Yes. Really cool. I have earlier seen significant differences between one-sided and two-sided race evaluation, but this is not one of the positions where it is off.
Some years ago, I used the same algorithm to calculate a full two-sided database for 15 checkers on 6 points. I can share it by bittorrent, or the generating code. The data file is 11 GB. -Øystein On Sun, 24 Mar 2019 15:00 Philippe Michel, <[email protected]> wrote: > On Thu, Mar 21, 2019 at 12:54:18PM +0100, Øystein Schønning-Johansen wrote: > > > Cubeless prob. of saving gammon: 0.129424 > > 16: 13/12 12/6 -> 0.913103 > > 16: 13/12 8/2 -> 0.938736 > > 16: 13/12 7/1 -> 0.942557 > > 16: 8/7 8/2 -> 0.984595 > > 16: 8/7 7/1 -> 0.984930 > > 16: 7/6 7/1 -> 0.922614 > > 61: 13/7 8/7 -> 0.984416 > > 61: 13/7 6/5 -> 0.984048 > > 61: 8/2 7/6 -> 0.915246 > > 61: 8/2 6/5 -> 0.984322 > > 61: 7/1 6/5 -> 0.984760 > > It looks like the one-sided bearoff database is accurate to at leat 3 > digits :-). > > > > > > 1. Cubeful 2-ply 13/6 Eq.: -2.201 > > > > > 0.000 0.000 0.000 - 1.000 0.913 0.000 > > > > > 2-ply cubeful prune [world class] > > > > > 2. Cubeful 2-ply 8/2 7/6 Eq.: -2.204 > > > (-0.003) > > > > > 0.000 0.000 0.000 - 1.000 0.915 0.000 > > > > > 2-ply cubeful prune [world class] > > > > > 3. Cubeful 2-ply 7/6 7/1 Eq.: -2.213 > > > (-0.013) > > > > > 0.000 0.000 0.000 - 1.000 0.923 0.000 > > > > > 2-ply cubeful prune [world class] > > > > > 4. Cubeful 2-ply 13/12 8/2 Eq.: -2.234 > > > (-0.034) > > > > > 0.000 0.000 0.000 - 1.000 0.939 0.000 > > > > > 2-ply cubeful prune [world class] > > > > > 5. Cubeful 2-ply 13/12 7/1 Eq.: -2.240 > > > (-0.039) > > > > > 0.000 0.000 0.000 - 1.000 0.943 0.000 > > > > > 2-ply cubeful prune [world class] > > > > > 6. Cubeful 2-ply 13/7 6/5 Eq.: -2.294 > > > (-0.093) > > > > > 0.000 0.000 0.000 - 1.000 0.984 0.000 > > > > > 2-ply cubeful prune [world class] >
_______________________________________________ Bug-gnubg mailing list [email protected] https://lists.gnu.org/mailman/listinfo/bug-gnubg
