Yea I will have to port the recent fixes.

On Wed, Mar 29, 2017 at 11:32 PM, Hervé Pagès <hpa...@fredhutch.org> wrote:
> On 03/27/2017 09:43 AM, Michael Lawrence wrote:
>>
>> I committed a fix into R trunk with a regression test.
>
>
> Thanks Michael. Any chance you can port the fix to the 3.4 branch?
>
> H.
>
>>
>> On Mon, Mar 27, 2017 at 8:41 AM, Michael Lawrence <micha...@gene.com>
>> wrote:
>>>
>>> My bad guys, I'll fix when I get to work.
>>>
>>> On Mon, Mar 27, 2017 at 3:59 AM, Martin Morgan
>>> <martin.mor...@roswellpark.org> wrote:
>>>>
>>>> On 03/22/2017 01:12 PM, Hervé Pagès wrote:
>>>>>
>>>>>
>>>>> Hi Martin,
>>>>>
>>>>> On 03/22/2017 03:17 AM, Martin Maechler wrote:
>>>>>>>>>>>
>>>>>>>>>>>
>>>>>>>>>>> Andrzej Oleś <andrzej.o...@gmail.com>
>>>>>>>>>>>     on Wed, 22 Mar 2017 10:29:57 +0100 writes:
>>>>>>
>>>>>>
>>>>>>
>>>>>>     > Just for the record, on R-3.3.2 Herve's code fails with the
>>>>>> following error:
>>>>>>     > Error in x[TRUE] <- new("A") :
>>>>>>     > incompatible types (from S4 to logical) in subassignment type
>>>>>> fix
>>>>>>
>>>>>> yes, (of course).... and I would be interested in a small
>>>>>> reproducible example which uses _valid_ code.
>>>>>
>>>>>
>>>>>
>>>>> Looks like before performing the subassignment itself, [<- first tries
>>>>> to coerce the RHS to the "mode" of the LHS by calling as.vector() on
>>>>> the
>>>>> former. So if we define an as.vector S3 method for A objects:
>>>>>
>>>>>   setClass("A", representation(stuff="numeric"))
>>>>>   as.vector.A <- function (x, mode="any") x@stuff
>>>>>   a <- new("A", stuff=c(3.5, 0.1))
>>>>>   x <- numeric(10)
>>>>>   x[3:4] <- a
>>>>
>>>>
>>>>
>>>> The relevant stack trace is
>>>>
>>>>   * frame #0: 0x000000010dded77a
>>>> libR.dylib`R_has_methods(op=<unavailable>)
>>>> + 74 at objects.c:1415
>>>>     frame #1: 0x000000010ddaabf4
>>>> libR.dylib`Rf_DispatchOrEval(call=0x00007fcea36f68a8,
>>>> op=0x00007fcea201a178,
>>>> generic=0x000000010df0a185, args=<unavailable>, rho=0x00007fcea2053318,
>>>> ans=0x00007fff51f60c48, dropmissing=<unavailable>, argsevald=1) + 404 at
>>>> eval.c:3150
>>>>     frame #2: 0x000000010de4e658 libR.dylib`SubassignTypeFix [inlined]
>>>> dispatch_asvector(x=<unavailable>, call=0x00007fcea36f68a8,
>>>> rho=0x00007fcea2053318) + 295 at subassign.c:283
>>>>
>>>>
>>>> The segfault is at objects.c:1415
>>>>
>>>>     offset = PRIMOFFSET(op);
>>>>     if(offset > curMaxOffset || prim_methods[offset] == NO_METHODS
>>>>        || prim_methods[offset] == SUPPRESSED)
>>>>
>>>> where offset is negative and prim_methods[offset] fails.
>>>>
>>>> (lldb) p *op
>>>> (SEXPREC) $8 = {
>>>>   sxpinfo = (type = 0, obj = 0, named = 2, gp = 0, mark = 1, debug = 0,
>>>> trace = 0, spare = 0, gcgen = 1, gccls = 0)
>>>>   attrib = 0x00007fcea201a178
>>>>   gengc_next_node = 0x00007fcea21874e8
>>>>   gengc_prev_node = 0x00007fcea2019ff0
>>>>   u = {
>>>>     primsxp = (offset = -1576951432)
>>>>     symsxp = {
>>>>
>>>>
>>>> 'op' is assigned from subassign.c:287, op = R_Primitive("as.vector")
>>>>
>>>> static Rboolean dispatch_asvector(SEXP *x, SEXP call, SEXP rho) {
>>>>     static SEXP op = NULL;
>>>>     SEXP args;
>>>>     Rboolean ans;
>>>>     if (op == NULL)
>>>>         op = R_Primitive("as.vector");
>>>>     PROTECT(args = list2(*x, mkString("any")));
>>>>     ans = DispatchOrEval(call, op, "as.vector", args, rho, x, 0, 1);
>>>>     UNPROTECT(1);
>>>>     return ans;
>>>> }
>>>>
>>>> But as.vector is not a primitive, so gets R_NilValue. This is passed to
>>>> DispatchOrEval, and then to R_has_methods.
>>>>
>>>> It seems like dispatch_asvector() was introduced by
>>>>
>>>> $ svn log -c69747
>>>> ------------------------------------------------------------------------
>>>> r69747 | lawrence | 2015-12-09 09:04:56 -0500 (Wed, 09 Dec 2015) | 3
>>>> lines
>>>>
>>>> subassignment of an S4 value into an atomic vector coerces the value
>>>> with as.vector
>>>>
>>>> ------------------------------------------------------------------------
>>>>
>>>> So maybe Michael can tell us about his thinking here.
>>>>
>>>> Also, should R_has_methods be robust to R_NilValue? And R_NilValue
>>>> explicitly zero it's data?
>>>>
>>>> Martin
>>>>
>>>>
>>>>
>>>>>
>>>>> then the code is now valid and we still get the segfault on Mac.
>>>>>
>>>>> I didn't define as.vector.A in my original minimalist reproducible
>>>>> code in order to keep it as simple as possible.
>>>>>
>>>>> H.
>>>>>
>>>>>
>>>>>> We have seen such examples with something (more complicated
>>>>>> than, but basically like)
>>>>>>
>>>>>>   df <- data.frame(x=1:5, y=5:1, m=matrix(-pi*1:30, 5,6))
>>>>>>   M <- Matrix::Matrix(exp(0:3),2)
>>>>>>   df[1:2,1:2] <- M
>>>>>>
>>>>>> which actually calls `[<-`, and then `[<-.data.frame`  and
>>>>>> always works for me but does seg.fault (in the CRAN checks of
>>>>>> package FastImputation (on 3 of the dozen platforms,
>>>>>>
>>>>>>
>>>>>> https://urldefense.proofpoint.com/v2/url?u=https-3A__cran.r-2Dproject.org_web_checks_check-5Fresults-5FFastImputation.html&d=DwIGaQ&c=eRAMFD45gAfqt84VtBcfhQ&r=BK7q3XeAvimeWdGbWY_wJYbW0WYiZvSXAJJKaaPhzWA&m=ILfV0tHrE_BxAkWYlvUUwWcBdBdtVD7BlEljGiO3WbY&s=zUahQYlBHRwNf6lPnSA1515Rm-iL5ffQI7hUcDW-JkE&e=
>>>>>>
>>>>>>
>>>>>> one of them is
>>>>>>
>>>>>>
>>>>>>
>>>>>> https://urldefense.proofpoint.com/v2/url?u=https-3A__www.r-2Dproject.org_nosvn_R.check_r-2Ddevel-2Dmacos-2Dx86-5F64-2Dclang_FastImputation-2D00check.html&d=DwIGaQ&c=eRAMFD45gAfqt84VtBcfhQ&r=BK7q3XeAvimeWdGbWY_wJYbW0WYiZvSXAJJKaaPhzWA&m=ILfV0tHrE_BxAkWYlvUUwWcBdBdtVD7BlEljGiO3WbY&s=Z7LkVlUzmdmhqxGNFl4LuMVxYwQQGHSV7KdpKCJu12k&e=
>>>>>>
>>>>>>
>>>>>> I strongly suspect this is the same bug as yours, but for a case
>>>>>> where the correct behavior is *not* giving an error.
>>>>>>
>>>>>> I have also written and shown  Herve's example  to the R-core team.
>>>>>>
>>>>>> Unfortunately, I have no platform where I can trigger the bug.
>>>>>> Martin
>>>>>>
>>>>>>
>>>>>>
>>>>>>     > Cheers,
>>>>>>     > Andrzej
>>>>>>
>>>>>>
>>>>>>
>>>>>>     > On Wed, Mar 22, 2017 at 1:28 AM, Martin Morgan <
>>>>>>     > martin.mor...@roswellpark.org> wrote:
>>>>>>
>>>>>>     >> On 03/21/2017 08:21 PM, Hervé Pagès wrote:
>>>>>>     >>
>>>>>>     >>> Hi Leonardo,
>>>>>>     >>>
>>>>>>     >>> Thanks for hunting down and isolating that bug! I tried to
>>>>>> simplify
>>>>>>     >>> your code even more and was able to get a segfault with just:
>>>>>>     >>>
>>>>>>     >>> setClass("A", representation(stuff="numeric"))
>>>>>>     >>> x <- logical(10)
>>>>>>     >>> x[TRUE] <- new("A")
>>>>>>     >>>
>>>>>>     >>> I get the segfault about 50% of the time on a fresh R session
>>>>>> on Mac.
>>>>>>     >>> I tried this with R 3.3.3 on Mavericks, and with R devel
>>>>>> (r72372)
>>>>>>     >>> on El Capitan. I get the segfault on both.
>>>>>>     >>>
>>>>>>     >>> So it looks like a bug in the `[<-` primitive to me
>>>>>> (subassignment).
>>>>>>     >>>
>>>>>>     >>
>>>>>>     >> Any insight from
>>>>>>     >>
>>>>>>     >> R -d valgrind -f herve.R
>>>>>>     >>
>>>>>>     >> where herve.R contains the code above?
>>>>>>     >>
>>>>>>     >> Martin
>>>>>>     >>
>>>>>>     >>
>>>>>>     >>
>>>>>>     >>> Cheers,
>>>>>>     >>> H.
>>>>>>     >>>
>>>>>>     >>> On 03/21/2017 03:06 PM, Leonardo Collado Torres wrote:
>>>>>>     >>>
>>>>>>     >>>> Hi bioc-devel,
>>>>>>     >>>>
>>>>>>     >>>> This is a story about a bug that took me a long time to
>>>>>> trace. The
>>>>>>     >>>> behaviour was really weird, so I'm sharing the story in case
>>>>>> this
>>>>>>     >>>> helps others in the future. I was originally writing it to
>>>>>> request
>>>>>>     >>>> help, but then I was able to find the issue ^^. The story
>>>>>> ends right
>>>>>>     >>>> now with code that will reproduce the problem with '$<-' from
>>>>>>     >>>> IRanges/S4Vectors.
>>>>>>     >>>>
>>>>>>     >>>>
>>>>>>     >>>>
>>>>>>     >>>>
>>>>>>     >>>> During this Bioc cycle, frequently my package derfinder has
>>>>>> failed to
>>>>>>     >>>> pass R CMD check in OSX. The error is always the same when it
>>>>>> appears
>>>>>>     >>>> and sometimes it shows up in release, but not devel and
>>>>>> viceversa.
>>>>>>     >>>> Right now (3/21/2017) it's visible in both
>>>>>>     >>>> https://urldefense.proofpoint.com/v2/url?u=http-3A__biocondu
>>>>>>     >>>> ctor.org_checkResults_release_bioc-2DLATEST_derfinder_
>>>>>>     >>>> morelia-2Dchecksrc.html&d=DwIGaQ&c=eRAMFD45gAfqt84VtBcfh
>>>>>>     >>>> Q&r=BK7q3XeAvimeWdGbWY_wJYbW0WYiZvSXAJJKaaPhzWA&m=Bw-1Kqy-M_
>>>>>>     >>>> t4kmpYWTpYkt5bvj_eTpxriUM3UvtOIzQ&s=RS-lsygPtDdgWKAhjA2BcSLk
>>>>>>     >>>> Vy9RxxshXWAJaBZa_Yc&e=
>>>>>>     >>>>
>>>>>>     >>>> and
>>>>>>     >>>> https://urldefense.proofpoint.com/v2/url?u=http-3A__biocondu
>>>>>>     >>>> ctor.org_checkResults_devel_bioc-2DLATEST_derfinder_toluca
>>>>>>     >>>> 2-2Dchecksrc.html&d=DwIGaQ&c=eRAMFD45gAfqt84VtBcfhQ&r=BK7q3X
>>>>>>     >>>> eAvimeWdGbWY_wJYbW0WYiZvSXAJJKaaPhzWA&m=Bw-1Kqy-M_
>>>>>>     >>>> t4kmpYWTpYkt5bvj_eTpxriUM3UvtOIzQ&s=a_K-yK7w2LEV72lpHrpp0UoK
>>>>>>     >>>> Rru_7Aad74T5Uk0R-Fo&e=
>>>>>>     >>>> .
>>>>>>     >>>> The end of "test-all.Rout.fail" looks like this:
>>>>>>     >>>>
>>>>>>     >>>> Loading required package: foreach
>>>>>>     >>>> Loading required package: iterators
>>>>>>     >>>> Loading required package: locfit
>>>>>>     >>>> locfit 1.5-9.1 2013-03-22
>>>>>>     >>>> getSegments: segmenting
>>>>>>     >>>> getSegments: splitting
>>>>>>     >>>> 2017-03-20 02:36:52 findRegions: smoothing
>>>>>>     >>>> 2017-03-20 02:36:52 findRegions: identifying potential
>>>>>> segments
>>>>>>     >>>> 2017-03-20 02:36:52 findRegions: segmenting information
>>>>>>     >>>> 2017-03-20 02:36:52 .getSegmentsRle: segmenting with
>>>>>> cutoff(s)
>>>>>>     >>>> 16.3681899295041
>>>>>>     >>>> 2017-03-20 02:36:52 findRegions: identifying candidate
>>>>>> regions
>>>>>>     >>>> 2017-03-20 02:36:52 findRegions: identifying region clusters
>>>>>>     >>>> 2017-03-20 02:36:52 findRegions: smoothing
>>>>>>     >>>> 2017-03-20 02:36:52 findRegions: identifying potential
>>>>>> segments
>>>>>>     >>>> 2017-03-20 02:36:52 findRegions: segmenting information
>>>>>>     >>>> 2017-03-20 02:36:52 .getSegmentsRle: segmenting with
>>>>>> cutoff(s)
>>>>>>     >>>> 19.7936614060235
>>>>>>     >>>> 2017-03-20 02:36:52 findRegions: identifying candidate
>>>>>> regions
>>>>>>     >>>> 2017-03-20 02:36:52 findRegions: identifying region clusters
>>>>>>     >>>> 2017-03-20 02:36:52 findRegions: smoothing
>>>>>>     >>>>
>>>>>>     >>>> *** caught segfault ***
>>>>>>     >>>> address 0x7f87d2f917e0, cause 'memory not mapped'
>>>>>>     >>>>
>>>>>>     >>>> Traceback:
>>>>>>     >>>> 1: (function (y, x, cluster, weights, smoothFun, ...) {
>>>>>>     >>>> hostPackage <- environmentName(environment(smoothFun))
>>>>>>     >>>> requireNamespace(hostPackage)    smoothed <-
>>>>>> .runFunFormal(smoothFun,
>>>>>>     >>>> y = y, x = x, cluster = cluster,         weights = weights,
>>>>>> ...)    if
>>>>>>     >>>> (any(!smoothed$smoothed)) {
>>>>>> smoothed$fitted[!smoothed$smoothed]
>>>>>>     >>>> <- y[!smoothed$smoothed]    }    res <- Rle(smoothed$fitted)
>>>>>>     >>>> return(res)})(dots[[1L]][[1L]], dots[[2L]][[1L]],
>>>>>> dots[[3L]][[1L]],
>>>>>>     >>>> dots[[4L]][[1L]],     smoothFun = function (y, x = NULL,
>>>>>> cluster,
>>>>>>     >>>> weights = NULL,         minNum = 7, bpSpan = 1000, minInSpan
>>>>>> = 0,
>>>>>>     >>>> verbose = TRUE)     {        if (is.null(dim(y)))
>>>>>> y <-
>>>>>>     >>>> matrix(y, ncol = 1)        if (!is.null(weights) &&
>>>>>>     >>>> is.null(dim(weights)))             weights <- matrix(weights,
>>>>>> ncol =
>>>>>>     >>>> 1)        if (is.null(x))             x <- seq(along =
>>>>>> y)        if
>>>>>>     >>>> (is.null(weights))             weights <- matrix(1, nrow =
>>>>>> nrow(y),
>>>>>>     >>>> ncol = ncol(y))        Indexes <- split(seq(along = cluster),
>>>>>> cluster)
>>>>>>     >>>> clusterL <- sapply(Indexes, length)        smoothed <-
>>>>>>     >>>> rep(TRUE, nrow(y))        for (i in seq(along = Indexes)) {
>>>>>>     >>>> if (verbose)                 if (i%%10000 == 0)
>>>>>>     >>>> cat(".")            Index <- Indexes[[i]]            if
>>>>>> (clusterL[i]
>>>>>>     >>>>
>>>>>>     >>>>> = minNum & sum(rowSums(is.na(y[Index,                 , drop
>>>>>> =
>>>>>>     >>>>>
>>>>>>     >>>> FALSE])) == 0) >= minNum) {                nn <-
>>>>>>     >>>> minInSpan/length(Index)                for (j in 1:ncol(y)) {
>>>>>>     >>>> sdata <- data.frame(pos = x[Index], y = y[Index,
>>>>>>     >>>> j], weights = weights[Index, j])                  fit <-
>>>>>>     >>>> locfit(y ˜ lp(pos, nn = nn, h = bpSpan),
>>>>>> data =
>>>>>>     >>>> sdata, weights = weights, family = "gaussian",
>>>>>>     >>>> maxk = 10000)                  pp <- preplot(fit, where =
>>>>>> "data", band
>>>>>>     >>>> = "local",                     newdata = data.frame(pos =
>>>>>> x[Index]))
>>>>>>     >>>> y[Index, j] <- pp$trans(pp$fit)                }
>>>>>>     >>>> }            else {                y[Index, ] <- NA
>>>>>>     >>>> smoothed[Index] <- FALSE            }        }
>>>>>>     >>>> return(list(fitted = y, smoothed = smoothed, smoother =
>>>>>> "locfit"))
>>>>>>     >>>> }, verbose = TRUE, minNum = 1435)
>>>>>>     >>>> 2: .mapply(.FUN, dots, .MoreArgs)
>>>>>>     >>>> 3: FUN(...)
>>>>>>     >>>> 4: doTryCatch(return(expr), name, parentenv, handler)
>>>>>>     >>>> 5: tryCatchOne(expr, names, parentenv, handlers[[1L]])
>>>>>>     >>>> 6: tryCatchList(expr, classes, parentenv, handlers)
>>>>>>     >>>> 7: tryCatch({    FUN(...)}, error = handle_error)
>>>>>>     >>>> 8: withCallingHandlers({    tryCatch({        FUN(...)    },
>>>>>> error =
>>>>>>     >>>> handle_error)}, warning = handle_warning)
>>>>>>     >>>> 9: FUN(X[[i]], ...)
>>>>>>     >>>> 10: lapply(X, FUN, ...)
>>>>>>     >>>> 11: bplapply(X = seq_along(ddd[[1L]]), wrap, .FUN = FUN, .ddd
>>>>>> = ddd,
>>>>>>     >>>> .MoreArgs = MoreArgs, BPREDO = BPREDO, BPPARAM = BPPARAM)
>>>>>>     >>>> 12: bplapply(X = seq_along(ddd[[1L]]), wrap, .FUN = FUN, .ddd
>>>>>> = ddd,
>>>>>>     >>>> .MoreArgs = MoreArgs, BPREDO = BPREDO, BPPARAM = BPPARAM)
>>>>>>     >>>> 13: bpmapply(.smoothFstatsFun, fstatsChunks, posChunks,
>>>>>> clusterChunks,
>>>>>>     >>>> weightChunks, MoreArgs = list(smoothFun = smoothFunction,
>>>>>>     >>>> ...), BPPARAM = BPPARAM)
>>>>>>     >>>> 14: bpmapply(.smoothFstatsFun, fstatsChunks, posChunks,
>>>>>> clusterChunks,
>>>>>>     >>>> weightChunks, MoreArgs = list(smoothFun = smoothFunction,
>>>>>>     >>>> ...), BPPARAM = BPPARAM)
>>>>>>     >>>> 15: .smootherFstats(fstats = fstats, position = position,
>>>>>> weights =
>>>>>>     >>>> weights,     smoothFunction = smoothFunction, ...)
>>>>>>     >>>> 16: findRegions(prep$position, genomeFstats, "chr21", verbose
>>>>>> = TRUE,
>>>>>>     >>>> smooth = TRUE, minNum = 1435)
>>>>>>     >>>> 17: eval(exprs, env)
>>>>>>     >>>> 18: eval(exprs, env)
>>>>>>     >>>> 19: source_file(path, new.env(parent = env), chdir = TRUE)
>>>>>>     >>>> 20: force(code)
>>>>>>     >>>> 21: with_reporter(reporter = reporter, start_end_reporter =
>>>>>>     >>>> start_end_reporter,     {
>>>>>> lister$start_file(basename(path))
>>>>>>     >>>> source_file(path, new.env(parent = env), chdir = TRUE)
>>>>>>     >>>> end_context()    })
>>>>>>     >>>> 22: FUN(X[[i]], ...)
>>>>>>     >>>> 23: lapply(paths, test_file, env = env, reporter =
>>>>>> current_reporter,
>>>>>>     >>>> start_end_reporter = FALSE, load_helpers = FALSE)
>>>>>>     >>>> 24: force(code)
>>>>>>     >>>> 25: with_reporter(reporter = current_reporter, results <-
>>>>>>     >>>> lapply(paths,     test_file, env = env, reporter =
>>>>>> current_reporter,
>>>>>>     >>>> start_end_reporter = FALSE,     load_helpers = FALSE))
>>>>>>     >>>> 26: test_files(paths, reporter = reporter, env = env, ...)
>>>>>>     >>>> 27: test_dir(test_path, reporter = reporter, env = env,
>>>>>> filter =
>>>>>>     >>>> filter,     ...)
>>>>>>     >>>> 28: with_top_env(env, {    test_dir(test_path, reporter =
>>>>>> reporter,
>>>>>>     >>>> env = env, filter = filter,         ...)})
>>>>>>     >>>> 29: run_tests(package, test_path, filter, reporter, ...)
>>>>>>     >>>> 30: test_check("derfinder")
>>>>>>     >>>> An irrecoverable exception occurred. R is aborting now ...
>>>>>>     >>>>
>>>>>>     >>>> I was finally able to reproduce this error on my Mac OSX
>>>>>> laptop after
>>>>>>     >>>> running R CMD build and R CMD check (same options as in Bioc)
>>>>>> several
>>>>>>     >>>> times. It took me a while, but I figured out what's the exact
>>>>>> code
>>>>>>     >>>> that's failing. It can be reproduced (noting that it won't
>>>>>> always
>>>>>>     >>>> fail...) in OSX by running:
>>>>>>     >>>>
>>>>>>     >>>> library('derfinder')
>>>>>>     >>>> prep <- preprocessCoverage(genomeData, cutoff=0, scalefac=32,
>>>>>>     >>>> chunksize=1e3,
>>>>>>     >>>> colsubset=NULL)
>>>>>>     >>>> regs_s3 <- findRegions(prep$position, genomeFstats, 'chr21',
>>>>>>     >>>> verbose=TRUE, smooth = TRUE, minNum = 1435)
>>>>>>     >>>>
>>>>>>     >>>>
>>>>>>     >>>> Here is the output from my laptop one time it actually
>>>>>> failed:
>>>>>>     >>>>
>>>>>>     >>>> library('derfinder')
>>>>>>     >>>>>
>>>>>>     >>>> prep <- preprocessCoverage(genomeData, cutoff=0, scalefac=32,
>>>>>>     >>>> chunksize=1e3,
>>>>>>     >>>> colsubset=NULL)
>>>>>>     >>>>
>>>>>>     >>>>> prep <- preprocessCoverage(genomeData, cutoff=0,
>>>>>> scalefac=32,
>>>>>>     >>>>> chunksize=1e3,
>>>>>>     >>>>>
>>>>>>     >>>> +     colsubset=NULL)
>>>>>>     >>>>
>>>>>>     >>>>> regs_s3 <- findRegions(prep$position, genomeFstats, 'chr21',
>>>>>>     >>>>> verbose=TRUE, smooth = TRUE, minNum = 1435)
>>>>>>     >>>>>
>>>>>>     >>>> 2017-03-21 16:37:39 findRegions: smoothing
>>>>>>     >>>>
>>>>>>     >>>> *** caught segfault ***
>>>>>>     >>>> address 0x7f958dbf2be0, cause 'memory not mapped'
>>>>>>     >>>>
>>>>>>     >>>> Traceback:
>>>>>>     >>>> 1: (function (y, x, cluster, weights, smoothFun, ...) {
>>>>>>     >>>> hostPackage <- environmentName(environment(smoothFun))
>>>>>>     >>>> requireNamespace(hostPackage)    smoothed <-
>>>>>> .runFunFormal(smoothFun,
>>>>>>     >>>> y = y, x = x, cluster = cluster,         weights = weights,
>>>>>> ...)    if
>>>>>>     >>>> (any(!smoothed$smoothed)) {
>>>>>> smoothed$fitted[!smoothed$smoothed]
>>>>>>     >>>> <- y[!smoothed$smoothed]    }    res <- Rle(smoothed$fitted)
>>>>>>     >>>> return(res)})(dots[[1L]][[1L]], dots[[2L]][[1L]],
>>>>>> dots[[3L]][[1L]],
>>>>>>     >>>> dots[[4L]][[1L]],     smoothFun = function (y, x = NULL,
>>>>>> cluster,
>>>>>>     >>>> weights = NULL,         minNum = 7, bpSpan = 1000, minInSpan
>>>>>> = 0,
>>>>>>     >>>> verbose = TRUE)     {        if (is.null(dim(y)))
>>>>>> y <-
>>>>>>     >>>> matrix(y, ncol = 1)        if (!is.null(weights) &&
>>>>>>     >>>> is.null(dim(weights)))             weights <- matrix(weights,
>>>>>> ncol =
>>>>>>     >>>> 1)        if (is.null(x))             x <- seq(along =
>>>>>> y)        if
>>>>>>     >>>> (is.null(weights))             weights <- matrix(1, nrow =
>>>>>> nrow(y),
>>>>>>     >>>> ncol = ncol(y))        Indexes <- split(seq(along = cluster),
>>>>>> cluster)
>>>>>>     >>>> clusterL <- sapply(Indexes, length)        smoothed <-
>>>>>>     >>>> rep(TRUE, nrow(y))        for (i in seq(along = Indexes)) {
>>>>>>     >>>> if (verbose)                 if (i%%10000 == 0)
>>>>>>     >>>> cat(".")            Index <- Indexes[[i]]            if
>>>>>> (clusterL[i]
>>>>>>     >>>>
>>>>>>     >>>>> = minNum & sum(rowSums(is.na(y[Index,                 , drop
>>>>>> =
>>>>>>     >>>>>
>>>>>>     >>>> FALSE])) == 0) >= minNum) {                nn <-
>>>>>>     >>>> minInSpan/length(Index)                for (j in 1:ncol(y)) {
>>>>>>     >>>> sdata <- data.frame(pos = x[Index], y = y[Index,
>>>>>>     >>>> j], weights = weights[Index, j])                  fit <-
>>>>>>     >>>> locfit(y ~ lp(pos, nn = nn, h = bpSpan),
>>>>>> data =
>>>>>>     >>>> sdata, weights = weights, family = "gaussian",
>>>>>>     >>>> maxk = 10000)                  pp <- preplot(fit, where =
>>>>>> "data", band
>>>>>>     >>>> = "local",                     newdata = data.frame(pos =
>>>>>> x[Index]))
>>>>>>     >>>> y[Index, j] <- pp$trans(pp$fit)                }
>>>>>>     >>>> }            else {                y[Index, ] <- NA
>>>>>>     >>>> smoothed[Index] <- FALSE            }        }
>>>>>>     >>>> return(list(fitted = y, smoothed = smoothed, smoother =
>>>>>> "locfit"))
>>>>>>     >>>> }, verbose = TRUE, minNum = 1435)
>>>>>>     >>>> 2: .mapply(.FUN, dots, .MoreArgs)
>>>>>>     >>>> 3: FUN(...)
>>>>>>     >>>> 4: doTryCatch(return(expr), name, parentenv, handler)
>>>>>>     >>>> 5: tryCatchOne(expr, names, parentenv, handlers[[1L]])
>>>>>>     >>>> 6: tryCatchList(expr, classes, parentenv, handlers)
>>>>>>     >>>> 7: tryCatch({    FUN(...)}, error = handle_error)
>>>>>>     >>>> 8: withCallingHandlers({    tryCatch({        FUN(...)    },
>>>>>> error =
>>>>>>     >>>> handle_error)}, warning = handle_warning)
>>>>>>     >>>> 9: FUN(X[[i]], ...)
>>>>>>     >>>> 10: lapply(X, FUN, ...)
>>>>>>     >>>> 11: bplapply(X = seq_along(ddd[[1L]]), wrap, .FUN = FUN, .ddd
>>>>>> = ddd,
>>>>>>     >>>> .MoreArgs = MoreArgs, BPREDO = BPREDO, BPPARAM = BPPARAM)
>>>>>>     >>>> 12: bplapply(X = seq_along(ddd[[1L]]), wrap, .FUN = FUN, .ddd
>>>>>> = ddd,
>>>>>>     >>>> .MoreArgs = MoreArgs, BPREDO = BPREDO, BPPARAM = BPPARAM)
>>>>>>     >>>> 13: bpmapply(.smoothFstatsFun, fstatsChunks, posChunks,
>>>>>> clusterChunks,
>>>>>>     >>>> weightChunks, MoreArgs = list(smoothFun = smoothFunction,
>>>>>>     >>>> ...), BPPARAM = BPPARAM)
>>>>>>     >>>> 14: bpmapply(.smoothFstatsFun, fstatsChunks, posChunks,
>>>>>> clusterChunks,
>>>>>>     >>>> weightChunks, MoreArgs = list(smoothFun = smoothFunction,
>>>>>>     >>>> ...), BPPARAM = BPPARAM)
>>>>>>     >>>> 15: .smootherFstats(fstats = fstats, position = position,
>>>>>> weights =
>>>>>>     >>>> weights,     smoothFunction = smoothFunction, ...)
>>>>>>     >>>> 16: findRegions(prep$position, genomeFstats, "chr21", verbose
>>>>>> = TRUE,
>>>>>>     >>>> smooth = TRUE, minNum = 1435)
>>>>>>     >>>>
>>>>>>     >>>> Possible actions:
>>>>>>     >>>> 1: abort (with core dump, if enabled)
>>>>>>     >>>> 2: normal R exit
>>>>>>     >>>> 3: exit R without saving workspace
>>>>>>     >>>> 4: exit R saving workspace
>>>>>>     >>>>
>>>>>>     >>>> The traceback information ends at's
>>>>>> bumphunter::loessByCluster().
>>>>>>     >>>>
>>>>>>     >>>>
>>>>>>     >>>> I have successfully used the following code other times (see
>>>>>> below)
>>>>>>     >>>> where I test the culprit line 100 times. By successfully, I
>>>>>> mean that
>>>>>>     >>>> the code ran without problems... so it was unsuccessful at
>>>>>> reproducing
>>>>>>     >>>> the problem.
>>>>>>     >>>>
>>>>>>     >>>> library('derfinder')
>>>>>>     >>>> prep <- preprocessCoverage(genomeData, cutoff=0, scalefac=32,
>>>>>>     >>>> chunksize=1e3,
>>>>>>     >>>> colsubset=NULL)
>>>>>>     >>>>
>>>>>>     >>>> for(i in 1:100) {
>>>>>>     >>>> print(i)
>>>>>>     >>>> regs_s3 <- findRegions(prep$position, genomeFstats, 'chr21',
>>>>>>     >>>> verbose=TRUE, smooth = TRUE, minNum = 1435)
>>>>>>     >>>> }
>>>>>>     >>>> options(width = 120)
>>>>>>     >>>> devtools::session_info()
>>>>>>     >>>>
>>>>>>     >>>>
>>>>>>     >>>> I had several R processes open the one time it did fail, but
>>>>>> well,
>>>>>>     >>>> I've had multiple of them open the times that the code didn't
>>>>>> fail. So
>>>>>>     >>>> having multiple R processes doesn't seem to be an issue.
>>>>>>     >>>>
>>>>>>     >>>> The line that triggers the segfault is used simply to test
>>>>>> that
>>>>>>     >>>> passing the argument 'minNum' to bumphunter::loessByCluster()
>>>>>> via
>>>>>>     >>>> '...' works. It's not a relevant test for derfinder and I was
>>>>>> tempted
>>>>>>     >>>> to remove it, although before tracing the bug I talked with
>>>>>> Valerie
>>>>>>     >>>> about not removing it. With the upcoming Bioconductor release
>>>>>> I
>>>>>>     >>>> decided to finally trace the line that triggers the segfault.
>>>>>> At this
>>>>>>     >>>> point I was feeling lost...
>>>>>>     >>>>
>>>>>>     >>>>
>>>>>>     >>>> Running the following code seems to trigger the segfault more
>>>>>> often (I
>>>>>>     >>>> got it like 4 times in a row):
>>>>>>     >>>>
>>>>>>     >>>> library('derfinder')
>>>>>>     >>>> prep <- preprocessCoverage(genomeData, cutoff=0, scalefac=32,
>>>>>>     >>>> chunksize=1e3,
>>>>>>     >>>> colsubset=NULL)
>>>>>>     >>>> regs_s1 <- findRegions(prep$position, genomeFstats, 'chr21',
>>>>>>     >>>> verbose=TRUE, smooth = TRUE)
>>>>>>     >>>> regs_s2 <- findRegions(prep$position, genomeFstats, 'chr21',
>>>>>>     >>>> verbose=TRUE, smooth = TRUE, smoothFunction =
>>>>>>     >>>> bumphunter::runmedByCluster)
>>>>>>     >>>> regs_s3 <- findRegions(prep$position, genomeFstats, 'chr21',
>>>>>>     >>>> verbose=TRUE, smooth = TRUE, minNum = 1435)
>>>>>>     >>>>
>>>>>>     >>>> But then I can still run the same code without problems on a
>>>>>> for loop
>>>>>>     >>>> for 100 times:
>>>>>>     >>>>
>>>>>>     >>>> library('derfinder')
>>>>>>     >>>> prep <- preprocessCoverage(genomeData, cutoff=0, scalefac=32,
>>>>>>     >>>> chunksize=1e3,
>>>>>>     >>>> colsubset=NULL)
>>>>>>     >>>>
>>>>>>     >>>> for(i in 1:100) {
>>>>>>     >>>> print(i)
>>>>>>     >>>> regs_s1 <- findRegions(prep$position, genomeFstats, 'chr21',
>>>>>>     >>>> verbose=TRUE, smooth = TRUE)
>>>>>>     >>>> regs_s2 <- findRegions(prep$position, genomeFstats, 'chr21',
>>>>>>     >>>> verbose=TRUE, smooth = TRUE, smoothFunction =
>>>>>>     >>>> bumphunter::runmedByCluster)
>>>>>>     >>>> regs_s3 <- findRegions(prep$position, genomeFstats, 'chr21',
>>>>>>     >>>> verbose=TRUE, smooth = TRUE, minNum = 1435)
>>>>>>     >>>> }
>>>>>>     >>>> options(width = 120)
>>>>>>     >>>> devtools::session_info()
>>>>>>     >>>>
>>>>>>     >>>>
>>>>>>     >>>>
>>>>>>     >>>>
>>>>>>     >>>> I next thought of going through findRegions() to produce
>>>>>> simple
>>>>>>     >>>> objects that could reproduce the error. I had in mine sharing
>>>>>> these
>>>>>>     >>>> objects so it would be easier for others to help me figure
>>>>>> out what
>>>>>>     >>>> was failing. It turns out that this code segfaulted reliably
>>>>>> (all the
>>>>>>     >>>> times I tested it at least):
>>>>>>     >>>>
>>>>>>     >>>>
>>>>>>     >>>> library('derfinder')
>>>>>>     >>>> library('BiocParallel')
>>>>>>     >>>> library('IRanges')
>>>>>>     >>>> prep <- preprocessCoverage(genomeData, cutoff=0, scalefac=32,
>>>>>>     >>>> chunksize=1e3,
>>>>>>     >>>> colsubset=NULL)
>>>>>>     >>>> fstats <- genomeFstats
>>>>>>     >>>> position <- prep$position
>>>>>>     >>>> weights <- NULL
>>>>>>     >>>> cluster <- derfinder:::.clusterMakerRle(position, 300L)
>>>>>>     >>>> cluster
>>>>>>     >>>> BPPARAM <- SerialParam()
>>>>>>     >>>> iChunks <- rep(1, length(cluster))
>>>>>>     >>>>
>>>>>>     >>>> fstatsChunks <- split(fstats, iChunks)
>>>>>>     >>>> posChunks <- split(which(position), iChunks)
>>>>>>     >>>> clusterChunks <- split(cluster, iChunks)
>>>>>>     >>>> weightChunks <- vector('list', length =
>>>>>> length(unique(iChunks)))
>>>>>>     >>>>
>>>>>>     >>>> res <- bpmapply(bumphunter::loessByCluster, fstatsChunks,
>>>>>> posChunks,
>>>>>>     >>>> clusterChunks, weightChunks, MoreArgs = list(minNum = 1435),
>>>>>>     >>>> BPPARAM = BPPARAM, SIMPLIFY = FALSE)
>>>>>>     >>>>
>>>>>>     >>>> y <- fstatsChunks[[1]]
>>>>>>     >>>> smoothed <- res[[1]]
>>>>>>     >>>>
>>>>>>     >>>> ## This segfaults:
>>>>>>     >>>> if(any(!smoothed$smoothed)) {
>>>>>>     >>>> smoothed$fitted[!smoothed$smoothed] <- y[!smoothed$smoothed]
>>>>>>     >>>> }
>>>>>>     >>>>
>>>>>>     >>>>
>>>>>>     >>>> The objects on the line that fail are a list and an Rle:
>>>>>>     >>>>
>>>>>>     >>>> y
>>>>>>     >>>>>
>>>>>>     >>>> numeric-Rle of length 1434 with 358 runs
>>>>>>     >>>> Lengths:                    1                    5
>>>>>>     >>>> ...                    1
>>>>>>     >>>> Values :       5.109484425367     3.85228949953674 ...
>>>>>>     >>>> 3.99765511645983
>>>>>>     >>>>
>>>>>>     >>>>> lapply(smoothed, head)
>>>>>>     >>>>>
>>>>>>     >>>> $fitted
>>>>>>     >>>> [,1]
>>>>>>     >>>> [1,]   NA
>>>>>>     >>>> [2,]   NA
>>>>>>     >>>> [3,]   NA
>>>>>>     >>>> [4,]   NA
>>>>>>     >>>> [5,]   NA
>>>>>>     >>>> [6,]   NA
>>>>>>     >>>>
>>>>>>     >>>> $smoothed
>>>>>>     >>>> [1] FALSE FALSE FALSE FALSE FALSE FALSE
>>>>>>     >>>>
>>>>>>     >>>> $smoother
>>>>>>     >>>> [1] "loess"
>>>>>>     >>>>
>>>>>>     >>>>> table(!smoothed$smoothed)
>>>>>>     >>>>>
>>>>>>     >>>>
>>>>>>     >>>> TRUE
>>>>>>     >>>> 1434
>>>>>>     >>>>
>>>>>>     >>>>> y[!smoothed$smoothed]
>>>>>>     >>>>>
>>>>>>     >>>> numeric-Rle of length 1434 with 358 runs
>>>>>>     >>>> Lengths:                    1                    5
>>>>>>     >>>> ...                    1
>>>>>>     >>>> Values :       5.109484425367     3.85228949953674 ...
>>>>>>     >>>> 3.99765511645983
>>>>>>     >>>>
>>>>>>     >>>> So in my derfinder code I was assigning an Rle to a matrix,
>>>>>> and that
>>>>>>     >>>> was the segfault. I have no idea why this doesn't always fail
>>>>>> on OSX
>>>>>>     >>>> and why it never failed on Linux or Windows.
>>>>>>     >>>>
>>>>>>     >>>>
>>>>>>     >>>> This is the super simplified IRanges code that fails:
>>>>>>     >>>>
>>>>>>     >>>> library('IRanges')
>>>>>>     >>>> y <- Rle(runif(10, 1, 1))
>>>>>>     >>>> smoothed <- list('fitted' = matrix(NA, ncol = 1, nrow = 10),
>>>>>>     >>>> 'smoothed' = rep(FALSE, 10), smoother = 'loess')
>>>>>>     >>>> sessionInfo()
>>>>>>     >>>> smoothed$fitted[!smoothed$smoothed] <- y[!smoothed$smoothed]
>>>>>>     >>>>
>>>>>>     >>>> ## Segfault on OSX
>>>>>>     >>>>
>>>>>>     >>>> library('IRanges')
>>>>>>     >>>>> y <- Rle(runif(10, 1, 1))
>>>>>>     >>>>> smoothed <- list('fitted' = matrix(NA, ncol = 1, nrow = 10),
>>>>>>     >>>>>
>>>>>>     >>>> +     'smoothed' = rep(FALSE, 10), smoother = 'loess')
>>>>>>     >>>>
>>>>>>     >>>>>
>>>>>>     >>>>> sessionInfo()
>>>>>>     >>>>>
>>>>>>     >>>> R Under development (unstable) (2016-10-26 r71594)
>>>>>>     >>>> Platform: x86_64-apple-darwin13.4.0 (64-bit)
>>>>>>     >>>> Running under: macOS Sierra 10.12.3
>>>>>>     >>>>
>>>>>>     >>>> locale:
>>>>>>     >>>> [1]
>>>>>> en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
>>>>>>     >>>>
>>>>>>     >>>> attached base packages:
>>>>>>     >>>> [1] stats4    parallel  stats     graphics  grDevices utils
>>>>>>     >>>> datasets  methods   base
>>>>>>     >>>>
>>>>>>     >>>> other attached packages:
>>>>>>     >>>> [1] IRanges_2.9.19      S4Vectors_0.13.15
>>>>>> BiocGenerics_0.21.3
>>>>>>     >>>>
>>>>>>     >>>>> smoothed$fitted[!smoothed$smoothed] <- y[!smoothed$smoothed]
>>>>>>     >>>>>
>>>>>>     >>>>
>>>>>>     >>>> *** caught segfault ***
>>>>>>     >>>> address 0x7fcdc31dffe0, cause 'memory not mapped'
>>>>>>     >>>>
>>>>>>     >>>> Possible actions:
>>>>>>     >>>> 1: abort (with core dump, if enabled)
>>>>>>     >>>> 2: normal R exit
>>>>>>     >>>> 3: exit R without saving workspace
>>>>>>     >>>> 4: exit R saving workspace
>>>>>>     >>>>
>>>>>>     >>>>
>>>>>>     >>>> ## No problems on Linux
>>>>>>     >>>>
>>>>>>     >>>> library('IRanges')
>>>>>>     >>>>> y <- Rle(runif(10, 1, 1))
>>>>>>     >>>>> smoothed <- list('fitted' = matrix(NA, ncol = 1, nrow = 10),
>>>>>>     >>>>>
>>>>>>     >>>> +     'smoothed' = rep(FALSE, 10), smoother = 'loess')
>>>>>>     >>>>
>>>>>>     >>>>>
>>>>>>     >>>>> sessionInfo()
>>>>>>     >>>>>
>>>>>>     >>>> R version 3.3.1 Patched (2016-09-30 r71426)
>>>>>>     >>>> Platform: x86_64-pc-linux-gnu (64-bit)
>>>>>>     >>>> Running under: Red Hat Enterprise Linux Server release 6.6
>>>>>> (Santiago)
>>>>>>     >>>>
>>>>>>     >>>> locale:
>>>>>>     >>>> [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C
>>>>>>     >>>> [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8
>>>>>>     >>>> [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8
>>>>>>     >>>> [7] LC_PAPER=en_US.UTF-8       LC_NAME=C
>>>>>>     >>>> [9] LC_ADDRESS=C               LC_TELEPHONE=C
>>>>>>     >>>> [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
>>>>>>     >>>>
>>>>>>     >>>> attached base packages:
>>>>>>     >>>> [1] stats4    parallel  stats     graphics  grDevices
>>>>>> datasets  utils
>>>>>>     >>>> [8] methods   base
>>>>>>     >>>>
>>>>>>     >>>> other attached packages:
>>>>>>     >>>> [1] IRanges_2.8.2       S4Vectors_0.12.2
>>>>>> BiocGenerics_0.20.0
>>>>>>     >>>> [4] colorout_1.1-2
>>>>>>     >>>>
>>>>>>     >>>> loaded via a namespace (and not attached):
>>>>>>     >>>> [1] tools_3.3.1
>>>>>>     >>>>
>>>>>>     >>>>> smoothed$fitted[!smoothed$smoothed] <- y[!smoothed$smoothed]
>>>>>>     >>>>>
>>>>>>     >>>>
>>>>>>     >>>>
>>>>>>     >>>> Best,
>>>>>>     >>>> Leo
>>>>>>     >>>>
>>>>>>     >>>>
>>>>>>     >>>>
>>>>>>     >>>> The session information for my first tests is below:
>>>>>>     >>>>
>>>>>>     >>>> devtools::session_info()
>>>>>>     >>>>>
>>>>>>     >>>> Session info
>>>>>>     >>>> ------------------------------------------------------------
>>>>>>     >>>> -----------------------------------------------
>>>>>>     >>>>
>>>>>>     >>>> setting  value
>>>>>>     >>>> version  R Under development (unstable) (2016-10-26 r71594)
>>>>>>     >>>> system   x86_64, darwin13.4.0
>>>>>>     >>>> ui       X11
>>>>>>     >>>> language (EN)
>>>>>>     >>>> collate  en_US.UTF-8
>>>>>>     >>>> tz       America/New_York
>>>>>>     >>>> date     2017-03-21
>>>>>>     >>>>
>>>>>>     >>>> Packages
>>>>>>     >>>> ------------------------------------------------------------
>>>>>>     >>>> ---------------------------------------------------
>>>>>>     >>>>
>>>>>>     >>>> package              * version  date       source
>>>>>>     >>>> acepack                1.4.1    2016-10-29 CRAN (R 3.4.0)
>>>>>>     >>>> AnnotationDbi          1.37.4   2017-03-10 Bioconductor
>>>>>>     >>>> assertthat             0.1      2013-12-06 CRAN (R 3.4.0)
>>>>>>     >>>> backports              1.0.5    2017-01-18 CRAN (R 3.4.0)
>>>>>>     >>>> base64enc              0.1-3    2015-07-28 CRAN (R 3.4.0)
>>>>>>     >>>> Biobase                2.35.1   2017-02-23 Bioconductor
>>>>>>     >>>> BiocGenerics         * 0.21.3 2017-01-12 Bioconductor
>>>>>>     >>>> BiocParallel           1.9.5    2017-01-24 Bioconductor
>>>>>>     >>>> biomaRt                2.31.4   2017-01-13 Bioconductor
>>>>>>     >>>> Biostrings             2.43.5   2017-03-19 cran (@2.43.5)
>>>>>>     >>>> bitops                 1.0-6 2013-08-17 CRAN (R 3.4.0)
>>>>>>     >>>> BSgenome               1.43.7   2017-02-24 Bioconductor
>>>>>>     >>>> bumphunter           * 1.15.0 2016-10-23 Bioconductor
>>>>>>     >>>> checkmate              1.8.2    2016-11-02 CRAN (R 3.4.0)
>>>>>>     >>>> cluster                2.0.6    2017-03-16 CRAN (R 3.4.0)
>>>>>>     >>>> codetools              0.2-15 2016-10-05 CRAN (R 3.4.0)
>>>>>>     >>>> colorout             * 1.1-2    2016-11-15 Github
>>>>>>     >>>> (jalvesaq/colorout@6d84420)
>>>>>>     >>>> colorspace             1.3-2    2016-12-14 CRAN (R 3.4.0)
>>>>>>     >>>> crayon                 1.3.2    2016-06-28 CRAN (R 3.4.0)
>>>>>>     >>>> data.table             1.10.4   2017-02-01 CRAN (R 3.4.0)
>>>>>>     >>>> DBI                    0.6      2017-03-09 CRAN (R 3.4.0)
>>>>>>     >>>> DelayedArray           0.1.7 2017-02-17 Bioconductor
>>>>>>     >>>> derfinder            * 1.9.10   2017-03-17 cran (@1.9.10)
>>>>>>     >>>> derfinderHelper        1.9.4    2017-03-07 Bioconductor
>>>>>>     >>>> devtools               1.12.0 2016-12-05 CRAN (R 3.4.0)
>>>>>>     >>>> digest                 0.6.12 2017-01-27 CRAN (R 3.4.0)
>>>>>>     >>>> doRNG                  1.6      2014-03-07 CRAN (R 3.4.0)
>>>>>>     >>>> foreach              * 1.4.3    2015-10-13 CRAN (R 3.4.0)
>>>>>>     >>>> foreign                0.8-67 2016-09-13 CRAN (R 3.4.0)
>>>>>>     >>>> Formula                1.2-1    2015-04-07 CRAN (R 3.4.0)
>>>>>>     >>>> GenomeInfoDb         * 1.11.9   2017-02-08 Bioconductor
>>>>>>     >>>> GenomeInfoDbData       0.99.0 2017-02-14 Bioconductor
>>>>>>     >>>> GenomicAlignments      1.11.12  2017-03-16 cran (@1.11.12)
>>>>>>     >>>> GenomicFeatures        1.27.10  2017-03-16 cran (@1.27.10)
>>>>>>     >>>> GenomicFiles           1.11.4   2017-03-10 Bioconductor
>>>>>>     >>>> GenomicRanges        * 1.27.23  2017-02-25 Bioconductor
>>>>>>     >>>> ggplot2                2.2.1    2016-12-30 CRAN (R 3.4.0)
>>>>>>     >>>> gridExtra              2.2.1    2016-02-29 CRAN (R 3.4.0)
>>>>>>     >>>> gtable                 0.2.0 2016-02-26 CRAN (R 3.4.0)
>>>>>>     >>>> Hmisc                  4.0-2 2016-12-31 CRAN (R 3.4.0)
>>>>>>     >>>> htmlTable              1.9      2017-01-26 CRAN (R 3.4.0)
>>>>>>     >>>> htmltools              0.3.5 2016-03-21 CRAN (R 3.4.0)
>>>>>>     >>>> htmlwidgets            0.8      2016-11-09 CRAN (R 3.4.0)
>>>>>>     >>>> IRanges              * 2.9.19   2017-03-15 cran (@2.9.19)
>>>>>>     >>>> iterators            * 1.0.8    2015-10-13 CRAN (R 3.4.0)
>>>>>>     >>>> knitr                  1.15.1   2016-11-22 CRAN (R 3.4.0)
>>>>>>     >>>> lattice                0.20-34 2016-09-06 CRAN (R 3.4.0)
>>>>>>     >>>> latticeExtra           0.6-28 2016-02-09 CRAN (R 3.4.0)
>>>>>>     >>>> lazyeval               0.2.0 2016-06-12 CRAN (R 3.4.0)
>>>>>>     >>>> locfit               * 1.5-9.1  2013-04-20 CRAN (R 3.4.0)
>>>>>>     >>>> magrittr               1.5      2014-11-22 CRAN (R 3.4.0)
>>>>>>     >>>> Matrix                 1.2-8    2017-01-20 CRAN (R 3.4.0)
>>>>>>     >>>> matrixStats            0.51.0 2016-10-09 CRAN (R 3.4.0)
>>>>>>     >>>> memoise                1.0.0 2016-01-29 CRAN (R 3.4.0)
>>>>>>     >>>> munsell                0.4.3 2016-02-13 CRAN (R 3.4.0)
>>>>>>     >>>> nnet                   7.3-12   2016-02-02 CRAN (R 3.4.0)
>>>>>>     >>>> pkgmaker               0.22     2014-05-14 CRAN (R 3.4.0)
>>>>>>     >>>> plyr                   1.8.4    2016-06-08 CRAN (R 3.4.0)
>>>>>>     >>>> qvalue                 2.7.0 2016-10-23 Bioconductor
>>>>>>     >>>> R6                     2.2.0 2016-10-05 CRAN (R 3.4.0)
>>>>>>     >>>> RColorBrewer           1.1-2    2014-12-07 CRAN (R 3.4.0)
>>>>>>     >>>> Rcpp                   0.12.10  2017-03-19 CRAN (R 3.4.0)
>>>>>>     >>>> RCurl                  1.95-4.8 2016-03-01 CRAN (R 3.4.0)
>>>>>>     >>>> registry               0.3      2015-07-08 CRAN (R 3.4.0)
>>>>>>     >>>> reshape2               1.4.2    2016-10-22 CRAN (R 3.4.0)
>>>>>>     >>>> rngtools               1.2.4    2014-03-06 CRAN (R 3.4.0)
>>>>>>     >>>> rpart                  4.1-10   2015-06-29 CRAN (R 3.4.0)
>>>>>>     >>>> Rsamtools              1.27.13  2017-03-14 cran (@1.27.13)
>>>>>>     >>>> RSQLite                1.1-2    2017-01-08 CRAN (R 3.4.0)
>>>>>>     >>>> rtracklayer            1.35.9   2017-03-19 cran (@1.35.9)
>>>>>>     >>>> S4Vectors            * 0.13.15  2017-02-14 cran (@0.13.15)
>>>>>>     >>>> scales                 0.4.1 2016-11-09 CRAN (R 3.4.0)
>>>>>>     >>>> stringi                1.1.2    2016-10-01 CRAN (R 3.4.0)
>>>>>>     >>>> stringr                1.2.0 2017-02-18 CRAN (R 3.4.0)
>>>>>>     >>>> SummarizedExperiment   1.5.7    2017-02-23 Bioconductor
>>>>>>     >>>> survival               2.41-2   2017-03-16 CRAN (R 3.4.0)
>>>>>>     >>>> testthat             * 1.0.2    2016-04-23 CRAN (R 3.4.0)
>>>>>>     >>>> tibble                 1.2      2016-08-26 CRAN (R 3.4.0)
>>>>>>     >>>> VariantAnnotation      1.21.17  2017-02-12 Bioconductor
>>>>>>     >>>> withr                  1.0.2    2016-06-20 CRAN (R 3.4.0)
>>>>>>     >>>> XML                    3.98-1.5 2016-11-10 CRAN (R 3.4.0)
>>>>>>     >>>> xtable                 1.8-2    2016-02-05 CRAN (R 3.4.0)
>>>>>>     >>>> XVector                0.15.2 2017-02-02 Bioconductor
>>>>>>     >>>> zlibbioc               1.21.0 2016-10-23 Bioconductor
>>>>>>     >>>>
>>>>>>     >>>> _______________________________________________
>>>>>>     >>>> Bioc-devel@r-project.org mailing list
>>>>>>     >>>> https://urldefense.proofpoint.com/v2/url?u=https-3A__stat.et
>>>>>>     >>>> hz.ch_mailman_listinfo_bioc-2Ddevel&d=DwIGaQ&c=eRAMFD45gAfqt
>>>>>>     >>>> 84VtBcfhQ&r=BK7q3XeAvimeWdGbWY_wJYbW0WYiZvSXAJJKaaPhzWA&m=
>>>>>>     >>>> Bw-1Kqy-M_t4kmpYWTpYkt5bvj_eTpxriUM3UvtOIzQ&s=hEBTd8bPfLVp6H
>>>>>>     >>>> oN3XSBk6ppmeRZhdLoB8VseYM_Byk&e=
>>>>>>     >>>>
>>>>>>     >>>>
>>>>>>     >>>>
>>>>>>     >>>
>>>>>>     >>
>>>>>>     >> This email message may contain legally privileged
>>>>>> and/or...{{dropped:2}}
>>>>>>     >>
>>>>>>     >>
>>>>>>     >> _______________________________________________
>>>>>>     >> Bioc-devel@r-project.org mailing list
>>>>>>     >>
>>>>>>
>>>>>>
>>>>>> https://urldefense.proofpoint.com/v2/url?u=https-3A__stat.ethz.ch_mailman_listinfo_bioc-2Ddevel&d=DwIGaQ&c=eRAMFD45gAfqt84VtBcfhQ&r=BK7q3XeAvimeWdGbWY_wJYbW0WYiZvSXAJJKaaPhzWA&m=ILfV0tHrE_BxAkWYlvUUwWcBdBdtVD7BlEljGiO3WbY&s=TAyV6oTRVnq_7U29cOp53zyNEu6sSL7iaaCRECw2YVs&e=
>>>>>>
>>>>>>     >>
>>>>>>
>>>>>>     > [[alternative HTML version deleted]]
>>>>>>
>>>>>>     > _______________________________________________
>>>>>>     > Bioc-devel@r-project.org mailing list
>>>>>>     >
>>>>>>
>>>>>>
>>>>>> https://urldefense.proofpoint.com/v2/url?u=https-3A__stat.ethz.ch_mailman_listinfo_bioc-2Ddevel&d=DwIGaQ&c=eRAMFD45gAfqt84VtBcfhQ&r=BK7q3XeAvimeWdGbWY_wJYbW0WYiZvSXAJJKaaPhzWA&m=ILfV0tHrE_BxAkWYlvUUwWcBdBdtVD7BlEljGiO3WbY&s=TAyV6oTRVnq_7U29cOp53zyNEu6sSL7iaaCRECw2YVs&e=
>>>>>>
>>>>>>
>>>>>> _______________________________________________
>>>>>> Bioc-devel@r-project.org mailing list
>>>>>>
>>>>>>
>>>>>> https://urldefense.proofpoint.com/v2/url?u=https-3A__stat.ethz.ch_mailman_listinfo_bioc-2Ddevel&d=DwIGaQ&c=eRAMFD45gAfqt84VtBcfhQ&r=BK7q3XeAvimeWdGbWY_wJYbW0WYiZvSXAJJKaaPhzWA&m=ILfV0tHrE_BxAkWYlvUUwWcBdBdtVD7BlEljGiO3WbY&s=TAyV6oTRVnq_7U29cOp53zyNEu6sSL7iaaCRECw2YVs&e=
>>>>>>
>>>>>>
>>>>>
>>>>
>>>>
>>>> This email message may contain legally privileged and/or...{{dropped:2}}
>>>>
>>>> _______________________________________________
>>>> Bioc-devel@r-project.org mailing list
>>>>
>>>> https://urldefense.proofpoint.com/v2/url?u=https-3A__stat.ethz.ch_mailman_listinfo_bioc-2Ddevel&d=DwIFaQ&c=eRAMFD45gAfqt84VtBcfhQ&r=BK7q3XeAvimeWdGbWY_wJYbW0WYiZvSXAJJKaaPhzWA&m=RPY3Djdcr6U0Wn55s72jyZEqDTHfRiT2ot-1pHjMBVQ&s=CtvTQ9rB8yHEYCbbLPsrRPopkPml1ZTkMplBhR0o_bI&e=
>
>
> --
> Hervé Pagès
>
> Program in Computational Biology
> Division of Public Health Sciences
> Fred Hutchinson Cancer Research Center
> 1100 Fairview Ave. N, M1-B514
> P.O. Box 19024
> Seattle, WA 98109-1024
>
> E-mail: hpa...@fredhutch.org
> Phone:  (206) 667-5791
> Fax:    (206) 667-1319
>

_______________________________________________
Bioc-devel@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/bioc-devel

Reply via email to