More simplifications achieved. =================================================================== diff --git a/changelog b/changelog index 7587673..9139a97 100644 --- a/changelog +++ b/changelog @@ -1,3 +1,5 @@ +20080501 tpd src/input/schaum16.input post-mortem fixes +20080501 tpd src/input/schaum13.input post-mortem fixes 20080430 tpd src/input/schaum13.input post-mortem fixes 20080429 tpd src/input/schaum12.input post-mortem fixes 20080428 tpd src/input/schaum19.input post-mortem fixes diff --git a/src/input/schaum13.input.pamphlet b/src/input/schaum13.input.pamphlet index 70acff6..678e41c 100644 --- a/src/input/schaum13.input.pamphlet +++ b/src/input/schaum13.input.pamphlet @@ -5065,7 +5065,7 @@ ee:=expandLog dd --R Type: Expression Integer --E ---S 127 14:284 Schaums and Axiom differ by a constant +--S 127 14:294 Schaums and Axiom differ by a constant ff:=complexNormalize ee --R --R +-+ diff --git a/src/input/schaum16.input.pamphlet b/src/input/schaum16.input.pamphlet index b058a54..caf8bfd 100644 --- a/src/input/schaum16.input.pamphlet +++ b/src/input/schaum16.input.pamphlet @@ -19,13 +19,13 @@ $$ )clear all --S 1 -aa:=integrate(1/x*(x^n+a^n),x) ---R +aa:=integrate(1/(x*(x^n+a^n)),x) --R ---R n log(x) n ---R %e + n log(x)a ---R (1) ----------------------- ---R n +--R n log(x) n +--R - log(%e + a ) + n log(x) +--R (1) --------------------------------- +--R n +--R n a --R Type: Union(Expression Integer,...) --E @@ -46,59 +46,32 @@ bb:=1/(n*a^n)*log(x^n/(x^n+a^n)) --S 3 cc:=aa-bb --R ---R n ---R x n n log(x) n 2 ---R - log(-------) + a %e + n log(x)(a ) ---R n n ---R x + a ---R (3) --------------------------------------------- ---R n ---R n a +--R n +--R n log(x) n x +--R - log(%e + a ) - log(-------) + n log(x) +--R n n +--R x + a +--R (3) ------------------------------------------------ +--R n +--R n a --R Type: Expression Integer --E --S 4 dd:=expandLog cc --R ---R n n n n n log(x) 2n ---R log(x + a ) - log(x ) + a %e + n log(x)a ---R (4) --------------------------------------------------- ---R n ---R n a +--R n log(x) n n n n +--R - log(%e + a ) + log(x + a ) - log(x ) + n log(x) +--R (4) ---------------------------------------------------------- +--R n +--R n a --R Type: Expression Integer --E ---S 5 +--S 5 14:325 Schaums and Axiom agree ee:=complexNormalize dd --R ---R (5) ---R n log(x) n log(a) n log(a) n log(x) ---R log(%e + %e ) + %e %e ---R + ---R n log(a) 2 ---R n log(x)(%e ) - n log(x) ---R / ---R n log(a) ---R n %e ---R Type: Expression Integer ---E - ---S 6 -explog:=rule(%e^(n*log(x)) == x^n) ---R ---R n log(x) n ---R (6) %e == x ---R Type: RewriteRule(Integer,Integer,Expression Integer) ---E - ---S 7 14:325 Axiom cannot simplify this expression -ff:=explog ee ---R ---R n n n n 2n ---R log(x + a ) + a x + n log(x)a - n log(x) ---R (7) -------------------------------------------- ---R n ---R n a +--R (5) 0 --R Type: Expression Integer --E @
_______________________________________________ Axiom-developer mailing list Axiom-developer@nongnu.org http://lists.nongnu.org/mailman/listinfo/axiom-developer