Val,
That is great. I'll check this out and test it on our end.
~G
On Mon, Sep 8, 2014 at 8:38 AM, Valerie Obenchain <voben...@fhcrc.org
<mailto:voben...@fhcrc.org>> wrote:
The new writeVcf code is in 1.11.28.
Using the illumina file you suggested, geno fields only, writing
now
takes about 17 minutes.
> hdr
class: VCFHeader
samples(1): NA12877
meta(6): fileformat ApplyRecalibration ... reference source
fixed(1): FILTER
info(22): AC AF ... culprit set
geno(8): GT GQX ... PL VF
> param = ScanVcfParam(info=NA)
> vcf = readVcf(fl, "", param=param)
> dim(vcf)
[1] 51612762 1
> system.time(writeVcf(vcf, "out.vcf"))
user system elapsed
971.032 6.568 1004.593
In 1.11.28, parsing of geno data was moved to C. If this didn't
speed things up enough we were planning to implement 'chunking'
through the VCF and/or move the parsing of info to C, however, it
looks like geno was the bottleneck.
I've tested a number of samples/fields combinations in files
with >=
.5 million rows and the improvement over writeVcf() in release is
~ 90%.
Valerie
On 09/04/14 15:28, Valerie Obenchain wrote:
Thanks Gabe. I should have something for you on Monday.
Val
On 09/04/2014 01:56 PM, Gabe Becker wrote:
Val and Martin,
Apologies for the delay.
We realized that the Illumina platinum genome vcf files
make
a good test
case, assuming you strip out all the info (info=NA when
reading it into
R) stuff.
ftp://platgene:G3n3s4me@ussd-__ftp.illumina.com/NA12877_S1.__genome.vcf.gz
<ftp://platgene:g3n3s...@ussd-ftp.illumina.com/NA12877_S1.genome.vcf.gz>
took about ~4.2 hrs to write out, and is about 1.5x the
size
of the
files we are actually dealing with (~50M ranges vs our
~30M).
Looking forward a new vastly improved writeVcf :).
~G
On Tue, Sep 2, 2014 at 1:53 PM, Michael Lawrence
<lawrence.mich...@gene.com
<mailto:lawrence.mich...@gene.com>
<mailto:lawrence.michael@gene.__com
<mailto:lawrence.mich...@gene.com>>> wrote:
Yes, it's very clear that the scaling is non-linear,
and Gabe has
been experimenting with a chunk-wise + parallel
algorithm.
Unfortunately there is some frustrating overhead with
the
parallelism. But I'm glad Val is arriving at something
quicker.
Michael
On Tue, Sep 2, 2014 at 1:33 PM, Martin Morgan
<mtmor...@fhcrc.org <mailto:mtmor...@fhcrc.org>
<mailto:mtmor...@fhcrc.org
<mailto:mtmor...@fhcrc.org>>> wrote:
On 08/27/2014 11:56 AM, Gabe Becker wrote:
The profiling I attached in my previous email
is for 24 geno
fields, as I said,
but our typical usecase involves only ~4-6
fields, and is
faster but still on
the order of dozens of minutes.
I think Val is arriving at a (much) more efficient
implementation, but...
I wanted to share my guess that the poor _scaling_
is because
the garbage collector runs multiple times as the
different
strings are pasted together, and has to traverse,
in linear
time, increasing numbers of allocated SEXPs. So
times scale
approximately quadratically with the number of
rows
in the VCF
An efficiency is to reduce the number of SEXPs in
play by
writing out in chunks -- as each chunk is written,
the SEXPs
become available for collection and are re-used.
Here's my toy
example
time.R
======
splitIndices <- function (nx, ncl)
{
i <- seq_len(nx)
if (ncl == 0L)
list()
else if (ncl == 1L || nx == 1L)
list(i)
else {
fuzz <- min((nx - 1L)/1000, 0.4 * nx/ncl)
breaks <- seq(1 - fuzz, nx + fuzz, length
= ncl + 1L)
structure(split(i, cut(i, breaks,
labels=FALSE)), names
= NULL)
}
}
x = as.character(seq_len(1e7)); y = sample(x)
if (!is.na <http://is.na>
<http://is.na>(Sys.getenv("__SPLIT", NA))) {
idx <- splitIndices(length(x), 20)
system.time(for (i in idx) paste(x[i], y[i],
sep=":"))
} else {
system.time(paste(x, y, sep=":"))
}
running under R-devel with $ SPLIT=TRUE R
--no-save
--quiet -f
time.R the relevant time is
user system elapsed
15.320 0.064 15.381
versus with $ R --no-save --quiet -f time.R it is
user system elapsed
95.360 0.164 95.511
I think this is likely an overall strategy when
dealing with
character data -- processing in independent chunks
of moderate
(1M?) size (enabling as a consequence parallel
evaluation in
modest memory) that are sufficient to benefit from
vectorization, but that do not entail
allocation of
large
numbers of in-use SEXPs.
Martin
Sorry for the confusion.
~G
On Wed, Aug 27, 2014 at 11:45 AM, Gabe Becker
<becke...@gene.com <mailto:becke...@gene.com>
<mailto:becke...@gene.com <mailto:becke...@gene.com>>
<mailto:becke...@gene.com
<mailto:becke...@gene.com> <mailto:becke...@gene.com
<mailto:becke...@gene.com>>>> wrote:
Martin and Val.
I re-ran writeVcf on our (G)VCF data
(34790518 ranges,
24 geno fields) with
profiling enabled. The results of
summaryRprof for that
run are attached,
though for a variety of reasons they are
pretty
misleading.
It took over an hour to write
(3700+seconds), so it's
definitely a
bottleneck when the data get very large,
even if it
isn't for smaller data.
Michael and I both think the culprit is
all the pasting
and cbinding that is
going on, and more to the point, that
memory for an
internal representation
to be written out is allocated at all.
Streaming
across the object, looping
by rows and writing directly to file
(e.g.
from C)
should be blisteringly
fast in comparison.
~G
On Tue, Aug 26, 2014 at 11:57 AM, Michael
Lawrence
<micha...@gene.com <mailto:micha...@gene.com>
<mailto:micha...@gene.com <mailto:micha...@gene.com>>
<mailto:micha...@gene.com
<mailto:micha...@gene.com> <mailto:micha...@gene.com
<mailto:micha...@gene.com>>>>
wrote:
Gabe is still testing/profiling, but
we'll send
something randomized
along eventually.
On Tue, Aug 26, 2014 at 11:15 AM,
Martin Morgan
<mtmor...@fhcrc.org
<mailto:mtmor...@fhcrc.org>
<mailto:mtmor...@fhcrc.org <mailto:mtmor...@fhcrc.org>>
<mailto:mtmor...@fhcrc.org
<mailto:mtmor...@fhcrc.org>
<mailto:mtmor...@fhcrc.org
<mailto:mtmor...@fhcrc.org>>>> wrote:
I didn't see in the original
thread a
reproducible (simulated, I
guess) example, to be explicit
about what the
problem is??
Martin
On 08/26/2014 10:47 AM, Michael
Lawrence wrote:
My understanding is that the
heap
optimization provided marginal
gains, and
that we need to think harder
about how to
optimize the all of
the string
manipulation in writeVcf. We
either need to
reduce it or reduce its
overhead (i.e., the CHARSXP
allocation).
Gabe is doing more tests.
On Tue, Aug 26, 2014 at 9:43
AM, Valerie
Obenchain
<voben...@fhcrc.org
<mailto:voben...@fhcrc.org>
<mailto:voben...@fhcrc.org
<mailto:voben...@fhcrc.org>> <mailto:voben...@fhcrc.org
<mailto:voben...@fhcrc.org>
<mailto:voben...@fhcrc.org
<mailto:voben...@fhcrc.org>>>>
wrote:
Hi Gabe,
Martin responded, and so
did Michael,
https://stat.ethz.ch/______pipermail/bioc-devel/2014-______August/006082.html
<https://stat.ethz.ch/____pipermail/bioc-devel/2014-____August/006082.html>
<https://stat.ethz.ch/____pipermail/bioc-devel/2014-____August/006082.html
<https://stat.ethz.ch/__pipermail/bioc-devel/2014-__August/006082.html>>
<https://stat.ethz.ch/____pipermail/bioc-devel/2014-____August/006082.html
<https://stat.ethz.ch/__pipermail/bioc-devel/2014-__August/006082.html>
<https://stat.ethz.ch/__pipermail/bioc-devel/2014-__August/006082.html
<https://stat.ethz.ch/pipermail/bioc-devel/2014-August/006082.html>>>
It sounded like Michael
was ok with
working with/around heap
initialization.
Michael, is that right or
should we
still consider this on
the table?
Val
On 08/26/2014 09:34 AM,
Gabe Becker
wrote:
Val,
Has there been any
movement on
this? This remains a
substantial
bottleneck for us
when
writing very
large VCF files (e.g.
variants+genotypes
for
whole genome
NGS samples).
I was able to see a
~25% speedup
with 4 cores and an
"optimal" speedup
of ~2x with 10-12
cores for a VCF
with 500k rows using
a very naive
parallelization
strategy and no
other changes. I suspect
this could be
improved on quite a
bit, or
possibly made irrelevant
with judicious use
of serial C code.
Did you and Martin
make any plans
regarding optimizing
writeVcf?
Best
~G
On Tue, Aug 5,
2014 at
2:33 PM,
Valerie Obenchain
<voben...@fhcrc.org
<mailto:voben...@fhcrc.org>
<mailto:voben...@fhcrc.org
<mailto:voben...@fhcrc.org>> <mailto:voben...@fhcrc.org
<mailto:voben...@fhcrc.org>
<mailto:voben...@fhcrc.org
<mailto:voben...@fhcrc.org>>>
<mailto:voben...@fhcrc.org <mailto:voben...@fhcrc.org>
<mailto:voben...@fhcrc.org
<mailto:voben...@fhcrc.org>> <mailto:voben...@fhcrc.org
<mailto:voben...@fhcrc.org>
<mailto:voben...@fhcrc.org
<mailto:voben...@fhcrc.org>>>>>
wrote:
Hi Michael,
I'm interested
in working on
this. I'll discuss
with Martin next
week when we're
both back in
the office.
Val
On 08/05/14
07:46, Michael
Lawrence wrote:
Hi guys
(Val, Martin,
Herve):
Anyone have
an itch for
optimization? The
writeVcf function is
currently a
bottleneck
in our WGS
genotyping pipeline. For
a typical 50
million row
gVCF, it
was
taking 2.25
hours prior to
yesterday's
improvements
(pasteCollapseRows) that
brought it down to
about 1 hour, which
is still
too long by
my standards
(> 0). Only takes 3
minutes to call the
genotypes
(and
associated
likelihoods etc) from the
variant calls (using
80 cores
and
450 GB RAM
on one node),
so the output is an
issue. Profiling
suggests
that
the running
time scales
non-linearly in the
number of rows.
Digging a
little deeper,
it seems to be
something with R's
string/memory
allocation.
Below,
pasting 1 million strings
takes 6 seconds, but
10
million
strings takes
over 2 minutes. It gets
way worse with 50
million. I
suspect it
has something
to do with R's string
hash table.
set.seed(1000)
end <-
sample(1e8, 1e6)
system.time(paste0("END",
"=", end))
user
system elapsed
6.396
0.028 6.420
end <-
sample(1e8, 1e7)
system.time(paste0("END",
"=", end))
user
system elapsed
134.714
0.352 134.978
Indeed,
even
this takes a
long time (in a
fresh session):
set.seed(1000)
end <-
sample(1e8, 1e6)
end <-
sample(1e8, 1e7)
system.time(as.character(end))
user
system elapsed
57.224
0.156 57.366
But running
it a second
time is faster (about
what one would
expect?):
system.time(levels <-
as.character(end))
user
system elapsed
23.582
0.021 23.589
I did some
simple
profiling of R to find that
the resizing of
the string
hash table
is not a
significant component of
the time. So maybe
something
to do with
the R heap/gc?
No time right now to
go deeper. But I
know Martin
likes this
sort of
thing ;)
Michael
[[alternative
HTML version deleted]]
_______________________________________________________
Bioc-devel@r-project.org <mailto:Bioc-devel@r-project.org>
<mailto:Bioc-devel@r-project.__org
<mailto:Bioc-devel@r-project.org>>
<mailto:Bioc-devel@r-project.
<mailto:Bioc-devel@r-project.>____org
<mailto:Bioc-devel@r-project.__org
<mailto:Bioc-devel@r-project.org>>>
<mailto:Bioc-devel@r-project
<mailto:Bioc-devel@r-project>.
<mailto:Bioc-devel@r-project
<mailto:Bioc-devel@r-project>.>______org
<mailto:Bioc-devel@r-project.
<mailto:Bioc-devel@r-project.>____org
<mailto:Bioc-devel@r-project.__org
<mailto:Bioc-devel@r-project.org>>>>
mailing
list
https://stat.ethz.ch/mailman/________listinfo/bioc-devel
<https://stat.ethz.ch/mailman/______listinfo/bioc-devel>
<https://stat.ethz.ch/mailman/______listinfo/bioc-devel
<https://stat.ethz.ch/mailman/____listinfo/bioc-devel>>
<https://stat.ethz.ch/mailman/______listinfo/bioc-devel
<https://stat.ethz.ch/mailman/____listinfo/bioc-devel>
<https://stat.ethz.ch/mailman/____listinfo/bioc-devel
<https://stat.ethz.ch/mailman/__listinfo/bioc-devel>>>
<https://stat.ethz.ch/mailman/______listinfo/bioc-devel
<https://stat.ethz.ch/mailman/____listinfo/bioc-devel>
<https://stat.ethz.ch/mailman/____listinfo/bioc-devel
<https://stat.ethz.ch/mailman/__listinfo/bioc-devel>>
<https://stat.ethz.ch/mailman/____listinfo/bioc-devel
<https://stat.ethz.ch/mailman/__listinfo/bioc-devel>
<https://stat.ethz.ch/mailman/__listinfo/bioc-devel
<https://stat.ethz.ch/mailman/listinfo/bioc-devel>>>>
_______________________________________________________
Bioc-devel@r-project.org <mailto:Bioc-devel@r-project.org>
<mailto:Bioc-devel@r-project.__org
<mailto:Bioc-devel@r-project.org>>
<mailto:Bioc-devel@r-project.
<mailto:Bioc-devel@r-project.>____org
<mailto:Bioc-devel@r-project.__org
<mailto:Bioc-devel@r-project.org>>>
<mailto:Bioc-devel@r-project
<mailto:Bioc-devel@r-project>.
<mailto:Bioc-devel@r-project
<mailto:Bioc-devel@r-project>.>______org
<mailto:Bioc-devel@r-project.
<mailto:Bioc-devel@r-project.>____org
<mailto:Bioc-devel@r-project.__org
<mailto:Bioc-devel@r-project.org>>>> mailing
list
https://stat.ethz.ch/mailman/________listinfo/bioc-devel
<https://stat.ethz.ch/mailman/______listinfo/bioc-devel>
<https://stat.ethz.ch/mailman/______listinfo/bioc-devel
<https://stat.ethz.ch/mailman/____listinfo/bioc-devel>>
<https://stat.ethz.ch/mailman/______listinfo/bioc-devel
<https://stat.ethz.ch/mailman/____listinfo/bioc-devel>
<https://stat.ethz.ch/mailman/____listinfo/bioc-devel
<https://stat.ethz.ch/mailman/__listinfo/bioc-devel>>>
<https://stat.ethz.ch/mailman/______listinfo/bioc-devel
<https://stat.ethz.ch/mailman/____listinfo/bioc-devel>
<https://stat.ethz.ch/mailman/____listinfo/bioc-devel
<https://stat.ethz.ch/mailman/__listinfo/bioc-devel>>
<https://stat.ethz.ch/mailman/____listinfo/bioc-devel
<https://stat.ethz.ch/mailman/__listinfo/bioc-devel>
<https://stat.ethz.ch/mailman/__listinfo/bioc-devel
<https://stat.ethz.ch/mailman/listinfo/bioc-devel>>>>
--
Computational
Biologist
Genentech Research
[[alternative HTML
version
deleted]]
_____________________________________________________
Bioc-devel@r-project.org <mailto:Bioc-devel@r-project.org>
<mailto:Bioc-devel@r-project.__org
<mailto:Bioc-devel@r-project.org>>
<mailto:Bioc-devel@r-project.
<mailto:Bioc-devel@r-project.>____org
<mailto:Bioc-devel@r-project.__org
<mailto:Bioc-devel@r-project.org>>>
mailing list
https://stat.ethz.ch/mailman/______listinfo/bioc-devel
<https://stat.ethz.ch/mailman/____listinfo/bioc-devel>
<https://stat.ethz.ch/mailman/____listinfo/bioc-devel
<https://stat.ethz.ch/mailman/__listinfo/bioc-devel>>
<https://stat.ethz.ch/mailman/____listinfo/bioc-devel
<https://stat.ethz.ch/mailman/__listinfo/bioc-devel>
<https://stat.ethz.ch/mailman/__listinfo/bioc-devel
<https://stat.ethz.ch/mailman/listinfo/bioc-devel>>>
--
Computational Biology / Fred
Hutchinson Cancer
Research Center
1100 Fairview Ave. N.
PO Box 19024 Seattle, WA 98109
Location: Arnold Building M1 B861
Phone: (206) 667-2793
<tel:%28206%29%20667-2793>
<tel:%28206%29%20667-2793>
<tel:%28206%29%20667-2793>
--
Computational Biologist
Genentech Research
--
Computational Biologist
Genentech Research
--
Computational Biology / Fred Hutchinson Cancer
Research Center
1100 Fairview Ave. N.
PO Box 19024 Seattle, WA 98109
Location: Arnold Building M1 B861
Phone: (206) 667-2793 <tel:%28206%29%20667-2793>
<tel:%28206%29%20667-2793>
--
Computational Biologist
Genentech Research
_________________________________________________
Bioc-devel@r-project.org <mailto:Bioc-devel@r-project.org>
mailing list
https://stat.ethz.ch/mailman/__listinfo/bioc-devel
<https://stat.ethz.ch/mailman/listinfo/bioc-devel>
--
Computational Biologist
Genentech Research