I doubt there ever was a universal convention. When I was young, Rsym was calculated from the symmetry related reflections on a single film. With precession photography there could be a lot of them, but even the oscillation films often had many mates because the crystal was aligned with a symmetry axes along the spindle direction. Rmerge was the agreement of the measurements from different films from, maybe, multiple crystals. I think the mates in the Rsym calculation were a subset of those in the Rmerge calculation. Since there was an Rsym for each film, the average of all films was reported.
With today's data collection techniques I can't for the life of me figure out a reason for having both Rsym and Rmerge. Dale Tronrud Bart Hazes wrote: > For what it's worth, I've been told that Rmerge was used originally, in > the pre-cryo few images per crystal age, to indicate the R-factor for > merging data collected from multiple crystals. Isym is calculated > identical but refers to data collected from a single crystal. > > To be honest I'm not sure if this reflects history or somebody trying to > make something out of nothing but I've been using Rsym ever since. > > Bart > > Phil Evans wrote: >> I've never been able to discover any difference between Rsym & Rmerge >> Phil >> >> On 21 Jan 2010, at 18:34, james09 pruza wrote: >> >> >>> Dear All CCP4bbers, >>> >>> Please help me in finding *R-sym I *(observed), *R-merge I*(obseved), >>> *R-Free >>> Error i*n the data provided below. If I am not wrong, Can anyone suggest me >>> the difference between R-sym and R-merge? >>> >>> Thanks in advance for the help. >>> >>> James* >>> * >>> >>> R-values of internal consistency : >>> ======== -------------------- >>> (Anomalous scaling counts I+ and I- as separate hkl.) >>> >>> R-merge ( sum |Ij-<I>| / sum |<I>| ) = 23.4 % ( 21.57 % for Fsq > 0) >>> where <I>=sum(Ij)/N, j=1...N, >>> calculated from 188629 observations of 60655 /+//-/ reflexions >>> >>> - dito within user-defined resolution: 23.4 % >>> calculated from 188182 observations of 60508 /+//-/ reflexions >>> >>> >>> Sigma-weighted R-merge : >>> ( sum wj*|Ij-<I>| / sum |<I>| ) = 19.1 % >>> where <I>=sum(wj*Ij), j=1...N, >>> with sum(wj)=1, >>> calculated from 133636 observations of 60655 /+//-/ reflexions >>> >>> - dito within user-defined resolution: 19.1 % >>> calculated from 133323 observations of 60508 /+//-/ reflexions >>> >>> >>> Multiplicity of accepted measurements for unique reflexions, and >>> completeness C >>> in equal-volume shells (on average 4161 possible unique reflexions each): >>> Shell- 1* 2* 3* 4* 5-6* 7-8* 9-12* 13-16* >16* total >>> C[%] >>> limits [A] ----- ----- ----- ----- ----- ----- ----- ----- ----- ----- >>> ---- >>> inf. - 30.0 excluded... (but see right below) >>> 0.0 >>> 30.0 - 6.46 221 878 805 1620 597 0 0 0 0 4121 >>> 95.1 >>> 6.46 - 5.13 73 659 726 1850 840 0 0 0 0 4148 >>> 98.9 >>> 5.13 - 4.48 80 687 841 1823 712 0 0 0 0 4143 >>> 99.1 >>> 4.48 - 4.07 72 673 802 1778 772 0 0 0 0 4097 >>> 99.3 >>> 4.07 - 3.78 94 595 735 1862 831 0 0 0 0 4117 >>> 99.4 >>> 3.78 - 3.56 108 563 738 1883 856 0 0 0 0 4148 >>> 99.7 >>> 3.56 - 3.38 81 519 689 1968 886 0 0 0 0 4143 >>> 99.8 >>> 3.38 - 3.23 49 465 731 1976 877 0 0 0 0 4098 >>> 100.0 >>> 3.23 - 3.11 58 485 772 1950 875 0 0 0 0 4140 >>> 100.0 >>> 3.11 - 3.00 39 457 768 1944 832 0 0 0 0 4040 >>> 98.8 >>> - - - - - - ----- ----- ----- ----- ----- ----- ----- ----- ----- ----- >>> ---- >>> * 30.0 - 3.00 875 5981 7607 18654 8078 0 0 0 0 41195 >>> 99.0 >>> ----------- ----- ----- ----- ----- ----- ----- ----- ----- ----- ----- >>> ---- >>> Below specified lower-resolution limit : >>> inf. - 30.0 0 1 0 0 0 0 0 0 0 1 >>> Beyond specified high-resolution limit : >>> 3.00 - 2.99 0 37 25 51 9 0 0 0 0 122 >>> >>> Same multiplicities as relative percentages [%] and <average multiplicity> >>> (total measured unique reflexions in each shell = 100.%) >>> 30.0 - 6.46 5.4 21.3 19.5 39.3 14.5 . . . . >>> <3.38> >>> 6.46 - 5.13 1.8 15.9 17.5 44.6 20.3 . . . . >>> <3.67> >>> 5.13 - 4.48 1.9 16.6 20.3 44.0 17.2 . . . . >>> <3.58> >>> 4.48 - 4.07 1.8 16.4 19.6 43.4 18.8 . . . . >>> <3.61> >>> 4.07 - 3.78 2.3 14.5 17.9 45.2 20.2 . . . . >>> <3.67> >>> 3.78 - 3.56 2.6 13.6 17.8 45.4 20.6 . . . . >>> <3.68> >>> 3.56 - 3.38 2.0 12.5 16.6 47.5 21.4 . . . . >>> <3.74> >>> 3.38 - 3.23 1.2 11.3 17.8 48.2 21.4 . . . . >>> <3.78> >>> 3.23 - 3.11 1.4 11.7 18.6 47.1 21.1 . . . . >>> <3.76> >>> 3.11 - 3.00 1.0 11.3 19.0 48.1 20.6 . . . . >>> <3.77> >>> - - - - - - ----- ----- ----- ----- ----- ----- ----- ----- ----- ->>> >>> * 30.0 - 3.00 2.1 14.5 18.5 45.3 19.6 0.0 0.0 0.0 0.0 100. >>> <3.66> >>> ----------- ----- ----- ----- ----- ----- ----- ----- ----- ----- ==== >>> ------ >>> Below specified lower-resolution limit : >>> inf. - 30.0 . 100.0 . . . . . . . >>> <2.00> >>> Beyond specified high-resolution limit : >>> 3.00 - 2.99 . 30.3 20.5 41.8 7.4 . . . . >>> <3.27> >>> >>> >>> Multiplicity of centric measurements >>> Shell- 1* 2* 3* 4* 5-6* 7-8* 9-12* >13* total / poss. >>> C[%] >>> limits [A] ----- ----- ----- ----- ----- ----- ----- ----- ----- ----- >>> ---- >>> 30.0 - 6.46 93 354 32 2 0 0 0 0 481 566 >>> 85.0 >>> 6.46 - 5.13 37 251 28 0 0 0 0 0 316 334 >>> 94.6 >>> 5.13 - 4.48 39 209 16 0 0 0 0 0 264 281 >>> 94.0 >>> 4.48 - 4.07 24 193 17 0 0 0 0 0 234 249 >>> 94.0 >>> 4.07 - 3.78 25 169 21 0 0 0 0 0 215 223 >>> 96.4 >>> 3.78 - 3.56 34 161 18 0 0 0 0 0 213 220 >>> 96.8 >>> 3.56 - 3.38 25 157 17 0 0 0 0 0 199 204 >>> 97.5 >>> 3.38 - 3.23 26 145 21 0 0 0 0 0 192 192 >>> 100.0 >>> 3.23 - 3.11 26 138 23 0 0 0 0 0 187 187 >>> 100.0 >>> 3.11 - 3.00 27 129 19 0 0 0 0 0 175 175 >>> 100.0 >>> - - - - - - ----- ----- ----- ----- ----- ----- ----- ----- ----- ----- >>> ---- >>> * 30.0 - 3.00 356 1906 212 2 0 0 0 0 2476 2631 >>> 94.1 >>> >>> >>> Multiplicity of acentric measurements for Bijvoet /-/ and /+/ separately : >>> Shell- 1* 2* 3* 4* 5-6* 7-8* 9-12* >13* total / poss. >>> C[%] >>> limits [A] ----- ----- ----- ----- ----- ----- ----- ----- ----- ----- >>> ---- >>> 30.0 - 6.46 1530 4572 790 0 0 0 0 0 6892 7534 >>> 91.5 >>> 6.46 - 5.13 1503 4925 1077 0 0 0 0 0 7505 7720 >>> 97.2 >>> 5.13 - 4.48 1786 4813 974 0 0 0 0 0 7573 7796 >>> 97.1 >>> 4.48 - 4.07 1811 4668 1066 0 0 0 0 0 7545 7754 >>> 97.3 >>> 4.07 - 3.78 1686 4685 1209 0 0 0 0 0 7580 7834 >>> 96.8 >>> 3.78 - 3.56 1756 4595 1308 0 0 0 0 0 7659 7882 >>> 97.2 >>> 3.56 - 3.38 1785 4558 1407 0 0 0 0 0 7750 7896 >>> 98.2 >>> 3.38 - 3.23 1784 4527 1425 0 0 0 0 0 7736 7812 >>> 99.0 >>> 3.23 - 3.11 1833 4549 1415 0 0 0 0 0 7797 7908 >>> 98.6 >>> 3.11 - 3.00 1819 4405 1420 0 0 0 0 0 7644 7826 >>> 97.7 >>> - - - - - - ----- ----- ----- ----- ----- ----- ----- ----- ----- ----- >>> ---- >>> * 30.0 - 3.00 17293 46297 12091 0 0 0 0 0 75681 77962 >>> 97.1 >>> >>> >>> Anomalous R-value : >>> ( sum |<I+>-<I->| / sum |<I+>+<I->| ) = 17.5 % >>> where <I>=sum(Ij)/N, >>> calculated from 37074 anomalous pairs (with 143188 measurements: >>> multiplicity 2.1 <-> 78993 measurements >>> for I+ >>> multiplicity 1.7 <-> 64195 measurements >>> for I- >>> Weighted anomalous R-value : >>> ( sum |<I+>-<I->| / sum |<I+>+<I->| ) = 18.4 % >>> where <I>=sum(wj*Ij) with sum(wj)=1, >>> calculated from 37074 anomalous pairs >>> >>> >>> Table of s-dependent anomalous, and centric, R-factors in equal-volume >>> shells : >>> R_ano. = sum { |<I+> - <I->| } / sum { |<I+> + <I->| } >>> R_cen. = linear R_merge for centric reflexions only. >>> centric >>> Resolution s Bijvoet-pairs <I> R_ano. measurements >>> R_cen. >>> -----[A]---- ------------- ------- --[%]-- | ------- >>> --[%]-- >>> 30.0 - 6.46 0.000 - 0.077 3252 10168. 12.79 | 806 >>> 29.64 >>> 6.46 - 5.13 0.077 - 0.097 3673 2734. 15.19 | 564 >>> 20.88 >>> 5.13 - 4.48 0.097 - 0.112 3694 4719. 16.01 | 440 >>> 24.88 >>> 4.48 - 4.07 0.112 - 0.123 3682 4326. 17.18 | 418 >>> 23.54 >>> 4.07 - 3.78 0.123 - 0.132 3678 2602. 19.76 | 375 >>> 27.71 >>> 3.78 - 3.56 0.132 - 0.141 3724 1490. 22.87 | 337 >>> 29.09 >>> 3.56 - 3.38 0.141 - 0.148 3806 1032. 26.32 | 317 >>> 34.76 >>> 3.38 - 3.23 0.148 - 0.155 3830 728. 31.24 | 317 >>> 35.64 >>> 3.23 - 3.11 0.155 - 0.161 3844 470. 38.98 | 292 >>> 47.76 >>> 3.11 - 3.00 0.161 - 0.167 3779 358. 48.06 | 250 >>> 59.71 >>> - - - - - - -------- ------- ------- | ------- >>> --[%]-- >>> * 30.0 - 3.00 total : 36962 2745. 17.45% | 4116 >>> 28.09% >>> -------- ------- ------- ------- >>> Below specified lower-resolution limit : >>> inf. - 30.0 0.000 - 0.017 1 110. 19.20 | >>> 0 >>> Beyond specified high-resolution limit : >>> 3.00 - 2.99 0.167 - 0.167 111 340. 44.46 | >>> 0 >>> >>> Summary of neg. <I> : 179 centric reflexions >>> 2886 /I-/ >>> 2594 /I+/ >>> including 0 pairs with *both* mates <=0 >>> >>> >>> Tables of s-dependent R-factors in equal-volume shells : >>> (Single measurements or negative <I> omitted from all sums.) >>> R_linear = sum { |I - <I>| } / sum {I} >>> R_square = SQRT( sum{|I - <I>|**2} / sum{I**2} ) >>> >>> Resolution s measurements I<0 <I> <I/s> R_squ. >>> R_lin. >>> -----[A]---- ------------- -------- ----- ------- ----- --[%]-- >>> --[%]-- >>> 30.0 - 6.46 0.000 - 0.077 12293 119 10081. 5.2 27.28 >>> 18.23 >>> 6.46 - 5.13 0.077 - 0.097 13386 394 2490. 2.7 19.45 >>> 18.50 >>> 5.13 - 4.48 0.097 - 0.112 12787 359 4220. 3.0 21.40 >>> 18.89 >>> 4.48 - 4.07 0.112 - 0.123 12670 452 3638. 2.5 21.79 >>> 21.21 >>> 4.07 - 3.78 0.123 - 0.132 12819 799 2102. 1.6 23.85 >>> 26.60 >>> 3.78 - 3.56 0.132 - 0.141 12820 940 1335. 1.1 26.50 >>> 32.14 >>> 3.56 - 3.38 0.141 - 0.148 12270 1186 958. 0.9 30.64 >>> 37.29 >>> 3.38 - 3.23 0.148 - 0.155 12071 1438 661. 0.6 36.79 >>> 44.73 >>> 3.23 - 3.11 0.155 - 0.161 11613 1619 463. 0.5 43.91 >>> 53.68 >>> 3.11 - 3.00 0.161 - 0.167 10870 1708 376. 0.4 51.01 >>> 61.37 >>> - - - - - - ------ ------ ------- ----- ------- >>> ------- >>> * 30.0 - 3.00 total : 123599 9014 2674. 1.9 26.11% >>> 22.61% >>> ------ ------ >>> ======= >>> 4515 non-pos. <I> with 9771 measurements omitted from this table. >>> >>> Table of <<I>/sigma(<I>)> for mean values on output file: >>> ================ >>> Resolution <I> /0/ /+/ /-/ >>> sig<0 >>> -----[A]---- ------------- ------------- ------------- ------------- >>> ----- >>> 30.0 - 6.46 4121 7.7 481 4.5 3551 5.8 3341 >>> 5.7 0 >>> 6.46 - 5.13 4148 4.6 316 2.5 3797 3.5 3708 >>> 3.2 0 >>> 5.13 - 4.48 4143 5.0 264 2.6 3838 3.8 3735 >>> 3.5 0 >>> 4.48 - 4.07 4097 4.3 234 2.1 3835 3.2 3710 >>> 3.0 0 >>> 4.07 - 3.78 4117 3.0 215 1.7 3863 2.2 3717 >>> 2.1 0 >>> 3.78 - 3.56 4148 2.2 213 1.6 3915 1.6 3744 >>> 1.5 0 >>> 3.56 - 3.38 4143 1.6 199 1.3 3938 1.2 3812 >>> 1.1 0 >>> 3.38 - 3.23 4098 1.2 192 0.9 3896 0.8 3840 >>> 0.8 0 >>> 3.23 - 3.11 4140 0.8 187 0.5 3946 0.6 3851 >>> 0.6 0 >>> 3.11 - 3.00 4040 0.6 175 0.4 3853 0.4 3791 >>> 0.4 0 >>> - - - - - - ------------- ------------- ------------- ------------- >>> ----- >>> * 30.0 - 3.00 41195 3.1 2476 2.2 38432 2.3 37249 >>> 2.1 0 >>> ------------- ------------- ------------- ------------- >>> ----- >>> Below specified lower-resolution limit : >>> inf. - 30.0 1 -1.0 0 ... 1 -0.2 1 >>> -1.0 0 >>> Beyond specified high-resolution limit : >>> 3.00 - 2.99 122 0.6 10 0.6 112 0.4 111 >>> 0.4 0 >>> >>> Multiplicity-independent and sigma-weighted R-factors : >>> PCV = "pooled coefficient of variation" >>> R_rim = "redundancy-independent merging R-factor" = R_meas. >>> R_pim = "precision-indicating merging R-factor" >>> Rw_xxx = sigma-weighted R-factors, where : >>> <Iw> = sum{ w * I } with sum{ w } = 1 >>> .. defined as: >>> PCV = sum{ SQRT[ sum{ |Ij - <Ihkl>|**2 }/(n-1) ] } / sum{ <I> } >>> h j h >>> R_rim = sum{ SQRT[n/(n-1)] * sum{ |I - <Ihkl>| } } / sum{ I } >>> R_pim = sum{ SQRT[1/(n-1)] * sum{ |I - <Ihkl>| } } / sum{ I } ) >>> Rw_rim = sum{ SQRT[n/(n-1)] * sum{ w * |I - <Iw>| } } / sum{<Iw>} >>> Rw_pim = sum{ SQRT[1/(n-1)] * sum{ w * |I - <Iw>| } } / sum{<Iw>} >>> Rw_squ = SQRT[ sum{ w * |I - <Iw>|**2 } / sum{<Iw>**2} ] >>> Rw_lin = sum{ w * |I - <Iw>| } / sum{<Iw>} >>> >>> Resolution /+//-/ PCV R_rim R_pim Rw_rim Rw_pim Rw_squ. >>> Rw_lin. >>> -----[A]---- -------- --[%]-- --[%]-- --[%]-- --[%]-- --[%]-- --[%]-- >>> --[%]-- >>> 30.0 - 6.46 5734 25.53 24.98 16.99 13.73 9.41 11.97 >>> 9.96 >>> 6.46 - 5.13 6143 25.77 25.31 17.18 22.87 15.69 15.44 >>> 16.57 >>> 5.13 - 4.48 5903 26.43 25.94 17.69 21.78 14.98 15.39 >>> 15.75 >>> 4.48 - 4.07 5800 29.69 29.07 19.78 25.73 17.66 18.16 >>> 18.65 >>> 4.07 - 3.78 5810 36.85 36.38 24.69 32.42 22.21 20.15 >>> 23.54 >>> 3.78 - 3.56 5768 44.37 43.66 29.37 40.40 27.53 25.67 >>> 29.44 >>> 3.56 - 3.38 5475 51.15 50.32 33.56 46.70 31.61 30.79 >>> 34.22 >>> 3.38 - 3.23 5375 61.60 60.34 40.23 56.21 38.02 37.98 >>> 41.20 >>> 3.23 - 3.11 5175 73.50 72.31 48.10 66.85 45.19 46.53 >>> 49.03 >>> 3.11 - 3.00 4833 83.97 82.72 55.07 77.06 52.10 57.35 >>> 56.51 >>> --------- ------- ------- ------- ------- ------- ------- >>> ------- >>> * total : 56016 31.39% 30.88% 20.91% 24.72% 16.90% 13.95% >>> 17.97% >>> >> >> > > -- > > ============================================================================ > > Bart Hazes (Associate Professor) > Dept. of Medical Microbiology & Immunology > University of Alberta > 1-15 Medical Sciences Building > Edmonton, Alberta > Canada, T6G 2H7 > phone: 1-780-492-0042 > fax: 1-780-492-7521 > > ============================================================================ >