Yea I will have to port the recent fixes. On Wed, Mar 29, 2017 at 11:32 PM, Hervé Pagès <hpa...@fredhutch.org> wrote: > On 03/27/2017 09:43 AM, Michael Lawrence wrote: >> >> I committed a fix into R trunk with a regression test. > > > Thanks Michael. Any chance you can port the fix to the 3.4 branch? > > H. > >> >> On Mon, Mar 27, 2017 at 8:41 AM, Michael Lawrence <micha...@gene.com> >> wrote: >>> >>> My bad guys, I'll fix when I get to work. >>> >>> On Mon, Mar 27, 2017 at 3:59 AM, Martin Morgan >>> <martin.mor...@roswellpark.org> wrote: >>>> >>>> On 03/22/2017 01:12 PM, Hervé Pagès wrote: >>>>> >>>>> >>>>> Hi Martin, >>>>> >>>>> On 03/22/2017 03:17 AM, Martin Maechler wrote: >>>>>>>>>>> >>>>>>>>>>> >>>>>>>>>>> Andrzej Oleś <andrzej.o...@gmail.com> >>>>>>>>>>> on Wed, 22 Mar 2017 10:29:57 +0100 writes: >>>>>> >>>>>> >>>>>> >>>>>> > Just for the record, on R-3.3.2 Herve's code fails with the >>>>>> following error: >>>>>> > Error in x[TRUE] <- new("A") : >>>>>> > incompatible types (from S4 to logical) in subassignment type >>>>>> fix >>>>>> >>>>>> yes, (of course).... and I would be interested in a small >>>>>> reproducible example which uses _valid_ code. >>>>> >>>>> >>>>> >>>>> Looks like before performing the subassignment itself, [<- first tries >>>>> to coerce the RHS to the "mode" of the LHS by calling as.vector() on >>>>> the >>>>> former. So if we define an as.vector S3 method for A objects: >>>>> >>>>> setClass("A", representation(stuff="numeric")) >>>>> as.vector.A <- function (x, mode="any") x@stuff >>>>> a <- new("A", stuff=c(3.5, 0.1)) >>>>> x <- numeric(10) >>>>> x[3:4] <- a >>>> >>>> >>>> >>>> The relevant stack trace is >>>> >>>> * frame #0: 0x000000010dded77a >>>> libR.dylib`R_has_methods(op=<unavailable>) >>>> + 74 at objects.c:1415 >>>> frame #1: 0x000000010ddaabf4 >>>> libR.dylib`Rf_DispatchOrEval(call=0x00007fcea36f68a8, >>>> op=0x00007fcea201a178, >>>> generic=0x000000010df0a185, args=<unavailable>, rho=0x00007fcea2053318, >>>> ans=0x00007fff51f60c48, dropmissing=<unavailable>, argsevald=1) + 404 at >>>> eval.c:3150 >>>> frame #2: 0x000000010de4e658 libR.dylib`SubassignTypeFix [inlined] >>>> dispatch_asvector(x=<unavailable>, call=0x00007fcea36f68a8, >>>> rho=0x00007fcea2053318) + 295 at subassign.c:283 >>>> >>>> >>>> The segfault is at objects.c:1415 >>>> >>>> offset = PRIMOFFSET(op); >>>> if(offset > curMaxOffset || prim_methods[offset] == NO_METHODS >>>> || prim_methods[offset] == SUPPRESSED) >>>> >>>> where offset is negative and prim_methods[offset] fails. >>>> >>>> (lldb) p *op >>>> (SEXPREC) $8 = { >>>> sxpinfo = (type = 0, obj = 0, named = 2, gp = 0, mark = 1, debug = 0, >>>> trace = 0, spare = 0, gcgen = 1, gccls = 0) >>>> attrib = 0x00007fcea201a178 >>>> gengc_next_node = 0x00007fcea21874e8 >>>> gengc_prev_node = 0x00007fcea2019ff0 >>>> u = { >>>> primsxp = (offset = -1576951432) >>>> symsxp = { >>>> >>>> >>>> 'op' is assigned from subassign.c:287, op = R_Primitive("as.vector") >>>> >>>> static Rboolean dispatch_asvector(SEXP *x, SEXP call, SEXP rho) { >>>> static SEXP op = NULL; >>>> SEXP args; >>>> Rboolean ans; >>>> if (op == NULL) >>>> op = R_Primitive("as.vector"); >>>> PROTECT(args = list2(*x, mkString("any"))); >>>> ans = DispatchOrEval(call, op, "as.vector", args, rho, x, 0, 1); >>>> UNPROTECT(1); >>>> return ans; >>>> } >>>> >>>> But as.vector is not a primitive, so gets R_NilValue. This is passed to >>>> DispatchOrEval, and then to R_has_methods. >>>> >>>> It seems like dispatch_asvector() was introduced by >>>> >>>> $ svn log -c69747 >>>> ------------------------------------------------------------------------ >>>> r69747 | lawrence | 2015-12-09 09:04:56 -0500 (Wed, 09 Dec 2015) | 3 >>>> lines >>>> >>>> subassignment of an S4 value into an atomic vector coerces the value >>>> with as.vector >>>> >>>> ------------------------------------------------------------------------ >>>> >>>> So maybe Michael can tell us about his thinking here. >>>> >>>> Also, should R_has_methods be robust to R_NilValue? And R_NilValue >>>> explicitly zero it's data? >>>> >>>> Martin >>>> >>>> >>>> >>>>> >>>>> then the code is now valid and we still get the segfault on Mac. >>>>> >>>>> I didn't define as.vector.A in my original minimalist reproducible >>>>> code in order to keep it as simple as possible. >>>>> >>>>> H. >>>>> >>>>> >>>>>> We have seen such examples with something (more complicated >>>>>> than, but basically like) >>>>>> >>>>>> df <- data.frame(x=1:5, y=5:1, m=matrix(-pi*1:30, 5,6)) >>>>>> M <- Matrix::Matrix(exp(0:3),2) >>>>>> df[1:2,1:2] <- M >>>>>> >>>>>> which actually calls `[<-`, and then `[<-.data.frame` and >>>>>> always works for me but does seg.fault (in the CRAN checks of >>>>>> package FastImputation (on 3 of the dozen platforms, >>>>>> >>>>>> >>>>>> https://urldefense.proofpoint.com/v2/url?u=https-3A__cran.r-2Dproject.org_web_checks_check-5Fresults-5FFastImputation.html&d=DwIGaQ&c=eRAMFD45gAfqt84VtBcfhQ&r=BK7q3XeAvimeWdGbWY_wJYbW0WYiZvSXAJJKaaPhzWA&m=ILfV0tHrE_BxAkWYlvUUwWcBdBdtVD7BlEljGiO3WbY&s=zUahQYlBHRwNf6lPnSA1515Rm-iL5ffQI7hUcDW-JkE&e= >>>>>> >>>>>> >>>>>> one of them is >>>>>> >>>>>> >>>>>> >>>>>> https://urldefense.proofpoint.com/v2/url?u=https-3A__www.r-2Dproject.org_nosvn_R.check_r-2Ddevel-2Dmacos-2Dx86-5F64-2Dclang_FastImputation-2D00check.html&d=DwIGaQ&c=eRAMFD45gAfqt84VtBcfhQ&r=BK7q3XeAvimeWdGbWY_wJYbW0WYiZvSXAJJKaaPhzWA&m=ILfV0tHrE_BxAkWYlvUUwWcBdBdtVD7BlEljGiO3WbY&s=Z7LkVlUzmdmhqxGNFl4LuMVxYwQQGHSV7KdpKCJu12k&e= >>>>>> >>>>>> >>>>>> I strongly suspect this is the same bug as yours, but for a case >>>>>> where the correct behavior is *not* giving an error. >>>>>> >>>>>> I have also written and shown Herve's example to the R-core team. >>>>>> >>>>>> Unfortunately, I have no platform where I can trigger the bug. >>>>>> Martin >>>>>> >>>>>> >>>>>> >>>>>> > Cheers, >>>>>> > Andrzej >>>>>> >>>>>> >>>>>> >>>>>> > On Wed, Mar 22, 2017 at 1:28 AM, Martin Morgan < >>>>>> > martin.mor...@roswellpark.org> wrote: >>>>>> >>>>>> >> On 03/21/2017 08:21 PM, Hervé Pagès wrote: >>>>>> >> >>>>>> >>> Hi Leonardo, >>>>>> >>> >>>>>> >>> Thanks for hunting down and isolating that bug! I tried to >>>>>> simplify >>>>>> >>> your code even more and was able to get a segfault with just: >>>>>> >>> >>>>>> >>> setClass("A", representation(stuff="numeric")) >>>>>> >>> x <- logical(10) >>>>>> >>> x[TRUE] <- new("A") >>>>>> >>> >>>>>> >>> I get the segfault about 50% of the time on a fresh R session >>>>>> on Mac. >>>>>> >>> I tried this with R 3.3.3 on Mavericks, and with R devel >>>>>> (r72372) >>>>>> >>> on El Capitan. I get the segfault on both. >>>>>> >>> >>>>>> >>> So it looks like a bug in the `[<-` primitive to me >>>>>> (subassignment). >>>>>> >>> >>>>>> >> >>>>>> >> Any insight from >>>>>> >> >>>>>> >> R -d valgrind -f herve.R >>>>>> >> >>>>>> >> where herve.R contains the code above? >>>>>> >> >>>>>> >> Martin >>>>>> >> >>>>>> >> >>>>>> >> >>>>>> >>> Cheers, >>>>>> >>> H. >>>>>> >>> >>>>>> >>> On 03/21/2017 03:06 PM, Leonardo Collado Torres wrote: >>>>>> >>> >>>>>> >>>> Hi bioc-devel, >>>>>> >>>> >>>>>> >>>> This is a story about a bug that took me a long time to >>>>>> trace. The >>>>>> >>>> behaviour was really weird, so I'm sharing the story in case >>>>>> this >>>>>> >>>> helps others in the future. I was originally writing it to >>>>>> request >>>>>> >>>> help, but then I was able to find the issue ^^. The story >>>>>> ends right >>>>>> >>>> now with code that will reproduce the problem with '$<-' from >>>>>> >>>> IRanges/S4Vectors. >>>>>> >>>> >>>>>> >>>> >>>>>> >>>> >>>>>> >>>> >>>>>> >>>> During this Bioc cycle, frequently my package derfinder has >>>>>> failed to >>>>>> >>>> pass R CMD check in OSX. The error is always the same when it >>>>>> appears >>>>>> >>>> and sometimes it shows up in release, but not devel and >>>>>> viceversa. >>>>>> >>>> Right now (3/21/2017) it's visible in both >>>>>> >>>> https://urldefense.proofpoint.com/v2/url?u=http-3A__biocondu >>>>>> >>>> ctor.org_checkResults_release_bioc-2DLATEST_derfinder_ >>>>>> >>>> morelia-2Dchecksrc.html&d=DwIGaQ&c=eRAMFD45gAfqt84VtBcfh >>>>>> >>>> Q&r=BK7q3XeAvimeWdGbWY_wJYbW0WYiZvSXAJJKaaPhzWA&m=Bw-1Kqy-M_ >>>>>> >>>> t4kmpYWTpYkt5bvj_eTpxriUM3UvtOIzQ&s=RS-lsygPtDdgWKAhjA2BcSLk >>>>>> >>>> Vy9RxxshXWAJaBZa_Yc&e= >>>>>> >>>> >>>>>> >>>> and >>>>>> >>>> https://urldefense.proofpoint.com/v2/url?u=http-3A__biocondu >>>>>> >>>> ctor.org_checkResults_devel_bioc-2DLATEST_derfinder_toluca >>>>>> >>>> 2-2Dchecksrc.html&d=DwIGaQ&c=eRAMFD45gAfqt84VtBcfhQ&r=BK7q3X >>>>>> >>>> eAvimeWdGbWY_wJYbW0WYiZvSXAJJKaaPhzWA&m=Bw-1Kqy-M_ >>>>>> >>>> t4kmpYWTpYkt5bvj_eTpxriUM3UvtOIzQ&s=a_K-yK7w2LEV72lpHrpp0UoK >>>>>> >>>> Rru_7Aad74T5Uk0R-Fo&e= >>>>>> >>>> . >>>>>> >>>> The end of "test-all.Rout.fail" looks like this: >>>>>> >>>> >>>>>> >>>> Loading required package: foreach >>>>>> >>>> Loading required package: iterators >>>>>> >>>> Loading required package: locfit >>>>>> >>>> locfit 1.5-9.1 2013-03-22 >>>>>> >>>> getSegments: segmenting >>>>>> >>>> getSegments: splitting >>>>>> >>>> 2017-03-20 02:36:52 findRegions: smoothing >>>>>> >>>> 2017-03-20 02:36:52 findRegions: identifying potential >>>>>> segments >>>>>> >>>> 2017-03-20 02:36:52 findRegions: segmenting information >>>>>> >>>> 2017-03-20 02:36:52 .getSegmentsRle: segmenting with >>>>>> cutoff(s) >>>>>> >>>> 16.3681899295041 >>>>>> >>>> 2017-03-20 02:36:52 findRegions: identifying candidate >>>>>> regions >>>>>> >>>> 2017-03-20 02:36:52 findRegions: identifying region clusters >>>>>> >>>> 2017-03-20 02:36:52 findRegions: smoothing >>>>>> >>>> 2017-03-20 02:36:52 findRegions: identifying potential >>>>>> segments >>>>>> >>>> 2017-03-20 02:36:52 findRegions: segmenting information >>>>>> >>>> 2017-03-20 02:36:52 .getSegmentsRle: segmenting with >>>>>> cutoff(s) >>>>>> >>>> 19.7936614060235 >>>>>> >>>> 2017-03-20 02:36:52 findRegions: identifying candidate >>>>>> regions >>>>>> >>>> 2017-03-20 02:36:52 findRegions: identifying region clusters >>>>>> >>>> 2017-03-20 02:36:52 findRegions: smoothing >>>>>> >>>> >>>>>> >>>> *** caught segfault *** >>>>>> >>>> address 0x7f87d2f917e0, cause 'memory not mapped' >>>>>> >>>> >>>>>> >>>> Traceback: >>>>>> >>>> 1: (function (y, x, cluster, weights, smoothFun, ...) { >>>>>> >>>> hostPackage <- environmentName(environment(smoothFun)) >>>>>> >>>> requireNamespace(hostPackage) smoothed <- >>>>>> .runFunFormal(smoothFun, >>>>>> >>>> y = y, x = x, cluster = cluster, weights = weights, >>>>>> ...) if >>>>>> >>>> (any(!smoothed$smoothed)) { >>>>>> smoothed$fitted[!smoothed$smoothed] >>>>>> >>>> <- y[!smoothed$smoothed] } res <- Rle(smoothed$fitted) >>>>>> >>>> return(res)})(dots[[1L]][[1L]], dots[[2L]][[1L]], >>>>>> dots[[3L]][[1L]], >>>>>> >>>> dots[[4L]][[1L]], smoothFun = function (y, x = NULL, >>>>>> cluster, >>>>>> >>>> weights = NULL, minNum = 7, bpSpan = 1000, minInSpan >>>>>> = 0, >>>>>> >>>> verbose = TRUE) { if (is.null(dim(y))) >>>>>> y <- >>>>>> >>>> matrix(y, ncol = 1) if (!is.null(weights) && >>>>>> >>>> is.null(dim(weights))) weights <- matrix(weights, >>>>>> ncol = >>>>>> >>>> 1) if (is.null(x)) x <- seq(along = >>>>>> y) if >>>>>> >>>> (is.null(weights)) weights <- matrix(1, nrow = >>>>>> nrow(y), >>>>>> >>>> ncol = ncol(y)) Indexes <- split(seq(along = cluster), >>>>>> cluster) >>>>>> >>>> clusterL <- sapply(Indexes, length) smoothed <- >>>>>> >>>> rep(TRUE, nrow(y)) for (i in seq(along = Indexes)) { >>>>>> >>>> if (verbose) if (i%%10000 == 0) >>>>>> >>>> cat(".") Index <- Indexes[[i]] if >>>>>> (clusterL[i] >>>>>> >>>> >>>>>> >>>>> = minNum & sum(rowSums(is.na(y[Index, , drop >>>>>> = >>>>>> >>>>> >>>>>> >>>> FALSE])) == 0) >= minNum) { nn <- >>>>>> >>>> minInSpan/length(Index) for (j in 1:ncol(y)) { >>>>>> >>>> sdata <- data.frame(pos = x[Index], y = y[Index, >>>>>> >>>> j], weights = weights[Index, j]) fit <- >>>>>> >>>> locfit(y ˜ lp(pos, nn = nn, h = bpSpan), >>>>>> data = >>>>>> >>>> sdata, weights = weights, family = "gaussian", >>>>>> >>>> maxk = 10000) pp <- preplot(fit, where = >>>>>> "data", band >>>>>> >>>> = "local", newdata = data.frame(pos = >>>>>> x[Index])) >>>>>> >>>> y[Index, j] <- pp$trans(pp$fit) } >>>>>> >>>> } else { y[Index, ] <- NA >>>>>> >>>> smoothed[Index] <- FALSE } } >>>>>> >>>> return(list(fitted = y, smoothed = smoothed, smoother = >>>>>> "locfit")) >>>>>> >>>> }, verbose = TRUE, minNum = 1435) >>>>>> >>>> 2: .mapply(.FUN, dots, .MoreArgs) >>>>>> >>>> 3: FUN(...) >>>>>> >>>> 4: doTryCatch(return(expr), name, parentenv, handler) >>>>>> >>>> 5: tryCatchOne(expr, names, parentenv, handlers[[1L]]) >>>>>> >>>> 6: tryCatchList(expr, classes, parentenv, handlers) >>>>>> >>>> 7: tryCatch({ FUN(...)}, error = handle_error) >>>>>> >>>> 8: withCallingHandlers({ tryCatch({ FUN(...) }, >>>>>> error = >>>>>> >>>> handle_error)}, warning = handle_warning) >>>>>> >>>> 9: FUN(X[[i]], ...) >>>>>> >>>> 10: lapply(X, FUN, ...) >>>>>> >>>> 11: bplapply(X = seq_along(ddd[[1L]]), wrap, .FUN = FUN, .ddd >>>>>> = ddd, >>>>>> >>>> .MoreArgs = MoreArgs, BPREDO = BPREDO, BPPARAM = BPPARAM) >>>>>> >>>> 12: bplapply(X = seq_along(ddd[[1L]]), wrap, .FUN = FUN, .ddd >>>>>> = ddd, >>>>>> >>>> .MoreArgs = MoreArgs, BPREDO = BPREDO, BPPARAM = BPPARAM) >>>>>> >>>> 13: bpmapply(.smoothFstatsFun, fstatsChunks, posChunks, >>>>>> clusterChunks, >>>>>> >>>> weightChunks, MoreArgs = list(smoothFun = smoothFunction, >>>>>> >>>> ...), BPPARAM = BPPARAM) >>>>>> >>>> 14: bpmapply(.smoothFstatsFun, fstatsChunks, posChunks, >>>>>> clusterChunks, >>>>>> >>>> weightChunks, MoreArgs = list(smoothFun = smoothFunction, >>>>>> >>>> ...), BPPARAM = BPPARAM) >>>>>> >>>> 15: .smootherFstats(fstats = fstats, position = position, >>>>>> weights = >>>>>> >>>> weights, smoothFunction = smoothFunction, ...) >>>>>> >>>> 16: findRegions(prep$position, genomeFstats, "chr21", verbose >>>>>> = TRUE, >>>>>> >>>> smooth = TRUE, minNum = 1435) >>>>>> >>>> 17: eval(exprs, env) >>>>>> >>>> 18: eval(exprs, env) >>>>>> >>>> 19: source_file(path, new.env(parent = env), chdir = TRUE) >>>>>> >>>> 20: force(code) >>>>>> >>>> 21: with_reporter(reporter = reporter, start_end_reporter = >>>>>> >>>> start_end_reporter, { >>>>>> lister$start_file(basename(path)) >>>>>> >>>> source_file(path, new.env(parent = env), chdir = TRUE) >>>>>> >>>> end_context() }) >>>>>> >>>> 22: FUN(X[[i]], ...) >>>>>> >>>> 23: lapply(paths, test_file, env = env, reporter = >>>>>> current_reporter, >>>>>> >>>> start_end_reporter = FALSE, load_helpers = FALSE) >>>>>> >>>> 24: force(code) >>>>>> >>>> 25: with_reporter(reporter = current_reporter, results <- >>>>>> >>>> lapply(paths, test_file, env = env, reporter = >>>>>> current_reporter, >>>>>> >>>> start_end_reporter = FALSE, load_helpers = FALSE)) >>>>>> >>>> 26: test_files(paths, reporter = reporter, env = env, ...) >>>>>> >>>> 27: test_dir(test_path, reporter = reporter, env = env, >>>>>> filter = >>>>>> >>>> filter, ...) >>>>>> >>>> 28: with_top_env(env, { test_dir(test_path, reporter = >>>>>> reporter, >>>>>> >>>> env = env, filter = filter, ...)}) >>>>>> >>>> 29: run_tests(package, test_path, filter, reporter, ...) >>>>>> >>>> 30: test_check("derfinder") >>>>>> >>>> An irrecoverable exception occurred. R is aborting now ... >>>>>> >>>> >>>>>> >>>> I was finally able to reproduce this error on my Mac OSX >>>>>> laptop after >>>>>> >>>> running R CMD build and R CMD check (same options as in Bioc) >>>>>> several >>>>>> >>>> times. It took me a while, but I figured out what's the exact >>>>>> code >>>>>> >>>> that's failing. It can be reproduced (noting that it won't >>>>>> always >>>>>> >>>> fail...) in OSX by running: >>>>>> >>>> >>>>>> >>>> library('derfinder') >>>>>> >>>> prep <- preprocessCoverage(genomeData, cutoff=0, scalefac=32, >>>>>> >>>> chunksize=1e3, >>>>>> >>>> colsubset=NULL) >>>>>> >>>> regs_s3 <- findRegions(prep$position, genomeFstats, 'chr21', >>>>>> >>>> verbose=TRUE, smooth = TRUE, minNum = 1435) >>>>>> >>>> >>>>>> >>>> >>>>>> >>>> Here is the output from my laptop one time it actually >>>>>> failed: >>>>>> >>>> >>>>>> >>>> library('derfinder') >>>>>> >>>>> >>>>>> >>>> prep <- preprocessCoverage(genomeData, cutoff=0, scalefac=32, >>>>>> >>>> chunksize=1e3, >>>>>> >>>> colsubset=NULL) >>>>>> >>>> >>>>>> >>>>> prep <- preprocessCoverage(genomeData, cutoff=0, >>>>>> scalefac=32, >>>>>> >>>>> chunksize=1e3, >>>>>> >>>>> >>>>>> >>>> + colsubset=NULL) >>>>>> >>>> >>>>>> >>>>> regs_s3 <- findRegions(prep$position, genomeFstats, 'chr21', >>>>>> >>>>> verbose=TRUE, smooth = TRUE, minNum = 1435) >>>>>> >>>>> >>>>>> >>>> 2017-03-21 16:37:39 findRegions: smoothing >>>>>> >>>> >>>>>> >>>> *** caught segfault *** >>>>>> >>>> address 0x7f958dbf2be0, cause 'memory not mapped' >>>>>> >>>> >>>>>> >>>> Traceback: >>>>>> >>>> 1: (function (y, x, cluster, weights, smoothFun, ...) { >>>>>> >>>> hostPackage <- environmentName(environment(smoothFun)) >>>>>> >>>> requireNamespace(hostPackage) smoothed <- >>>>>> .runFunFormal(smoothFun, >>>>>> >>>> y = y, x = x, cluster = cluster, weights = weights, >>>>>> ...) if >>>>>> >>>> (any(!smoothed$smoothed)) { >>>>>> smoothed$fitted[!smoothed$smoothed] >>>>>> >>>> <- y[!smoothed$smoothed] } res <- Rle(smoothed$fitted) >>>>>> >>>> return(res)})(dots[[1L]][[1L]], dots[[2L]][[1L]], >>>>>> dots[[3L]][[1L]], >>>>>> >>>> dots[[4L]][[1L]], smoothFun = function (y, x = NULL, >>>>>> cluster, >>>>>> >>>> weights = NULL, minNum = 7, bpSpan = 1000, minInSpan >>>>>> = 0, >>>>>> >>>> verbose = TRUE) { if (is.null(dim(y))) >>>>>> y <- >>>>>> >>>> matrix(y, ncol = 1) if (!is.null(weights) && >>>>>> >>>> is.null(dim(weights))) weights <- matrix(weights, >>>>>> ncol = >>>>>> >>>> 1) if (is.null(x)) x <- seq(along = >>>>>> y) if >>>>>> >>>> (is.null(weights)) weights <- matrix(1, nrow = >>>>>> nrow(y), >>>>>> >>>> ncol = ncol(y)) Indexes <- split(seq(along = cluster), >>>>>> cluster) >>>>>> >>>> clusterL <- sapply(Indexes, length) smoothed <- >>>>>> >>>> rep(TRUE, nrow(y)) for (i in seq(along = Indexes)) { >>>>>> >>>> if (verbose) if (i%%10000 == 0) >>>>>> >>>> cat(".") Index <- Indexes[[i]] if >>>>>> (clusterL[i] >>>>>> >>>> >>>>>> >>>>> = minNum & sum(rowSums(is.na(y[Index, , drop >>>>>> = >>>>>> >>>>> >>>>>> >>>> FALSE])) == 0) >= minNum) { nn <- >>>>>> >>>> minInSpan/length(Index) for (j in 1:ncol(y)) { >>>>>> >>>> sdata <- data.frame(pos = x[Index], y = y[Index, >>>>>> >>>> j], weights = weights[Index, j]) fit <- >>>>>> >>>> locfit(y ~ lp(pos, nn = nn, h = bpSpan), >>>>>> data = >>>>>> >>>> sdata, weights = weights, family = "gaussian", >>>>>> >>>> maxk = 10000) pp <- preplot(fit, where = >>>>>> "data", band >>>>>> >>>> = "local", newdata = data.frame(pos = >>>>>> x[Index])) >>>>>> >>>> y[Index, j] <- pp$trans(pp$fit) } >>>>>> >>>> } else { y[Index, ] <- NA >>>>>> >>>> smoothed[Index] <- FALSE } } >>>>>> >>>> return(list(fitted = y, smoothed = smoothed, smoother = >>>>>> "locfit")) >>>>>> >>>> }, verbose = TRUE, minNum = 1435) >>>>>> >>>> 2: .mapply(.FUN, dots, .MoreArgs) >>>>>> >>>> 3: FUN(...) >>>>>> >>>> 4: doTryCatch(return(expr), name, parentenv, handler) >>>>>> >>>> 5: tryCatchOne(expr, names, parentenv, handlers[[1L]]) >>>>>> >>>> 6: tryCatchList(expr, classes, parentenv, handlers) >>>>>> >>>> 7: tryCatch({ FUN(...)}, error = handle_error) >>>>>> >>>> 8: withCallingHandlers({ tryCatch({ FUN(...) }, >>>>>> error = >>>>>> >>>> handle_error)}, warning = handle_warning) >>>>>> >>>> 9: FUN(X[[i]], ...) >>>>>> >>>> 10: lapply(X, FUN, ...) >>>>>> >>>> 11: bplapply(X = seq_along(ddd[[1L]]), wrap, .FUN = FUN, .ddd >>>>>> = ddd, >>>>>> >>>> .MoreArgs = MoreArgs, BPREDO = BPREDO, BPPARAM = BPPARAM) >>>>>> >>>> 12: bplapply(X = seq_along(ddd[[1L]]), wrap, .FUN = FUN, .ddd >>>>>> = ddd, >>>>>> >>>> .MoreArgs = MoreArgs, BPREDO = BPREDO, BPPARAM = BPPARAM) >>>>>> >>>> 13: bpmapply(.smoothFstatsFun, fstatsChunks, posChunks, >>>>>> clusterChunks, >>>>>> >>>> weightChunks, MoreArgs = list(smoothFun = smoothFunction, >>>>>> >>>> ...), BPPARAM = BPPARAM) >>>>>> >>>> 14: bpmapply(.smoothFstatsFun, fstatsChunks, posChunks, >>>>>> clusterChunks, >>>>>> >>>> weightChunks, MoreArgs = list(smoothFun = smoothFunction, >>>>>> >>>> ...), BPPARAM = BPPARAM) >>>>>> >>>> 15: .smootherFstats(fstats = fstats, position = position, >>>>>> weights = >>>>>> >>>> weights, smoothFunction = smoothFunction, ...) >>>>>> >>>> 16: findRegions(prep$position, genomeFstats, "chr21", verbose >>>>>> = TRUE, >>>>>> >>>> smooth = TRUE, minNum = 1435) >>>>>> >>>> >>>>>> >>>> Possible actions: >>>>>> >>>> 1: abort (with core dump, if enabled) >>>>>> >>>> 2: normal R exit >>>>>> >>>> 3: exit R without saving workspace >>>>>> >>>> 4: exit R saving workspace >>>>>> >>>> >>>>>> >>>> The traceback information ends at's >>>>>> bumphunter::loessByCluster(). >>>>>> >>>> >>>>>> >>>> >>>>>> >>>> I have successfully used the following code other times (see >>>>>> below) >>>>>> >>>> where I test the culprit line 100 times. By successfully, I >>>>>> mean that >>>>>> >>>> the code ran without problems... so it was unsuccessful at >>>>>> reproducing >>>>>> >>>> the problem. >>>>>> >>>> >>>>>> >>>> library('derfinder') >>>>>> >>>> prep <- preprocessCoverage(genomeData, cutoff=0, scalefac=32, >>>>>> >>>> chunksize=1e3, >>>>>> >>>> colsubset=NULL) >>>>>> >>>> >>>>>> >>>> for(i in 1:100) { >>>>>> >>>> print(i) >>>>>> >>>> regs_s3 <- findRegions(prep$position, genomeFstats, 'chr21', >>>>>> >>>> verbose=TRUE, smooth = TRUE, minNum = 1435) >>>>>> >>>> } >>>>>> >>>> options(width = 120) >>>>>> >>>> devtools::session_info() >>>>>> >>>> >>>>>> >>>> >>>>>> >>>> I had several R processes open the one time it did fail, but >>>>>> well, >>>>>> >>>> I've had multiple of them open the times that the code didn't >>>>>> fail. So >>>>>> >>>> having multiple R processes doesn't seem to be an issue. >>>>>> >>>> >>>>>> >>>> The line that triggers the segfault is used simply to test >>>>>> that >>>>>> >>>> passing the argument 'minNum' to bumphunter::loessByCluster() >>>>>> via >>>>>> >>>> '...' works. It's not a relevant test for derfinder and I was >>>>>> tempted >>>>>> >>>> to remove it, although before tracing the bug I talked with >>>>>> Valerie >>>>>> >>>> about not removing it. With the upcoming Bioconductor release >>>>>> I >>>>>> >>>> decided to finally trace the line that triggers the segfault. >>>>>> At this >>>>>> >>>> point I was feeling lost... >>>>>> >>>> >>>>>> >>>> >>>>>> >>>> Running the following code seems to trigger the segfault more >>>>>> often (I >>>>>> >>>> got it like 4 times in a row): >>>>>> >>>> >>>>>> >>>> library('derfinder') >>>>>> >>>> prep <- preprocessCoverage(genomeData, cutoff=0, scalefac=32, >>>>>> >>>> chunksize=1e3, >>>>>> >>>> colsubset=NULL) >>>>>> >>>> regs_s1 <- findRegions(prep$position, genomeFstats, 'chr21', >>>>>> >>>> verbose=TRUE, smooth = TRUE) >>>>>> >>>> regs_s2 <- findRegions(prep$position, genomeFstats, 'chr21', >>>>>> >>>> verbose=TRUE, smooth = TRUE, smoothFunction = >>>>>> >>>> bumphunter::runmedByCluster) >>>>>> >>>> regs_s3 <- findRegions(prep$position, genomeFstats, 'chr21', >>>>>> >>>> verbose=TRUE, smooth = TRUE, minNum = 1435) >>>>>> >>>> >>>>>> >>>> But then I can still run the same code without problems on a >>>>>> for loop >>>>>> >>>> for 100 times: >>>>>> >>>> >>>>>> >>>> library('derfinder') >>>>>> >>>> prep <- preprocessCoverage(genomeData, cutoff=0, scalefac=32, >>>>>> >>>> chunksize=1e3, >>>>>> >>>> colsubset=NULL) >>>>>> >>>> >>>>>> >>>> for(i in 1:100) { >>>>>> >>>> print(i) >>>>>> >>>> regs_s1 <- findRegions(prep$position, genomeFstats, 'chr21', >>>>>> >>>> verbose=TRUE, smooth = TRUE) >>>>>> >>>> regs_s2 <- findRegions(prep$position, genomeFstats, 'chr21', >>>>>> >>>> verbose=TRUE, smooth = TRUE, smoothFunction = >>>>>> >>>> bumphunter::runmedByCluster) >>>>>> >>>> regs_s3 <- findRegions(prep$position, genomeFstats, 'chr21', >>>>>> >>>> verbose=TRUE, smooth = TRUE, minNum = 1435) >>>>>> >>>> } >>>>>> >>>> options(width = 120) >>>>>> >>>> devtools::session_info() >>>>>> >>>> >>>>>> >>>> >>>>>> >>>> >>>>>> >>>> >>>>>> >>>> I next thought of going through findRegions() to produce >>>>>> simple >>>>>> >>>> objects that could reproduce the error. I had in mine sharing >>>>>> these >>>>>> >>>> objects so it would be easier for others to help me figure >>>>>> out what >>>>>> >>>> was failing. It turns out that this code segfaulted reliably >>>>>> (all the >>>>>> >>>> times I tested it at least): >>>>>> >>>> >>>>>> >>>> >>>>>> >>>> library('derfinder') >>>>>> >>>> library('BiocParallel') >>>>>> >>>> library('IRanges') >>>>>> >>>> prep <- preprocessCoverage(genomeData, cutoff=0, scalefac=32, >>>>>> >>>> chunksize=1e3, >>>>>> >>>> colsubset=NULL) >>>>>> >>>> fstats <- genomeFstats >>>>>> >>>> position <- prep$position >>>>>> >>>> weights <- NULL >>>>>> >>>> cluster <- derfinder:::.clusterMakerRle(position, 300L) >>>>>> >>>> cluster >>>>>> >>>> BPPARAM <- SerialParam() >>>>>> >>>> iChunks <- rep(1, length(cluster)) >>>>>> >>>> >>>>>> >>>> fstatsChunks <- split(fstats, iChunks) >>>>>> >>>> posChunks <- split(which(position), iChunks) >>>>>> >>>> clusterChunks <- split(cluster, iChunks) >>>>>> >>>> weightChunks <- vector('list', length = >>>>>> length(unique(iChunks))) >>>>>> >>>> >>>>>> >>>> res <- bpmapply(bumphunter::loessByCluster, fstatsChunks, >>>>>> posChunks, >>>>>> >>>> clusterChunks, weightChunks, MoreArgs = list(minNum = 1435), >>>>>> >>>> BPPARAM = BPPARAM, SIMPLIFY = FALSE) >>>>>> >>>> >>>>>> >>>> y <- fstatsChunks[[1]] >>>>>> >>>> smoothed <- res[[1]] >>>>>> >>>> >>>>>> >>>> ## This segfaults: >>>>>> >>>> if(any(!smoothed$smoothed)) { >>>>>> >>>> smoothed$fitted[!smoothed$smoothed] <- y[!smoothed$smoothed] >>>>>> >>>> } >>>>>> >>>> >>>>>> >>>> >>>>>> >>>> The objects on the line that fail are a list and an Rle: >>>>>> >>>> >>>>>> >>>> y >>>>>> >>>>> >>>>>> >>>> numeric-Rle of length 1434 with 358 runs >>>>>> >>>> Lengths: 1 5 >>>>>> >>>> ... 1 >>>>>> >>>> Values : 5.109484425367 3.85228949953674 ... >>>>>> >>>> 3.99765511645983 >>>>>> >>>> >>>>>> >>>>> lapply(smoothed, head) >>>>>> >>>>> >>>>>> >>>> $fitted >>>>>> >>>> [,1] >>>>>> >>>> [1,] NA >>>>>> >>>> [2,] NA >>>>>> >>>> [3,] NA >>>>>> >>>> [4,] NA >>>>>> >>>> [5,] NA >>>>>> >>>> [6,] NA >>>>>> >>>> >>>>>> >>>> $smoothed >>>>>> >>>> [1] FALSE FALSE FALSE FALSE FALSE FALSE >>>>>> >>>> >>>>>> >>>> $smoother >>>>>> >>>> [1] "loess" >>>>>> >>>> >>>>>> >>>>> table(!smoothed$smoothed) >>>>>> >>>>> >>>>>> >>>> >>>>>> >>>> TRUE >>>>>> >>>> 1434 >>>>>> >>>> >>>>>> >>>>> y[!smoothed$smoothed] >>>>>> >>>>> >>>>>> >>>> numeric-Rle of length 1434 with 358 runs >>>>>> >>>> Lengths: 1 5 >>>>>> >>>> ... 1 >>>>>> >>>> Values : 5.109484425367 3.85228949953674 ... >>>>>> >>>> 3.99765511645983 >>>>>> >>>> >>>>>> >>>> So in my derfinder code I was assigning an Rle to a matrix, >>>>>> and that >>>>>> >>>> was the segfault. I have no idea why this doesn't always fail >>>>>> on OSX >>>>>> >>>> and why it never failed on Linux or Windows. >>>>>> >>>> >>>>>> >>>> >>>>>> >>>> This is the super simplified IRanges code that fails: >>>>>> >>>> >>>>>> >>>> library('IRanges') >>>>>> >>>> y <- Rle(runif(10, 1, 1)) >>>>>> >>>> smoothed <- list('fitted' = matrix(NA, ncol = 1, nrow = 10), >>>>>> >>>> 'smoothed' = rep(FALSE, 10), smoother = 'loess') >>>>>> >>>> sessionInfo() >>>>>> >>>> smoothed$fitted[!smoothed$smoothed] <- y[!smoothed$smoothed] >>>>>> >>>> >>>>>> >>>> ## Segfault on OSX >>>>>> >>>> >>>>>> >>>> library('IRanges') >>>>>> >>>>> y <- Rle(runif(10, 1, 1)) >>>>>> >>>>> smoothed <- list('fitted' = matrix(NA, ncol = 1, nrow = 10), >>>>>> >>>>> >>>>>> >>>> + 'smoothed' = rep(FALSE, 10), smoother = 'loess') >>>>>> >>>> >>>>>> >>>>> >>>>>> >>>>> sessionInfo() >>>>>> >>>>> >>>>>> >>>> R Under development (unstable) (2016-10-26 r71594) >>>>>> >>>> Platform: x86_64-apple-darwin13.4.0 (64-bit) >>>>>> >>>> Running under: macOS Sierra 10.12.3 >>>>>> >>>> >>>>>> >>>> locale: >>>>>> >>>> [1] >>>>>> en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8 >>>>>> >>>> >>>>>> >>>> attached base packages: >>>>>> >>>> [1] stats4 parallel stats graphics grDevices utils >>>>>> >>>> datasets methods base >>>>>> >>>> >>>>>> >>>> other attached packages: >>>>>> >>>> [1] IRanges_2.9.19 S4Vectors_0.13.15 >>>>>> BiocGenerics_0.21.3 >>>>>> >>>> >>>>>> >>>>> smoothed$fitted[!smoothed$smoothed] <- y[!smoothed$smoothed] >>>>>> >>>>> >>>>>> >>>> >>>>>> >>>> *** caught segfault *** >>>>>> >>>> address 0x7fcdc31dffe0, cause 'memory not mapped' >>>>>> >>>> >>>>>> >>>> Possible actions: >>>>>> >>>> 1: abort (with core dump, if enabled) >>>>>> >>>> 2: normal R exit >>>>>> >>>> 3: exit R without saving workspace >>>>>> >>>> 4: exit R saving workspace >>>>>> >>>> >>>>>> >>>> >>>>>> >>>> ## No problems on Linux >>>>>> >>>> >>>>>> >>>> library('IRanges') >>>>>> >>>>> y <- Rle(runif(10, 1, 1)) >>>>>> >>>>> smoothed <- list('fitted' = matrix(NA, ncol = 1, nrow = 10), >>>>>> >>>>> >>>>>> >>>> + 'smoothed' = rep(FALSE, 10), smoother = 'loess') >>>>>> >>>> >>>>>> >>>>> >>>>>> >>>>> sessionInfo() >>>>>> >>>>> >>>>>> >>>> R version 3.3.1 Patched (2016-09-30 r71426) >>>>>> >>>> Platform: x86_64-pc-linux-gnu (64-bit) >>>>>> >>>> Running under: Red Hat Enterprise Linux Server release 6.6 >>>>>> (Santiago) >>>>>> >>>> >>>>>> >>>> locale: >>>>>> >>>> [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C >>>>>> >>>> [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8 >>>>>> >>>> [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8 >>>>>> >>>> [7] LC_PAPER=en_US.UTF-8 LC_NAME=C >>>>>> >>>> [9] LC_ADDRESS=C LC_TELEPHONE=C >>>>>> >>>> [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C >>>>>> >>>> >>>>>> >>>> attached base packages: >>>>>> >>>> [1] stats4 parallel stats graphics grDevices >>>>>> datasets utils >>>>>> >>>> [8] methods base >>>>>> >>>> >>>>>> >>>> other attached packages: >>>>>> >>>> [1] IRanges_2.8.2 S4Vectors_0.12.2 >>>>>> BiocGenerics_0.20.0 >>>>>> >>>> [4] colorout_1.1-2 >>>>>> >>>> >>>>>> >>>> loaded via a namespace (and not attached): >>>>>> >>>> [1] tools_3.3.1 >>>>>> >>>> >>>>>> >>>>> smoothed$fitted[!smoothed$smoothed] <- y[!smoothed$smoothed] >>>>>> >>>>> >>>>>> >>>> >>>>>> >>>> >>>>>> >>>> Best, >>>>>> >>>> Leo >>>>>> >>>> >>>>>> >>>> >>>>>> >>>> >>>>>> >>>> The session information for my first tests is below: >>>>>> >>>> >>>>>> >>>> devtools::session_info() >>>>>> >>>>> >>>>>> >>>> Session info >>>>>> >>>> ------------------------------------------------------------ >>>>>> >>>> ----------------------------------------------- >>>>>> >>>> >>>>>> >>>> setting value >>>>>> >>>> version R Under development (unstable) (2016-10-26 r71594) >>>>>> >>>> system x86_64, darwin13.4.0 >>>>>> >>>> ui X11 >>>>>> >>>> language (EN) >>>>>> >>>> collate en_US.UTF-8 >>>>>> >>>> tz America/New_York >>>>>> >>>> date 2017-03-21 >>>>>> >>>> >>>>>> >>>> Packages >>>>>> >>>> ------------------------------------------------------------ >>>>>> >>>> --------------------------------------------------- >>>>>> >>>> >>>>>> >>>> package * version date source >>>>>> >>>> acepack 1.4.1 2016-10-29 CRAN (R 3.4.0) >>>>>> >>>> AnnotationDbi 1.37.4 2017-03-10 Bioconductor >>>>>> >>>> assertthat 0.1 2013-12-06 CRAN (R 3.4.0) >>>>>> >>>> backports 1.0.5 2017-01-18 CRAN (R 3.4.0) >>>>>> >>>> base64enc 0.1-3 2015-07-28 CRAN (R 3.4.0) >>>>>> >>>> Biobase 2.35.1 2017-02-23 Bioconductor >>>>>> >>>> BiocGenerics * 0.21.3 2017-01-12 Bioconductor >>>>>> >>>> BiocParallel 1.9.5 2017-01-24 Bioconductor >>>>>> >>>> biomaRt 2.31.4 2017-01-13 Bioconductor >>>>>> >>>> Biostrings 2.43.5 2017-03-19 cran (@2.43.5) >>>>>> >>>> bitops 1.0-6 2013-08-17 CRAN (R 3.4.0) >>>>>> >>>> BSgenome 1.43.7 2017-02-24 Bioconductor >>>>>> >>>> bumphunter * 1.15.0 2016-10-23 Bioconductor >>>>>> >>>> checkmate 1.8.2 2016-11-02 CRAN (R 3.4.0) >>>>>> >>>> cluster 2.0.6 2017-03-16 CRAN (R 3.4.0) >>>>>> >>>> codetools 0.2-15 2016-10-05 CRAN (R 3.4.0) >>>>>> >>>> colorout * 1.1-2 2016-11-15 Github >>>>>> >>>> (jalvesaq/colorout@6d84420) >>>>>> >>>> colorspace 1.3-2 2016-12-14 CRAN (R 3.4.0) >>>>>> >>>> crayon 1.3.2 2016-06-28 CRAN (R 3.4.0) >>>>>> >>>> data.table 1.10.4 2017-02-01 CRAN (R 3.4.0) >>>>>> >>>> DBI 0.6 2017-03-09 CRAN (R 3.4.0) >>>>>> >>>> DelayedArray 0.1.7 2017-02-17 Bioconductor >>>>>> >>>> derfinder * 1.9.10 2017-03-17 cran (@1.9.10) >>>>>> >>>> derfinderHelper 1.9.4 2017-03-07 Bioconductor >>>>>> >>>> devtools 1.12.0 2016-12-05 CRAN (R 3.4.0) >>>>>> >>>> digest 0.6.12 2017-01-27 CRAN (R 3.4.0) >>>>>> >>>> doRNG 1.6 2014-03-07 CRAN (R 3.4.0) >>>>>> >>>> foreach * 1.4.3 2015-10-13 CRAN (R 3.4.0) >>>>>> >>>> foreign 0.8-67 2016-09-13 CRAN (R 3.4.0) >>>>>> >>>> Formula 1.2-1 2015-04-07 CRAN (R 3.4.0) >>>>>> >>>> GenomeInfoDb * 1.11.9 2017-02-08 Bioconductor >>>>>> >>>> GenomeInfoDbData 0.99.0 2017-02-14 Bioconductor >>>>>> >>>> GenomicAlignments 1.11.12 2017-03-16 cran (@1.11.12) >>>>>> >>>> GenomicFeatures 1.27.10 2017-03-16 cran (@1.27.10) >>>>>> >>>> GenomicFiles 1.11.4 2017-03-10 Bioconductor >>>>>> >>>> GenomicRanges * 1.27.23 2017-02-25 Bioconductor >>>>>> >>>> ggplot2 2.2.1 2016-12-30 CRAN (R 3.4.0) >>>>>> >>>> gridExtra 2.2.1 2016-02-29 CRAN (R 3.4.0) >>>>>> >>>> gtable 0.2.0 2016-02-26 CRAN (R 3.4.0) >>>>>> >>>> Hmisc 4.0-2 2016-12-31 CRAN (R 3.4.0) >>>>>> >>>> htmlTable 1.9 2017-01-26 CRAN (R 3.4.0) >>>>>> >>>> htmltools 0.3.5 2016-03-21 CRAN (R 3.4.0) >>>>>> >>>> htmlwidgets 0.8 2016-11-09 CRAN (R 3.4.0) >>>>>> >>>> IRanges * 2.9.19 2017-03-15 cran (@2.9.19) >>>>>> >>>> iterators * 1.0.8 2015-10-13 CRAN (R 3.4.0) >>>>>> >>>> knitr 1.15.1 2016-11-22 CRAN (R 3.4.0) >>>>>> >>>> lattice 0.20-34 2016-09-06 CRAN (R 3.4.0) >>>>>> >>>> latticeExtra 0.6-28 2016-02-09 CRAN (R 3.4.0) >>>>>> >>>> lazyeval 0.2.0 2016-06-12 CRAN (R 3.4.0) >>>>>> >>>> locfit * 1.5-9.1 2013-04-20 CRAN (R 3.4.0) >>>>>> >>>> magrittr 1.5 2014-11-22 CRAN (R 3.4.0) >>>>>> >>>> Matrix 1.2-8 2017-01-20 CRAN (R 3.4.0) >>>>>> >>>> matrixStats 0.51.0 2016-10-09 CRAN (R 3.4.0) >>>>>> >>>> memoise 1.0.0 2016-01-29 CRAN (R 3.4.0) >>>>>> >>>> munsell 0.4.3 2016-02-13 CRAN (R 3.4.0) >>>>>> >>>> nnet 7.3-12 2016-02-02 CRAN (R 3.4.0) >>>>>> >>>> pkgmaker 0.22 2014-05-14 CRAN (R 3.4.0) >>>>>> >>>> plyr 1.8.4 2016-06-08 CRAN (R 3.4.0) >>>>>> >>>> qvalue 2.7.0 2016-10-23 Bioconductor >>>>>> >>>> R6 2.2.0 2016-10-05 CRAN (R 3.4.0) >>>>>> >>>> RColorBrewer 1.1-2 2014-12-07 CRAN (R 3.4.0) >>>>>> >>>> Rcpp 0.12.10 2017-03-19 CRAN (R 3.4.0) >>>>>> >>>> RCurl 1.95-4.8 2016-03-01 CRAN (R 3.4.0) >>>>>> >>>> registry 0.3 2015-07-08 CRAN (R 3.4.0) >>>>>> >>>> reshape2 1.4.2 2016-10-22 CRAN (R 3.4.0) >>>>>> >>>> rngtools 1.2.4 2014-03-06 CRAN (R 3.4.0) >>>>>> >>>> rpart 4.1-10 2015-06-29 CRAN (R 3.4.0) >>>>>> >>>> Rsamtools 1.27.13 2017-03-14 cran (@1.27.13) >>>>>> >>>> RSQLite 1.1-2 2017-01-08 CRAN (R 3.4.0) >>>>>> >>>> rtracklayer 1.35.9 2017-03-19 cran (@1.35.9) >>>>>> >>>> S4Vectors * 0.13.15 2017-02-14 cran (@0.13.15) >>>>>> >>>> scales 0.4.1 2016-11-09 CRAN (R 3.4.0) >>>>>> >>>> stringi 1.1.2 2016-10-01 CRAN (R 3.4.0) >>>>>> >>>> stringr 1.2.0 2017-02-18 CRAN (R 3.4.0) >>>>>> >>>> SummarizedExperiment 1.5.7 2017-02-23 Bioconductor >>>>>> >>>> survival 2.41-2 2017-03-16 CRAN (R 3.4.0) >>>>>> >>>> testthat * 1.0.2 2016-04-23 CRAN (R 3.4.0) >>>>>> >>>> tibble 1.2 2016-08-26 CRAN (R 3.4.0) >>>>>> >>>> VariantAnnotation 1.21.17 2017-02-12 Bioconductor >>>>>> >>>> withr 1.0.2 2016-06-20 CRAN (R 3.4.0) >>>>>> >>>> XML 3.98-1.5 2016-11-10 CRAN (R 3.4.0) >>>>>> >>>> xtable 1.8-2 2016-02-05 CRAN (R 3.4.0) >>>>>> >>>> XVector 0.15.2 2017-02-02 Bioconductor >>>>>> >>>> zlibbioc 1.21.0 2016-10-23 Bioconductor >>>>>> >>>> >>>>>> >>>> _______________________________________________ >>>>>> >>>> Bioc-devel@r-project.org mailing list >>>>>> >>>> https://urldefense.proofpoint.com/v2/url?u=https-3A__stat.et >>>>>> >>>> hz.ch_mailman_listinfo_bioc-2Ddevel&d=DwIGaQ&c=eRAMFD45gAfqt >>>>>> >>>> 84VtBcfhQ&r=BK7q3XeAvimeWdGbWY_wJYbW0WYiZvSXAJJKaaPhzWA&m= >>>>>> >>>> Bw-1Kqy-M_t4kmpYWTpYkt5bvj_eTpxriUM3UvtOIzQ&s=hEBTd8bPfLVp6H >>>>>> >>>> oN3XSBk6ppmeRZhdLoB8VseYM_Byk&e= >>>>>> >>>> >>>>>> >>>> >>>>>> >>>> >>>>>> >>> >>>>>> >> >>>>>> >> This email message may contain legally privileged >>>>>> and/or...{{dropped:2}} >>>>>> >> >>>>>> >> >>>>>> >> _______________________________________________ >>>>>> >> Bioc-devel@r-project.org mailing list >>>>>> >> >>>>>> >>>>>> >>>>>> https://urldefense.proofpoint.com/v2/url?u=https-3A__stat.ethz.ch_mailman_listinfo_bioc-2Ddevel&d=DwIGaQ&c=eRAMFD45gAfqt84VtBcfhQ&r=BK7q3XeAvimeWdGbWY_wJYbW0WYiZvSXAJJKaaPhzWA&m=ILfV0tHrE_BxAkWYlvUUwWcBdBdtVD7BlEljGiO3WbY&s=TAyV6oTRVnq_7U29cOp53zyNEu6sSL7iaaCRECw2YVs&e= >>>>>> >>>>>> >> >>>>>> >>>>>> > [[alternative HTML version deleted]] >>>>>> >>>>>> > _______________________________________________ >>>>>> > Bioc-devel@r-project.org mailing list >>>>>> > >>>>>> >>>>>> >>>>>> https://urldefense.proofpoint.com/v2/url?u=https-3A__stat.ethz.ch_mailman_listinfo_bioc-2Ddevel&d=DwIGaQ&c=eRAMFD45gAfqt84VtBcfhQ&r=BK7q3XeAvimeWdGbWY_wJYbW0WYiZvSXAJJKaaPhzWA&m=ILfV0tHrE_BxAkWYlvUUwWcBdBdtVD7BlEljGiO3WbY&s=TAyV6oTRVnq_7U29cOp53zyNEu6sSL7iaaCRECw2YVs&e= >>>>>> >>>>>> >>>>>> _______________________________________________ >>>>>> Bioc-devel@r-project.org mailing list >>>>>> >>>>>> >>>>>> https://urldefense.proofpoint.com/v2/url?u=https-3A__stat.ethz.ch_mailman_listinfo_bioc-2Ddevel&d=DwIGaQ&c=eRAMFD45gAfqt84VtBcfhQ&r=BK7q3XeAvimeWdGbWY_wJYbW0WYiZvSXAJJKaaPhzWA&m=ILfV0tHrE_BxAkWYlvUUwWcBdBdtVD7BlEljGiO3WbY&s=TAyV6oTRVnq_7U29cOp53zyNEu6sSL7iaaCRECw2YVs&e= >>>>>> >>>>>> >>>>> >>>> >>>> >>>> This email message may contain legally privileged and/or...{{dropped:2}} >>>> >>>> _______________________________________________ >>>> Bioc-devel@r-project.org mailing list >>>> >>>> https://urldefense.proofpoint.com/v2/url?u=https-3A__stat.ethz.ch_mailman_listinfo_bioc-2Ddevel&d=DwIFaQ&c=eRAMFD45gAfqt84VtBcfhQ&r=BK7q3XeAvimeWdGbWY_wJYbW0WYiZvSXAJJKaaPhzWA&m=RPY3Djdcr6U0Wn55s72jyZEqDTHfRiT2ot-1pHjMBVQ&s=CtvTQ9rB8yHEYCbbLPsrRPopkPml1ZTkMplBhR0o_bI&e= > > > -- > Hervé Pagès > > Program in Computational Biology > Division of Public Health Sciences > Fred Hutchinson Cancer Research Center > 1100 Fairview Ave. N, M1-B514 > P.O. Box 19024 > Seattle, WA 98109-1024 > > E-mail: hpa...@fredhutch.org > Phone: (206) 667-5791 > Fax: (206) 667-1319 >
_______________________________________________ Bioc-devel@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/bioc-devel