretches to infinity) + zTailDist :: (forall m. RVarT m t), +- ++ + -- |A copy of the uniform RVar generator for the base type, + -- so that @Distribution Uniform t@ is not needed when sampling + -- from a Ziggurat (makes it a bit more self-contained). + zUniform :: !(forall m. t -> t -> RVarT m t), +- ++ + -- |The (one-sided antitone) PDF, not necessarily normalized + zFunc :: !(t -> t), +- ++ + -- |A flag indicating whether the distribution should be + -- mirrored about the origin (the ziggurat algorithm in + -- its native form only samples from one-sided distributions. +@@ -113,7 +113,7 @@ runZiggurat !Ziggurat{..} = go + -- (or 0 to 1 if not mirroring the distribution). + -- Let X be U scaled to the size of the selected bin. + (!i,!u) <- zGetIU +- ++ + -- if the uniform value U falls in the area "clearly inside" the + -- bin, accept X immediately. + -- Otherwise, depending on the bin selected, use either the +@@ -123,7 +123,7 @@ runZiggurat !Ziggurat{..} = go + else if i == 0 + then sampleTail u + else sampleGreyArea i $! (u * zTable_xs ! i) +- ++ + -- when the sample falls in the "grey area" (the area between + -- the Y values of the selected bin and the bin after that one), + -- use an accept/reject method based on the target PDF. +@@ -133,7 +133,7 @@ runZiggurat !Ziggurat{..} = go + if v < zFunc (abs x) + then return $! x + else go +- ++ + -- if the selected bin is the "infinite" one, call it quits and + -- defer to the tail distribution (mirroring if needed to ensure + -- the result has the sign already selected by zGetIU) +@@ -143,28 +143,28 @@ runZiggurat !Ziggurat{..} = go + | otherwise = zTailDist + + +--- |Build the tables to implement the \"ziggurat algorithm\" devised by ++-- |Build the tables to implement the \"ziggurat algorithm\" devised by + -- Marsaglia & Tang, attempting to automatically compute the R and V + -- values. +--- ++-- + -- Arguments: +--- ++-- + -- * flag indicating whether to mirror the distribution +--- ++-- + -- * the (one-sided antitone) PDF, not necessarily normalized +--- ++-- + -- * the inverse of the PDF +--- ++-- + -- * the number of bins +--- ++-- + -- * R, the x value of the first bin +--- ++-- + -- * V, the volume of each bin +--- ++-- + -- * an RVar providing the 'zGetIU' random tuple +--- ++-- + -- * an RVar sampling from the tail (the region where x > R) +--- ++-- + {-# INLINE mkZiggurat_ #-} + {-# SPECIALIZE mkZiggurat_ :: Bool -> (Float -> Float) -> (Float -> Float) -> Int -> Float -> Float -> (forall m. RVarT m (Int, Float)) -> (forall m. RVarT m Float ) -> Ziggurat UV.Vector Float #-} + {-# SPECIALIZE mkZiggurat_ :: Bool -> (Double -> Double) -> (Double -> Double) -> Int -> Double -> Double -> (forall m. RVarT m (Int, Double)) -> (forall m. RVarT m Double) -> Ziggurat UV.Vector Double #-} +@@ -191,13 +191,13 @@ mkZiggurat_ m f fInv c r v getIU tailDist = Ziggurat + , zTailDist = tailDist + , zMirror = m + } +- where ++ where + xs = zigguratTable f fInv c r v + +--- |Build the tables to implement the \"ziggurat algorithm\" devised by ++-- |Build the tables to implement the \"ziggurat algorithm\" devised by + -- Marsaglia & Tang, attempting to automatically compute the R and V + -- values. +--- ++-- + -- Arguments are the same as for 'mkZigguratRec', with an additional + -- argument for the tail distribution as a function of the selected + -- R value. +@@ -213,15 +213,15 @@ mkZiggurat :: (RealFloat t, Vector v t, + -> (forall m. t -> RVarT m t) + -> Ziggurat v t + mkZiggurat m f fInv fInt fVol c getIU tailDist = +- mkZiggurat_ m f fInv c r v getIU (tailDist r) ++ mkZiggurat_ m f fInv c r v getIU (tailDist r) + where + (r,v) = findBin0 c f fInv fInt fVol + + -- |Build a lazy recursive ziggurat. Uses a lazily-constructed ziggurat + -- as its tail distribution (with another as its tail, ad nauseam). +--- ++-- + -- Arguments: +--- ++-- + -- * flag indicating whether to mirror the distribution + -- + -- * the (one-sided antitone) PDF, not necessarily normalized +@@ -254,7 +254,7 @@ mkZigguratRec m f fInv fInt fVol c getIU = z + fix g = g (fix g) + z = mkZiggurat m f fInv fInt fVol c getIU (fix (mkTail m f fInv fInt fVol c getIU z)) + +-mkTail :: ++mkTail :: + (RealFloat a, Vector v a, Distribution Uniform a) => + Bool + -> (a -> a) -> (a -> a) -> (a -> a) +@@ -269,15 +269,15 @@ mkTail m f fInv fInt fVol c getIU typeRep nextTail r = do + return (x + r * signum x) + where + fIntR = fInt r +- ++ + f' x | x < 0 = f r + | otherwise = f (x+r) + fInv' = subtract r . fInv + fInt' x | x < 0 = 0 + | otherwise = fInt (x+r) - fIntR +- ++ + fVol' = fVol - fIntR +- ++ + + zigguratTable :: (Fractional a, Vector v a, Ord a) => + (a -> a) -> (a -> a) -> Int -> a -> a -> v a +@@ -292,17 +292,17 @@ zigguratXs f fInv c r v = (xs, excess) + where + xs = Prelude.map x [0..c] -- sample c x + ys = Prelude.map f xs +- ++ + x 0 = v / f r + x 1 = r + x i | i == c = 0 + x i | i > 1 = next (i-1) + x _ = error "zigguratXs: programming error! this case should be impossible!" +- ++ + next i = let x_i = xs!!i + in if x_i <= 0 then -1 else fInv (ys!!i + (v / x_i)) +- +- excess = xs!!(c-1) * (f 0 - ys !! (c-1)) - v ++ ++ excess = xs!!(c-1) * (f 0 - ys !! (c-1)) - v + + + precomputeRatios :: (Vector v a, Fractional a) => v a -> v a +@@ -314,7 +314,7 @@ precomputeRatios zTable_xs = generate (c-1) $ \i -> zTable_xs!(i+1) / zTable_xs! + -- Search the distribution for an appropriate R and V. + -- + -- Arguments: +--- ++-- + -- * Number of bins + -- + -- * target function (one-sided antitone PDF, not necessarily normalized) +@@ -326,20 +326,20 @@ precomputeRatios zTable_xs = generate (c-1) $ \i -> zTable_xs!(i+1) / zTable_xs! + -- * estimate of total volume under function (integral from 0 to infinity) + -- + -- Result: (R,V) +-findBin0 :: (RealFloat b) => ++findBin0 :: (RealFloat b) => + Int -> (b -> b) -> (b -> b) -> (b -> b) -> b -> (b, b) + findBin0 cInt f fInv fInt fVol = (rMin,v rMin) + where + c = fromIntegral cInt + v r = r * f r + fVol - fInt r +- ++ + -- initial R guess: + r0 = findMin (\r -> v r <= fVol / c) + -- find a better R: +- rMin = findMinFrom r0 1 $ \r -> +- let e = exc r ++ rMin = findMinFrom r0 1 $ \r -> ++ let e = exc r + in e >= 0 && not (isNaN e) +- ++ + exc x = zigguratExcess f fInv cInt x (v x) + + instance (Num t, Ord t, Vector v t) => Distribution (Ziggurat v) t where +diff --git a/random-fu/src/Data/Random/Internal/Find.hs b/random-fu/src/Data/Random/Internal/Find.hs +index 2c61f0e..c14c576 100644 +--- a/random-fu/src/Data/Random/Internal/Find.hs ++++ b/random-fu/src/Data/Random/Internal/Find.hs +@@ -19,7 +19,7 @@ findMin = findMinFrom 0 1 + -- specified point with the specified stepsize, performs an exponential + -- search out from there until it finds an interval bracketing the + -- change-point of the predicate, and then performs a bisection search +--- to isolate the change point. Note that infinitely-divisible domains ++-- to isolate the change point. Note that infinitely-divisible domains + -- such as 'Rational' cannot be searched by this function because it does + -- not terminate until it reaches a point where further subdivision of the + -- interval has no effect. +@@ -33,31 +33,31 @@ findMinFrom z0 step1 p + -- a feasible answer + fixZero 0 = 0 + fixZero z = z +- ++ + -- preconditions: + -- not (p l) + -- 0 <= l < x +- ascend l x ++ ascend l x + | p x = bisect l x + | otherwise = ascend x $! 2*x-z0 +- ++ + -- preconditions: + -- p h + -- x < h <= 0 +- descend x h ++ descend x h + | p x = (descend $! 2*x-z0) x + | otherwise = bisect x h +- ++ + -- preconditions: + -- not (p l) + -- p h + -- l <= h +- bisect l h ++ bisect l h + | l /< h = h + | l /< mid || mid /< h + = if p mid then mid else h + | p mid = bisect l mid + | otherwise = bisect mid h +- where ++ where + a /< b = not (a < b) + mid = (l+h)*0.5 +diff --git a/random-fu/src/Data/Random/Internal/Fixed.hs b/random-fu/src/Data/Random/Internal/Fixed.hs +index 758dca4..5180203 100644 +--- a/random-fu/src/Data/Random/Internal/Fixed.hs ++++ b/random-fu/src/Data/Random/Internal/Fixed.hs +@@ -35,10 +35,10 @@ resolutionOf2 x = resolution (res x) + -- |The 'Fixed' type doesn't expose its constructors, but I need a way to + -- convert them to and from their raw representation in order to sample + -- them. As long as 'Fixed' is a newtype wrapping 'Integer', 'mkFixed' and +--- 'unMkFixed' as defined here will work. Both are implemented using ++-- 'unMkFixed' as defined here will work. Both are implemented using + -- 'unsafeCoerce'. + mkFixed :: Integer -> Fixed r + mkFixed = unsafeCoerce + + unMkFixed :: Fixed r -> Integer +-unMkFixed = unsafeCoerce +\ No newline at end of file ++unMkFixed = unsafeCoerce +diff --git a/random-fu/src/Data/Random/Internal/TH.hs b/random-fu/src/Data/Random/Internal/TH.hs +index 7f28658..500b75b 100644 +--- a/random-fu/src/Data/Random/Internal/TH.hs ++++ b/random-fu/src/Data/Random/Internal/TH.hs +@@ -6,12 +6,12 @@ + -- to cover large numbers of types. I'm doing that rather than using + -- class contexts because most Distribution instances need to cover + -- multiple classes (such as Enum, Integral and Fractional) and that +--- can't be done easily because of overlap. +--- +--- I experimented a bit with a convoluted type-level classification +--- scheme, but I think this is simpler and easier to understand. It +--- makes the haddock docs more cluttered because of the combinatorial +--- explosion of instances, but overall I think it's just more sane than ++-- can't be done easily because of overlap. ++-- ++-- I experimented a bit with a convoluted type-level classification ++-- scheme, but I think this is simpler and easier to understand. It ++-- makes the haddock docs more cluttered because of the combinatorial ++-- explosion of instances, but overall I think it's just more sane than + -- anything else I've come up with yet. + module Data.Random.Internal.TH + ( replicateInstances +@@ -27,7 +27,7 @@ import Control.Monad + + -- |Names of standard 'Integral' types + integralTypes :: [Name] +-integralTypes = ++integralTypes = + [ ''Integer + , ''Int, ''Int8, ''Int16, ''Int32, ''Int64 + , ''Word, ''Word8, ''Word16, ''Word32, ''Word64 +@@ -53,17 +53,17 @@ replaceName x y z + -- 'Dec's in @decls@ and substitute every instance of the 'Name' @standin@ with + -- each 'Name' in @types@, producing one copy of the 'Dec's in @decls@ for every + -- 'Name' in @types@. +--- ++-- + -- For example, 'Data.Random.Distribution.Uniform' has the following bit of TH code: +--- ++-- + -- @ $( replicateInstances ''Int integralTypes [d| @ +--- ++-- + -- @ instance Distribution Uniform Int where rvar (Uniform a b) = integralUniform a b @ +--- ++-- + -- @ instance CDF Uniform Int where cdf (Uniform a b) = integralUniformCDF a b @ +--- ++-- + -- @ |]) @ +--- ++-- + -- This code takes those 2 instance declarations and creates identical ones for + -- every type named in 'integralTypes'. + replicateInstances :: (Monad m, Data t) => Name -> [Name] -> m [t] -> m [t] +@@ -76,4 +76,3 @@ replicateInstances standin types getDecls = liftM concat $ sequence + ] + | t <- types + ] +- +diff --git a/random-fu/src/Data/Random/Lift.hs b/random-fu/src/Data/Random/Lift.hs +index f148cb1..658ac72 100644 +--- a/random-fu/src/Data/Random/Lift.hs ++++ b/random-fu/src/Data/Random/Lift.hs +@@ -19,10 +19,10 @@ import qualified Control.Monad.Identity as MTL + -- For instances where 'm' and 'n' have 'return'/'pure' defined, + -- these instances must satisfy + -- @lift (return x) == return x@. +--- ++-- + -- This form of 'lift' has an extremely general type and is used primarily to + -- support 'sample'. Its excessive generality is the main reason it's not +--- exported from "Data.Random". 'RVarT' is, however, an instance of ++-- exported from "Data.Random". 'RVarT' is, however, an instance of + -- 'T.MonadTrans', which in most cases is the preferred way + -- to do the lifting. + class Lift m n where +@@ -67,4 +67,3 @@ instance T.MonadTrans t => Lift MTL.Identity (t MTL.Identity) where + lift = T.lift + + #endif +- +diff --git a/random-fu/src/Data/Random/List.hs b/random-fu/src/Data/Random/List.hs +index 2398e9c..1770fac 100644 +--- a/random-fu/src/Data/Random/List.hs ++++ b/random-fu/src/Data/Random/List.hs +@@ -28,11 +28,11 @@ shuffleT :: [a] -> RVarT m [a] + shuffleT [] = return [] + shuffleT xs = do + is <- zipWithM (\_ i -> uniformT 0 i) (tail xs) [1..] +- ++ + return (SRS.shuffle xs (reverse is)) + + -- | A random variable that shuffles a list of a known length (or a list +--- prefix of the specified length). Useful for shuffling large lists when ++-- prefix of the specified length). Useful for shuffling large lists when + -- the length is known in advance. Avoids needing to traverse the list to + -- discover its length. Each ordering has equal probability. + shuffleN :: Int -> [a] -> RVar [a] +@@ -53,4 +53,3 @@ shuffleNofMT n m xs + is <- sequence [uniformT 0 i | i <- take n [m-1, m-2 ..1]] + return (take n $ SRS.shuffle (take m xs) is) + shuffleNofMT _ _ _ = error "shuffleNofMT: negative length specified" +- +diff --git a/random-fu/src/Data/Random/RVar.hs b/random-fu/src/Data/Random/RVar.hs +index 9ad0492..1e69672 100644 +--- a/random-fu/src/Data/Random/RVar.hs ++++ b/random-fu/src/Data/Random/RVar.hs +@@ -8,7 +8,7 @@ import Data.Random.Lift + import Data.Random.Internal.Source + import Data.RVar hiding (runRVarT) + +--- |Like 'runRVarTWith', but using an implicit lifting (provided by the ++-- |Like 'runRVarTWith', but using an implicit lifting (provided by the + -- 'Lift' class) + runRVarT :: (Lift n m, RandomSource m s) => RVarT n a -> s -> m a + runRVarT = runRVarTWith lift +diff --git a/random-fu/src/Data/Random/Sample.hs b/random-fu/src/Data/Random/Sample.hs +index 31069db..c1c730c 100644 +--- a/random-fu/src/Data/Random/Sample.hs ++++ b/random-fu/src/Data/Random/Sample.hs +@@ -1,6 +1,6 @@ + {-# LANGUAGE + MultiParamTypeClasses, +- FlexibleInstances, FlexibleContexts, ++ FlexibleInstances, FlexibleContexts, + IncoherentInstances + #-} + +@@ -8,7 +8,7 @@ + + module Data.Random.Sample where + +-import Control.Monad.State ++import Control.Monad.State + import Data.Random.Distribution + import Data.Random.Lift + import Data.Random.RVar +-- +2.32.0 + + +From 7583073ad112dee683bae892018b0e87a9caa6d1 Mon Sep 17 00:00:00 2001 +From: funketh <theodor.k.fu...@gmail.com> +Date: Thu, 6 May 2021 19:14:31 +0200 +Subject: [PATCH 2/3] fix GHC 9 support by manually expanding TH + +--- + random-fu/random-fu.cabal | 1 - + .../src/Data/Random/Distribution/Bernoulli.hs | 78 +++++++---- + .../src/Data/Random/Distribution/Beta.hs | 13 +- + .../src/Data/Random/Distribution/Binomial.hs | 125 +++++++++++++----- + .../Data/Random/Distribution/Categorical.hs | 2 - + .../src/Data/Random/Distribution/Poisson.hs | 105 +++++++++++---- + .../src/Data/Random/Distribution/Uniform.hs | 37 ++++-- + random-fu/src/Data/Random/Internal/TH.hs | 78 ----------- + 8 files changed, 267 insertions(+), 172 deletions(-) + delete mode 100644 random-fu/src/Data/Random/Internal/TH.hs + +diff --git a/random-fu/random-fu.cabal b/random-fu/random-fu.cabal +index e7e3db9..e76e464 100644 +--- a/random-fu/random-fu.cabal ++++ b/random-fu/random-fu.cabal +@@ -72,7 +72,6 @@ Library + Data.Random.Distribution.Ziggurat + Data.Random.Internal.Find + Data.Random.Internal.Fixed +- Data.Random.Internal.TH + Data.Random.Lift + Data.Random.List + Data.Random.RVar +diff --git a/random-fu/src/Data/Random/Distribution/Bernoulli.hs b/random-fu/src/Data/Random/Distribution/Bernoulli.hs +index 1027fd8..c6a3c79 100644 +--- a/random-fu/src/Data/Random/Distribution/Bernoulli.hs ++++ b/random-fu/src/Data/Random/Distribution/Bernoulli.hs +@@ -9,14 +9,14 @@ + + module Data.Random.Distribution.Bernoulli where + +-import Data.Random.Internal.TH +- + import Data.Random.RVar + import Data.Random.Distribution + import Data.Random.Distribution.Uniform + + import Data.Ratio + import Data.Complex ++import Data.Int ++import Data.Word + + -- |Generate a Bernoulli variate with the given probability. For @Bool@ results, + -- @bernoulli p@ will return True (p*100)% of the time and False otherwise. +@@ -66,27 +66,59 @@ instance (Distribution (Bernoulli b) Bool, Real b) + where + cdf (Bernoulli p) = boolBernoulliCDF p + +-$( replicateInstances ''Int integralTypes [d| +- instance Distribution (Bernoulli b) Bool +- => Distribution (Bernoulli b) Int +- where +- rvarT (Bernoulli p) = generalBernoulli 0 1 p +- instance CDF (Bernoulli b) Bool +- => CDF (Bernoulli b) Int +- where +- cdf (Bernoulli p) = generalBernoulliCDF (>=) 0 1 p +- |] ) +- +-$( replicateInstances ''Float realFloatTypes [d| +- instance Distribution (Bernoulli b) Bool +- => Distribution (Bernoulli b) Float +- where +- rvarT (Bernoulli p) = generalBernoulli 0 1 p +- instance CDF (Bernoulli b) Bool +- => CDF (Bernoulli b) Float +- where +- cdf (Bernoulli p) = generalBernoulliCDF (>=) 0 1 p +- |] ) ++instance Distribution (Bernoulli b) Bool => Distribution (Bernoulli b) Integer where ++ rvarT (Bernoulli p) = generalBernoulli 0 1 p ++instance CDF (Bernoulli b) Bool => CDF (Bernoulli b) Integer where ++ cdf (Bernoulli p) = generalBernoulliCDF (>=) 0 1 p ++instance Distribution (Bernoulli b) Bool => Distribution (Bernoulli b) Int where ++ rvarT (Bernoulli p) = generalBernoulli 0 1 p ++instance CDF (Bernoulli b) Bool => CDF (Bernoulli b) Int where ++ cdf (Bernoulli p) = generalBernoulliCDF (>=) 0 1 p ++instance Distribution (Bernoulli b) Bool => Distribution (Bernoulli b) Int8 where ++ rvarT (Bernoulli p) = generalBernoulli 0 1 p ++instance CDF (Bernoulli b) Bool => CDF (Bernoulli b) Int8 where ++ cdf (Bernoulli p) = generalBernoulliCDF (>=) 0 1 p ++instance Distribution (Bernoulli b) Bool => Distribution (Bernoulli b) Int16 where ++ rvarT (Bernoulli p) = generalBernoulli 0 1 p ++instance CDF (Bernoulli b) Bool => CDF (Bernoulli b) Int16 where ++ cdf (Bernoulli p) = generalBernoulliCDF (>=) 0 1 p ++instance Distribution (Bernoulli b) Bool => Distribution (Bernoulli b) Int32 where ++ rvarT (Bernoulli p) = generalBernoulli 0 1 p ++instance CDF (Bernoulli b) Bool => CDF (Bernoulli b) Int32 where ++ cdf (Bernoulli p) = generalBernoulliCDF (>=) 0 1 p ++instance Distribution (Bernoulli b) Bool => Distribution (Bernoulli b) Int64 where ++ rvarT (Bernoulli p) = generalBernoulli 0 1 p ++instance CDF (Bernoulli b) Bool => CDF (Bernoulli b) Int64 where ++ cdf (Bernoulli p) = generalBernoulliCDF (>=) 0 1 p ++instance Distribution (Bernoulli b) Bool => Distribution (Bernoulli b) Word where ++ rvarT (Bernoulli p) = generalBernoulli 0 1 p ++instance CDF (Bernoulli b) Bool => CDF (Bernoulli b) Word where ++ cdf (Bernoulli p) = generalBernoulliCDF (>=) 0 1 p ++instance Distribution (Bernoulli b) Bool => Distribution (Bernoulli b) Word8 where ++ rvarT (Bernoulli p) = generalBernoulli 0 1 p ++instance CDF (Bernoulli b) Bool => CDF (Bernoulli b) Word8 where ++ cdf (Bernoulli p) = generalBernoulliCDF (>=) 0 1 p ++instance Distribution (Bernoulli b) Bool => Distribution (Bernoulli b) Word16 where ++ rvarT (Bernoulli p) = generalBernoulli 0 1 p ++instance CDF (Bernoulli b) Bool => CDF (Bernoulli b) Word16 where ++ cdf (Bernoulli p) = generalBernoulliCDF (>=) 0 1 p ++instance Distribution (Bernoulli b) Bool => Distribution (Bernoulli b) Word32 where ++ rvarT (Bernoulli p) = generalBernoulli 0 1 p ++instance CDF (Bernoulli b) Bool => CDF (Bernoulli b) Word32 where ++ cdf (Bernoulli p) = generalBernoulliCDF (>=) 0 1 p ++instance Distribution (Bernoulli b) Bool => Distribution (Bernoulli b) Word64 where ++ rvarT (Bernoulli p) = generalBernoulli 0 1 p ++instance CDF (Bernoulli b) Bool => CDF (Bernoulli b) Word64 where ++ cdf (Bernoulli p) = generalBernoulliCDF (>=) 0 1 p ++ ++instance Distribution (Bernoulli b) Bool => Distribution (Bernoulli b) Float where ++ rvarT (Bernoulli p) = generalBernoulli 0 1 p ++instance CDF (Bernoulli b) Bool => CDF (Bernoulli b) Float where ++ cdf (Bernoulli p) = generalBernoulliCDF (>=) 0 1 p ++instance Distribution (Bernoulli b) Bool => Distribution (Bernoulli b) Double where ++ rvarT (Bernoulli p) = generalBernoulli 0 1 p ++instance CDF (Bernoulli b) Bool => CDF (Bernoulli b) Double where ++ cdf (Bernoulli p) = generalBernoulliCDF (>=) 0 1 p + + instance (Distribution (Bernoulli b) Bool, Integral a) + => Distribution (Bernoulli b) (Ratio a) +diff --git a/random-fu/src/Data/Random/Distribution/Beta.hs b/random-fu/src/Data/Random/Distribution/Beta.hs +index 754f388..e07b2c0 100644 +--- a/random-fu/src/Data/Random/Distribution/Beta.hs ++++ b/random-fu/src/Data/Random/Distribution/Beta.hs +@@ -9,8 +9,6 @@ + + module Data.Random.Distribution.Beta where + +-import Data.Random.Internal.TH +- + import Data.Random.RVar + import Data.Random.Distribution + import Data.Random.Distribution.Gamma +@@ -57,7 +55,10 @@ instance PDF Beta Float + where + pdf (Beta a b) = realToFrac . exp . logBetaPdf (realToFrac a) (realToFrac b) . realToFrac + +-$( replicateInstances ''Float realFloatTypes [d| +- instance Distribution Beta Float +- where rvarT (Beta a b) = fractionalBeta a b +- |]) ++instance Distribution Beta Float ++ where ++ rvarT (Beta a b) = fractionalBeta a b ++ ++instance Distribution Beta Double ++ where ++ rvarT (Beta a b) = fractionalBeta a b +diff --git a/random-fu/src/Data/Random/Distribution/Binomial.hs b/random-fu/src/Data/Random/Distribution/Binomial.hs +index 802a6c8..8495a77 100644 +--- a/random-fu/src/Data/Random/Distribution/Binomial.hs ++++ b/random-fu/src/Data/Random/Distribution/Binomial.hs +@@ -9,13 +9,14 @@ + + module Data.Random.Distribution.Binomial where + +-import Data.Random.Internal.TH +- + import Data.Random.RVar + import Data.Random.Distribution + import Data.Random.Distribution.Beta + import Data.Random.Distribution.Uniform + ++import Data.Int ++import Data.Word ++ + import Numeric.SpecFunctions ( stirlingError ) + import Numeric.SpecFunctions.Extra ( bd0 ) + import Numeric ( log1p ) +@@ -131,31 +132,95 @@ binomialT t p = rvarT (Binomial t p) + + data Binomial b a = Binomial a b + +-$( replicateInstances ''Int integralTypes [d| +- instance ( Floating b, Ord b +- , Distribution Beta b +- , Distribution StdUniform b +- ) => Distribution (Binomial b) Int +- where +- rvarT (Binomial t p) = integralBinomial t p +- instance ( Real b , Distribution (Binomial b) Int +- ) => CDF (Binomial b) Int +- where cdf (Binomial t p) = integralBinomialCDF t p +- instance ( Real b , Distribution (Binomial b) Int +- ) => PDF (Binomial b) Int +- where pdf (Binomial t p) = integralBinomialPDF t p +- logPdf (Binomial t p) = integralBinomialLogPdf t p +- |]) +- +-$( replicateInstances ''Float realFloatTypes [d| +- instance Distribution (Binomial b) Integer +- => Distribution (Binomial b) Float +- where rvar (Binomial t p) = floatingBinomial t p +- instance CDF (Binomial b) Integer +- => CDF (Binomial b) Float +- where cdf (Binomial t p) = floatingBinomialCDF t p +- instance PDF (Binomial b) Integer +- => PDF (Binomial b) Float +- where pdf (Binomial t p) = floatingBinomialPDF t p +- logPdf (Binomial t p) = floatingBinomialLogPDF t p +- |]) ++instance (Floating b, Ord b, Distribution Beta b, Distribution StdUniform b) => Distribution (Binomial b) Integer where ++ rvarT (Binomial t p) = integralBinomial t p ++instance (Real b, Distribution (Binomial b) Integer) => CDF (Binomial b) Integer where ++ cdf (Binomial t p) = integralBinomialCDF t p ++instance (Real b, Distribution (Binomial b) Integer) => PDF (Binomial b) Integer where ++ pdf (Binomial t p) = integralBinomialPDF t p ++ logPdf (Binomial t p) = integralBinomialLogPdf t p ++instance (Floating b, Ord b, Distribution Beta b, Distribution StdUniform b) => Distribution (Binomial b) Int where ++ rvarT (Binomial t p) = integralBinomial t p ++instance (Real b, Distribution (Binomial b) Int) => CDF (Binomial b) Int where ++ cdf (Binomial t p) = integralBinomialCDF t p ++instance (Real b, Distribution (Binomial b) Int) => PDF (Binomial b) Int where ++ pdf (Binomial t p) = integralBinomialPDF t p ++ logPdf (Binomial t p) = integralBinomialLogPdf t p ++instance (Floating b, Ord b, Distribution Beta b, Distribution StdUniform b) => Distribution (Binomial b) Int8 where ++ rvarT (Binomial t p) = integralBinomial t p ++instance (Real b, Distribution (Binomial b) Int8) => CDF (Binomial b) Int8 where ++ cdf (Binomial t p) = integralBinomialCDF t p ++instance (Real b, Distribution (Binomial b) Int8) => PDF (Binomial b) Int8 where ++ pdf (Binomial t p) = integralBinomialPDF t p ++ logPdf (Binomial t p) = integralBinomialLogPdf t p ++instance (Floating b, Ord b, Distribution Beta b, Distribution StdUniform b) => Distribution (Binomial b) Int16 where ++ rvarT (Binomial t p) = integralBinomial t p ++instance (Real b, Distribution (Binomial b) Int16) => CDF (Binomial b) Int16 where ++ cdf (Binomial t p) = integralBinomialCDF t p ++instance (Real b, Distribution (Binomial b) Int16) => PDF (Binomial b) Int16 where ++ pdf (Binomial t p) = integralBinomialPDF t p ++ logPdf (Binomial t p) = integralBinomialLogPdf t p ++instance (Floating b, Ord b, Distribution Beta b, Distribution StdUniform b) => Distribution (Binomial b) Int32 where ++ rvarT (Binomial t p) = integralBinomial t p ++instance (Real b, Distribution (Binomial b) Int32) => CDF (Binomial b) Int32 where ++ cdf (Binomial t p) = integralBinomialCDF t p ++instance (Real b, Distribution (Binomial b) Int32) => PDF (Binomial b) Int32 where ++ pdf (Binomial t p) = integralBinomialPDF t p ++ logPdf (Binomial t p) = integralBinomialLogPdf t p ++instance (Floating b, Ord b, Distribution Beta b, Distribution StdUniform b) => Distribution (Binomial b) Int64 where ++ rvarT (Binomial t p) = integralBinomial t p ++instance (Real b, Distribution (Binomial b) Int64) => CDF (Binomial b) Int64 where ++ cdf (Binomial t p) = integralBinomialCDF t p ++instance (Real b, Distribution (Binomial b) Int64) => PDF (Binomial b) Int64 where ++ pdf (Binomial t p) = integralBinomialPDF t p ++ logPdf (Binomial t p) = integralBinomialLogPdf t p ++instance (Floating b, Ord b, Distribution Beta b, Distribution StdUniform b) => Distribution (Binomial b) Word where ++ rvarT (Binomial t p) = integralBinomial t p ++instance (Real b, Distribution (Binomial b) Word) => CDF (Binomial b) Word where ++ cdf (Binomial t p) = integralBinomialCDF t p ++instance (Real b, Distribution (Binomial b) Word) => PDF (Binomial b) Word where ++ pdf (Binomial t p) = integralBinomialPDF t p ++ logPdf (Binomial t p) = integralBinomialLogPdf t p ++instance (Floating b, Ord b, Distribution Beta b, Distribution StdUniform b) => Distribution (Binomial b) Word8 where ++ rvarT (Binomial t p) = integralBinomial t p ++instance (Real b, Distribution (Binomial b) Word8) => CDF (Binomial b) Word8 where ++ cdf (Binomial t p) = integralBinomialCDF t p ++instance (Real b, Distribution (Binomial b) Word8) => PDF (Binomial b) Word8 where ++ pdf (Binomial t p) = integralBinomialPDF t p ++ logPdf (Binomial t p) = integralBinomialLogPdf t p ++instance (Floating b, Ord b, Distribution Beta b, Distribution StdUniform b) => Distribution (Binomial b) Word16 where ++ rvarT (Binomial t p) = integralBinomial t p ++instance (Real b, Distribution (Binomial b) Word16) => CDF (Binomial b) Word16 where ++ cdf (Binomial t p) = integralBinomialCDF t p ++instance (Real b, Distribution (Binomial b) Word16) => PDF (Binomial b) Word16 where ++ pdf (Binomial t p) = integralBinomialPDF t p ++ logPdf (Binomial t p) = integralBinomialLogPdf t p ++instance (Floating b, Ord b, Distribution Beta b, Distribution StdUniform b) => Distribution (Binomial b) Word32 where ++ rvarT (Binomial t p) = integralBinomial t p ++instance (Real b, Distribution (Binomial b) Word32) => CDF (Binomial b) Word32 where ++ cdf (Binomial t p) = integralBinomialCDF t p ++instance (Real b, Distribution (Binomial b) Word32) => PDF (Binomial b) Word32 where ++ pdf (Binomial t p) = integralBinomialPDF t p ++ logPdf (Binomial t p) = integralBinomialLogPdf t p ++instance (Floating b, Ord b, Distribution Beta b, Distribution StdUniform b) => Distribution (Binomial b) Word64 where ++ rvarT (Binomial t p) = integralBinomial t p ++instance (Real b, Distribution (Binomial b) Word64) => CDF (Binomial b) Word64 where ++ cdf (Binomial t p) = integralBinomialCDF t p ++instance (Real b, Distribution (Binomial b) Word64) => PDF (Binomial b) Word64 where ++ pdf (Binomial t p) = integralBinomialPDF t p ++ logPdf (Binomial t p) = integralBinomialLogPdf t p ++ ++instance Distribution (Binomial b) Integer => Distribution (Binomial b) Float where ++ rvar (Binomial t p) = floatingBinomial t p ++instance CDF (Binomial b) Integer => CDF (Binomial b) Float where ++ cdf (Binomial t p) = floatingBinomialCDF t p ++instance PDF (Binomial b) Integer => PDF (Binomial b) Float where ++ pdf (Binomial t p) = floatingBinomialPDF t p ++ logPdf (Binomial t p) = floatingBinomialLogPDF t p ++instance Distribution (Binomial b) Integer => Distribution (Binomial b) Double where ++ rvar (Binomial t p) = floatingBinomial t p ++instance CDF (Binomial b) Integer => CDF (Binomial b) Double where ++ cdf (Binomial t p) = floatingBinomialCDF t p ++instance PDF (Binomial b) Integer => PDF (Binomial b) Double where ++ pdf (Binomial t p) = floatingBinomialPDF t p ++ logPdf (Binomial t p) = floatingBinomialLogPDF t p +diff --git a/random-fu/src/Data/Random/Distribution/Categorical.hs b/random-fu/src/Data/Random/Distribution/Categorical.hs +index 575a0a2..9980a4c 100644 +--- a/random-fu/src/Data/Random/Distribution/Categorical.hs ++++ b/random-fu/src/Data/Random/Distribution/Categorical.hs +@@ -23,9 +23,7 @@ import Data.Random.Distribution.Uniform + import Control.Arrow + import Control.Monad + import Control.Monad.ST +-import Data.Foldable (Foldable(foldMap)) + import Data.STRef +-import Data.Traversable (Traversable(traverse, sequenceA)) + + import Data.List + import Data.Function +diff --git a/random-fu/src/Data/Random/Distribution/Poisson.hs b/random-fu/src/Data/Random/Distribution/Poisson.hs +index 81bbec6..2613f49 100644 +--- a/random-fu/src/Data/Random/Distribution/Poisson.hs ++++ b/random-fu/src/Data/Random/Distribution/Poisson.hs +@@ -8,8 +8,6 @@ + + module Data.Random.Distribution.Poisson where + +-import Data.Random.Internal.TH +- + import Data.Random.RVar + import Data.Random.Distribution + import Data.Random.Distribution.Uniform +@@ -18,6 +16,9 @@ import Data.Random.Distribution.Binomial + + import Control.Monad + ++import Data.Int ++import Data.Word ++ + -- from Knuth, with interpretation help from gsl sources + integralPoisson :: (Integral a, RealFloat b, Distribution StdUniform b, Distribution (Erlang a) b, Distribution (Binomial b) a) => b -> RVarT m a + integralPoisson = psn 0 +@@ -87,24 +88,82 @@ poissonT mu = rvarT (Poisson mu) + + newtype Poisson b a = Poisson b + +-$( replicateInstances ''Int integralTypes [d| +- instance ( RealFloat b +- , Distribution StdUniform b +- , Distribution (Erlang Int) b +- , Distribution (Binomial b) Int +- ) => Distribution (Poisson b) Int where +- rvarT (Poisson mu) = integralPoisson mu +- instance (Real b, Distribution (Poisson b) Int) => CDF (Poisson b) Int where +- cdf (Poisson mu) = integralPoissonCDF mu +- instance (Real b, Distribution (Poisson b) Int) => PDF (Poisson b) Int where +- pdf (Poisson mu) = integralPoissonPDF mu +- |] ) +- +-$( replicateInstances ''Float realFloatTypes [d| +- instance (Distribution (Poisson b) Integer) => Distribution (Poisson b) Float where +- rvarT (Poisson mu) = fractionalPoisson mu +- instance (CDF (Poisson b) Integer) => CDF (Poisson b) Float where +- cdf (Poisson mu) = fractionalPoissonCDF mu +- instance (PDF (Poisson b) Integer) => PDF (Poisson b) Float where +- pdf (Poisson mu) = fractionalPoissonPDF mu +- |]) ++instance (RealFloat b, Distribution StdUniform b, Distribution (Erlang Integer) b, Distribution (Binomial b) Integer) => Distribution (Poisson b) Integer where ++ rvarT (Poisson mu) = integralPoisson mu ++instance (Real b, Distribution (Poisson b) Integer) => CDF (Poisson b) Integer where ++ cdf (Poisson mu) = integralPoissonCDF mu ++instance (Real b, Distribution (Poisson b) Integer) => PDF (Poisson b) Integer where ++ pdf (Poisson mu) = integralPoissonPDF mu ++instance (RealFloat b, Distribution StdUniform b, Distribution (Erlang Int) b, Distribution (Binomial b) Int) => Distribution (Poisson b) Int where ++ rvarT (Poisson mu) = integralPoisson mu ++instance (Real b, Distribution (Poisson b) Int) => CDF (Poisson b) Int where ++ cdf (Poisson mu) = integralPoissonCDF mu ++instance (Real b, Distribution (Poisson b) Int) => PDF (Poisson b) Int where ++ pdf (Poisson mu) = integralPoissonPDF mu ++instance (RealFloat b, Distribution StdUniform b, Distribution (Erlang Int8) b, Distribution (Binomial b) Int8) => Distribution (Poisson b) Int8 where ++ rvarT (Poisson mu) = integralPoisson mu ++instance (Real b, Distribution (Poisson b) Int8) => CDF (Poisson b) Int8 where ++ cdf (Poisson mu) = integralPoissonCDF mu ++instance (Real b, Distribution (Poisson b) Int8) => PDF (Poisson b) Int8 where ++ pdf (Poisson mu) = integralPoissonPDF mu ++instance (RealFloat b, Distribution StdUniform b, Distribution (Erlang Int16) b, Distribution (Binomial b) Int16) => Distribution (Poisson b) Int16 where ++ rvarT (Poisson mu) = integralPoisson mu ++instance (Real b, Distribution (Poisson b) Int16) => CDF (Poisson b) Int16 where ++ cdf (Poisson mu) = integralPoissonCDF mu ++instance (Real b, Distribution (Poisson b) Int16) => PDF (Poisson b) Int16 where ++ pdf (Poisson mu) = integralPoissonPDF mu ++instance (RealFloat b, Distribution StdUniform b, Distribution (Erlang Int32) b, Distribution (Binomial b) Int32) => Distribution (Poisson b) Int32 where ++ rvarT (Poisson mu) = integralPoisson mu ++instance (Real b, Distribution (Poisson b) Int32) => CDF (Poisson b) Int32 where ++ cdf (Poisson mu) = integralPoissonCDF mu ++instance (Real b, Distribution (Poisson b) Int32) => PDF (Poisson b) Int32 where ++ pdf (Poisson mu) = integralPoissonPDF mu ++instance (RealFloat b, Distribution StdUniform b, Distribution (Erlang Int64) b, Distribution (Binomial b) Int64) => Distribution (Poisson b) Int64 where ++ rvarT (Poisson mu) = integralPoisson mu ++instance (Real b, Distribution (Poisson b) Int64) => CDF (Poisson b) Int64 where ++ cdf (Poisson mu) = integralPoissonCDF mu ++instance (Real b, Distribution (Poisson b) Int64) => PDF (Poisson b) Int64 where ++ pdf (Poisson mu) = integralPoissonPDF mu ++instance (RealFloat b, Distribution StdUniform b, Distribution (Erlang Word) b, Distribution (Binomial b) Word) => Distribution (Poisson b) Word where ++ rvarT (Poisson mu) = integralPoisson mu ++instance (Real b, Distribution (Poisson b) Word) => CDF (Poisson b) Word where ++ cdf (Poisson mu) = integralPoissonCDF mu ++instance (Real b, Distribution (Poisson b) Word) => PDF (Poisson b) Word where ++ pdf (Poisson mu) = integralPoissonPDF mu ++instance (RealFloat b, Distribution StdUniform b, Distribution (Erlang Word8) b, Distribution (Binomial b) Word8) => Distribution (Poisson b) Word8 where ++ rvarT (Poisson mu) = integralPoisson mu ++instance (Real b, Distribution (Poisson b) Word8) => CDF (Poisson b) Word8 where ++ cdf (Poisson mu) = integralPoissonCDF mu ++instance (Real b, Distribution (Poisson b) Word8) => PDF (Poisson b) Word8 where ++ pdf (Poisson mu) = integralPoissonPDF mu ++instance (RealFloat b, Distribution StdUniform b, Distribution (Erlang Word16) b, Distribution (Binomial b) Word16) => Distribution (Poisson b) Word16 where ++ rvarT (Poisson mu) = integralPoisson mu ++instance (Real b, Distribution (Poisson b) Word16) => CDF (Poisson b) Word16 where ++ cdf (Poisson mu) = integralPoissonCDF mu ++instance (Real b, Distribution (Poisson b) Word16) => PDF (Poisson b) Word16 where ++ pdf (Poisson mu) = integralPoissonPDF mu ++instance (RealFloat b, Distribution StdUniform b, Distribution (Erlang Word32) b, Distribution (Binomial b) Word32) => Distribution (Poisson b) Word32 where ++ rvarT (Poisson mu) = integralPoisson mu ++instance (Real b, Distribution (Poisson b) Word32) => CDF (Poisson b) Word32 where ++ cdf (Poisson mu) = integralPoissonCDF mu ++instance (Real b, Distribution (Poisson b) Word32) => PDF (Poisson b) Word32 where ++ pdf (Poisson mu) = integralPoissonPDF mu ++instance (RealFloat b, Distribution StdUniform b, Distribution (Erlang Word64) b, Distribution (Binomial b) Word64) => Distribution (Poisson b) Word64 where ++ rvarT (Poisson mu) = integralPoisson mu ++instance (Real b, Distribution (Poisson b) Word64) => CDF (Poisson b) Word64 where ++ cdf (Poisson mu) = integralPoissonCDF mu ++instance (Real b, Distribution (Poisson b) Word64) => PDF (Poisson b) Word64 where ++ pdf (Poisson mu) = integralPoissonPDF mu ++ ++instance Distribution (Poisson b) Integer => Distribution (Poisson b) Float where ++ rvarT (Poisson mu) = fractionalPoisson mu ++instance CDF (Poisson b) Integer => CDF (Poisson b) Float where ++ cdf (Poisson mu) = fractionalPoissonCDF mu ++instance PDF (Poisson b) Integer => PDF (Poisson b) Float where ++ pdf (Poisson mu) = fractionalPoissonPDF mu ++instance Distribution (Poisson b) Integer => Distribution (Poisson b) Double where ++ rvarT (Poisson mu) = fractionalPoisson mu ++instance CDF (Poisson b) Integer => CDF (Poisson b) Double where ++ cdf (Poisson mu) = fractionalPoissonCDF mu ++instance PDF (Poisson b) Integer => PDF (Poisson b) Double where ++ pdf (Poisson mu) = fractionalPoissonPDF mu +diff --git a/random-fu/src/Data/Random/Distribution/Uniform.hs b/random-fu/src/Data/Random/Distribution/Uniform.hs +index a580fe8..74dd89a 100644 +--- a/random-fu/src/Data/Random/Distribution/Uniform.hs ++++ b/random-fu/src/Data/Random/Distribution/Uniform.hs +@@ -37,7 +37,6 @@ module Data.Random.Distribution.Uniform + , enumUniformCDF + ) where + +-import Data.Random.Internal.TH + import Data.Random.Internal.Words + import Data.Random.Internal.Fixed + +@@ -284,10 +283,28 @@ data Uniform t = + -- (that is, 0 to 1 including 0 but not including 1). + data StdUniform t = StdUniform + +-$( replicateInstances ''Int integralTypes [d| +- instance Distribution Uniform Int where rvarT (Uniform a b) = integralUniform a b +- instance CDF Uniform Int where cdf (Uniform a b) = integralUniformCDF a b +- |]) ++instance Distribution Uniform Integer where rvarT (Uniform a b) = integralUniform a b ++instance CDF Uniform Integer where cdf (Uniform a b) = integralUniformCDF a b ++instance Distribution Uniform Int where rvarT (Uniform a b) = integralUniform a b ++instance CDF Uniform Int where cdf (Uniform a b) = integralUniformCDF a b ++instance Distribution Uniform Int8 where rvarT (Uniform a b) = integralUniform a b ++instance CDF Uniform Int8 where cdf (Uniform a b) = integralUniformCDF a b ++instance Distribution Uniform Int16 where rvarT (Uniform a b) = integralUniform a b ++instance CDF Uniform Int16 where cdf (Uniform a b) = integralUniformCDF a b ++instance Distribution Uniform Int32 where rvarT (Uniform a b) = integralUniform a b ++instance CDF Uniform Int32 where cdf (Uniform a b) = integralUniformCDF a b ++instance Distribution Uniform Int64 where rvarT (Uniform a b) = integralUniform a b ++instance CDF Uniform Int64 where cdf (Uniform a b) = integralUniformCDF a b ++instance Distribution Uniform Word where rvarT (Uniform a b) = integralUniform a b ++instance CDF Uniform Word where cdf (Uniform a b) = integralUniformCDF a b ++instance Distribution Uniform Word8 where rvarT (Uniform a b) = integralUniform a b ++instance CDF Uniform Word8 where cdf (Uniform a b) = integralUniformCDF a b ++instance Distribution Uniform Word16 where rvarT (Uniform a b) = integralUniform a b ++instance CDF Uniform Word16 where cdf (Uniform a b) = integralUniformCDF a b ++instance Distribution Uniform Word32 where rvarT (Uniform a b) = integralUniform a b ++instance CDF Uniform Word32 where cdf (Uniform a b) = integralUniformCDF a b ++instance Distribution Uniform Word64 where rvarT (Uniform a b) = integralUniform a b ++instance CDF Uniform Word64 where cdf (Uniform a b) = integralUniformCDF a b + + instance Distribution StdUniform Word8 where rvarT _ = getRandomWord8 + instance Distribution StdUniform Word16 where rvarT _ = getRandomWord16 +@@ -349,11 +366,13 @@ instance HasResolution r => + + instance Distribution Uniform () where rvarT (Uniform _ _) = return () + instance CDF Uniform () where cdf (Uniform _ _) = return 1 +-$( replicateInstances ''Char [''Char, ''Bool, ''Ordering] [d| +- instance Distribution Uniform Char where rvarT (Uniform a b) = enumUniform a b +- instance CDF Uniform Char where cdf (Uniform a b) = enumUniformCDF a b + +- |]) ++instance Distribution Uniform Char where rvarT (Uniform a b) = enumUniform a b ++instance CDF Uniform Char where cdf (Uniform a b) = enumUniformCDF a b ++instance Distribution Uniform Bool where rvarT (Uniform a b) = enumUniform a b ++instance CDF Uniform Bool where cdf (Uniform a b) = enumUniformCDF a b ++instance Distribution Uniform Ordering where rvarT (Uniform a b) = enumUniform a b ++instance CDF Uniform Ordering where cdf (Uniform a b) = enumUniformCDF a b + + instance Distribution StdUniform () where rvarT ~StdUniform = return () + instance CDF StdUniform () where cdf ~StdUniform = return 1 +diff --git a/random-fu/src/Data/Random/Internal/TH.hs b/random-fu/src/Data/Random/Internal/TH.hs +deleted file mode 100644 +index 500b75b..0000000 +--- a/random-fu/src/Data/Random/Internal/TH.hs ++++ /dev/null +@@ -1,78 +0,0 @@ +-{-# LANGUAGE +- TemplateHaskell +- #-} +- +--- |Template Haskell utility code to replicate instance declarations +--- to cover large numbers of types. I'm doing that rather than using +--- class contexts because most Distribution instances need to cover +--- multiple classes (such as Enum, Integral and Fractional) and that +--- can't be done easily because of overlap. +--- +--- I experimented a bit with a convoluted type-level classification +--- scheme, but I think this is simpler and easier to understand. It +--- makes the haddock docs more cluttered because of the combinatorial +--- explosion of instances, but overall I think it's just more sane than +--- anything else I've come up with yet. +-module Data.Random.Internal.TH +- ( replicateInstances +- , integralTypes, realFloatTypes +- ) where +- +-import Data.Generics +-import Language.Haskell.TH +- +-import Data.Word +-import Data.Int +-import Control.Monad +- +--- |Names of standard 'Integral' types +-integralTypes :: [Name] +-integralTypes = +- [ ''Integer +- , ''Int, ''Int8, ''Int16, ''Int32, ''Int64 +- , ''Word, ''Word8, ''Word16, ''Word32, ''Word64 +- ] +- +--- |Names of standard 'RealFloat' types +-realFloatTypes :: [Name] +-realFloatTypes = +- [ ''Float, ''Double ] +- +--- @replaceName x y@ is a function that will +--- replace @x@ with @y@ whenever it sees it. That is: +--- +--- > replaceName x y x ==> y +--- > replaceName x y z ==> z +--- (@z /= x@) +-replaceName :: Name -> Name -> Name -> Name +-replaceName x y z +- | x == z = y +- | otherwise = z +- +--- | @replicateInstances standin types decls@ will take the template-haskell +--- 'Dec's in @decls@ and substitute every instance of the 'Name' @standin@ with +--- each 'Name' in @types@, producing one copy of the 'Dec's in @decls@ for every +--- 'Name' in @types@. +--- +--- For example, 'Data.Random.Distribution.Uniform' has the following bit of TH code: +--- +--- @ $( replicateInstances ''Int integralTypes [d| @ +--- +--- @ instance Distribution Uniform Int where rvar (Uniform a b) = integralUniform a b @ +--- +--- @ instance CDF Uniform Int where cdf (Uniform a b) = integralUniformCDF a b @ +--- +--- @ |]) @ +--- +--- This code takes those 2 instance declarations and creates identical ones for +--- every type named in 'integralTypes'. +-replicateInstances :: (Monad m, Data t) => Name -> [Name] -> m [t] -> m [t] +-replicateInstances standin types getDecls = liftM concat $ sequence +- [ do +- decls <- getDecls +- sequence +- [ everywhereM (mkM (return . replaceName standin t)) dec +- | dec <- decls +- ] +- | t <- types +- ] +-- +2.32.0 + + +From 2d38294582ba211df6a5a2b7f7a2c5e71038b0e7 Mon Sep 17 00:00:00 2001 +From: funketh <theodor.k.fu...@gmail.com> +Date: Fri, 7 May 2021 12:10:40 +0200 +Subject: [PATCH 3/3] remove redundant TemplateHaskell LANGUAGE pragmas + +--- + random-fu/src/Data/Random/Distribution/Bernoulli.hs | 3 +-- + random-fu/src/Data/Random/Distribution/Beta.hs | 3 +-- + random-fu/src/Data/Random/Distribution/Binomial.hs | 2 +- + random-fu/src/Data/Random/Distribution/Poisson.hs | 3 +-- + 4 files changed, 4 insertions(+), 7 deletions(-) + +diff --git a/random-fu/src/Data/Random/Distribution/Bernoulli.hs b/random-fu/src/Data/Random/Distribution/Bernoulli.hs +index c6a3c79..8d219e0 100644 +--- a/random-fu/src/Data/Random/Distribution/Bernoulli.hs ++++ b/random-fu/src/Data/Random/Distribution/Bernoulli.hs +@@ -1,8 +1,7 @@ + {-# LANGUAGE + MultiParamTypeClasses, + FlexibleInstances, FlexibleContexts, +- UndecidableInstances, +- TemplateHaskell ++ UndecidableInstances + #-} + + {-# OPTIONS_GHC -fno-warn-simplifiable-class-constraints #-} +diff --git a/random-fu/src/Data/Random/Distribution/Beta.hs b/random-fu/src/Data/Random/Distribution/Beta.hs +index e07b2c0..2e48258 100644 +--- a/random-fu/src/Data/Random/Distribution/Beta.hs ++++ b/random-fu/src/Data/Random/Distribution/Beta.hs +@@ -1,8 +1,7 @@ + {-# LANGUAGE + MultiParamTypeClasses, + FlexibleInstances, FlexibleContexts, +- UndecidableInstances, +- TemplateHaskell ++ UndecidableInstances + #-} + + {-# OPTIONS_GHC -fno-warn-simplifiable-class-constraints #-} +diff --git a/random-fu/src/Data/Random/Distribution/Binomial.hs b/random-fu/src/Data/Random/Distribution/Binomial.hs +index 8495a77..ff394b4 100644 +--- a/random-fu/src/Data/Random/Distribution/Binomial.hs ++++ b/random-fu/src/Data/Random/Distribution/Binomial.hs +@@ -1,7 +1,7 @@ + {-# LANGUAGE + MultiParamTypeClasses, + FlexibleInstances, FlexibleContexts, +- UndecidableInstances, TemplateHaskell, ++ UndecidableInstances, + BangPatterns + #-} + +diff --git a/random-fu/src/Data/Random/Distribution/Poisson.hs b/random-fu/src/Data/Random/Distribution/Poisson.hs +index 2613f49..a7c2cb4 100644 +--- a/random-fu/src/Data/Random/Distribution/Poisson.hs ++++ b/random-fu/src/Data/Random/Distribution/Poisson.hs +@@ -1,7 +1,6 @@ + {-# LANGUAGE + MultiParamTypeClasses, +- FlexibleInstances, FlexibleContexts, UndecidableInstances, +- TemplateHaskell ++ FlexibleInstances, FlexibleContexts, UndecidableInstances + #-} + + {-# OPTIONS_GHC -fno-warn-simplifiable-class-constraints #-} +-- +2.32.0 +