>> My copy of Schaums (1968, printing 4) shows >> >> 14:334: >> >> int(1/(x*sqrt(x^n-a^n)),x) == 2/(n*sqrt(a^n))*acos(sqrt(a^n/x^n)) >> >> It seems this cannot be the answers. >> Can someone with a later version please check for a typo? >> >> Tim >> >> >> _______________________________________________ >> Axiom-developer mailing list >> Axiom-developer@nongnu.org >> http://lists.nongnu.org/mailman/listinfo/axiom-developer >> >> >My schaums shows that answer. >also usind Maxima to do the derivative I get the LHS. >(%i5) diff(2/(n*sqrt(a^n))*acos(sqrt(a^n/x^n)),x); >(%o5) (a^n*x^(-n-1))/(sqrt(a^n)*sqrt(a^n/x^n)*sqrt(1-a^n/x^n)) >(%i6) radcan(%); >(%o6) 1/(x*sqrt(x^n-a^n))
If you compute aa:=integrate(1/(x*sqrt(x^n-a^n)),x) bb:=2/(n*sqrt(a^n))*acos(sqrt(a^n/x^n)) cc1:=aa.1-bb cc2:=aa.2-bb Can you find a simplification path (in Axiom) such that either cc1 or cc2 simplify to a constant? Alternatively, can you use Maxima to find the constant? I'm failing to do either, although I'm still trying. Tim _______________________________________________ Axiom-developer mailing list Axiom-developer@nongnu.org http://lists.nongnu.org/mailman/listinfo/axiom-developer