[ 
https://issues.apache.org/jira/browse/AVRO-392?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=12829274#action_12829274
 ] 

Scott Carey commented on AVRO-392:
----------------------------------

I'd like to focus on the core of the BufferedBinaryDecoder change and the 
ByteSource concept within first.  The other changes are mostly a consequence of 
that or use cases in the file writer and reader.
If we get that right, then the API details around the edges will be easy to 
adjust. 

The current patch has an initialization from a File because for simplicity I 
wanted to align it with the Jackson API as a starting point.  If it was a 
FileChannel, it would be difficult to have the JsonDecoder operate on it.

As far as construction and initialization go, we have many options to consider. 
 I am delaying decisions on this until it is more clear what is needed to allow 
BufferedBinaryDecoder to replace BinaryDecoder and for two decoders to share 
one input/buffer.

Before the number of constructors/initializes publicly available grows too far, 
a factory might be a useful abstraction to use instead for decoders and 
encoders.  Especially as more variations come up, some that will share concepts 
and some that will not.  



> Binary Decoder Performance and flexibility overhaul
> ---------------------------------------------------
>
>                 Key: AVRO-392
>                 URL: https://issues.apache.org/jira/browse/AVRO-392
>             Project: Avro
>          Issue Type: Improvement
>          Components: java
>            Reporter: Scott Carey
>            Assignee: Scott Carey
>            Priority: Critical
>             Fix For: 1.3.0
>
>         Attachments: AVRO-392-preview.patch
>
>
> BinaryDecoder has room for significant performance improvement.  
> [AVRO-327|https://issues.apache.org/jira/browse/AVRO-327] has some 
> preliminary work here, but in order to satisfy some use cases there is much 
> more work to do.
> I am opening a new ticket because the scope of the changes needed to do this 
> the right way are larger.
> I have done a large bulk of a new implementation that abstracts a 
> 'ByteSource' from the BinaryDecoder.  Currently BinaryDecoder is tightly 
> coupled to InputStream.  The ByteSource can wrap an InputStream, FileChannel, 
> or byte[] in this version, but could be extended to support other channel 
> types, sockets, etc.  This abstraction allows the BinaryDecoder to buffer 
> data from various sources while supporting interleaved access to the 
> underlying data and greater flexibility going forward.
> The performance of this abstraction has been heavily tuned so that maximum 
> performance can be achieved even for slower ByteSource implementations.
> For readers that must interleave reads on a stream with the decoder, this 
> includes a
> {code}
> public InputStream inputStream();
> {code}
> method on the decoder that can serve interleaved reads.  
> Additionally it will be necessary to have a constructor on BinaryDecoder that 
> allows two BinaryDecoders to share a stream (and buffer).
> Performance results on this new version is better than previous prototypes:
> *current trunk BinaryDecoder*
> {noformat}
> ReadInt: 983 ms, 30.497877855999185 million entries/sec
> ReadLongSmall: 1058 ms, 28.336666040111496 million entries/sec
> ReadLong: 1518 ms, 19.75179889508437 million entries/sec
> ReadFloat: 657 ms, 45.61031157924184 million entries/sec
> ReadDouble: 761 ms, 39.387756709704355 million entries/sec
> ReadBoolean: 331 ms, 90.4268145647456 million entries/sec
> RepeaterTest: 7718 ms, 3.886725782038378 million entries/sec
> NestedRecordTest: 1884 ms, 15.91964611687992 million entries/sec
> ResolverTest: 8296 ms, 3.616055866616717 million entries/sec
> MigrationTest: 21216 ms, 1.4139999570144013 million entries/sec
> {noformat}
> *buffering BinaryDecoder*
> {noformat}
> ReadInt: 187 ms, 160.22131904871262 million entries/sec
> ReadLongSmall: 372 ms, 80.4863521975457 million entries/sec
> ReadLong: 613 ms, 48.882385721129246 million entries/sec
> ReadFloat: 253 ms, 118.16606270679061 million entries/sec
> ReadDouble: 275 ms, 108.94314257389068 million entries/sec
> ReadBoolean: 222 ms, 134.85327963176064 million entries/sec
> RepeaterTest: 3335 ms, 8.993007936329503 million entries/sec
> NestedRecordTest: 1152 ms, 26.0256943004597 million entries/sec
> ResolverTest: 4213 ms, 7.120659335077578 million entries/sec
> MigrationTest: 15310 ms, 1.9594884898992941 million entries/sec
> {noformat}
> Performance is 2x to 5x the throughput of trunk on most tests.  

-- 
This message is automatically generated by JIRA.
-
You can reply to this email to add a comment to the issue online.

Reply via email to