I think Richard Hamming's n-Dimensional Space lecture https://www.youtube.com/watch?v=uU_Q2a0S0zI might be pertinent. I hope some of you will enjoy watching this lecture. Cordially, Vijay.
On Fri, Nov 15, 2019 at 2:40 PM R.E. Boss <[email protected]> wrote: > Or here https://arxiv.org/pdf/1908.03795 > > > R.E. Boss > > > > -----Oorspronkelijk bericht----- > > Van: Chat <[email protected]> Namens Roger Hui > > Verzonden: vrijdag 15 november 2019 17:22 > > Aan: [email protected] > > Onderwerp: Re: [Jchat] geometric intuition > > > > The actual theorem and proofs: > > https://terrytao.wordpress.com/tag/xining-zhang/ > > > > > > > > On Fri, Nov 15, 2019 at 2:13 AM R.E. Boss <[email protected]> wrote: > > > > > Well, what about this > > > https://www.quantamagazine.org/neutrinos-lead-to-unexpected- > > discovery- > > > in-basic-math-20191113/ > > > ? > > > > > > > > > R.E. Boss > > > > > > > > > > -----Oorspronkelijk bericht----- > > > > Van: Chat <[email protected]> Namens Raul Miller > > > > Verzonden: donderdag 14 november 2019 17:16 > > > > Aan: Chat forum <[email protected]> > > > > Onderwerp: [Jchat] geometric intuition > > > > > > > > I stumbled across this today: > > > > https://github.com/leopd/geometric-intuition accompanied by an > > > > assertion that you can find the eigenvectors for a hermitian matrix > > > > from its > > > eigenvalues > > > > and the eigenvalues of its submatrices. I have not yet worked > > > > through > > > the > > > > details of that, but it sounds plausible and might be of interest to > > > some of > > > > you, here. > > > > > > > > But the repository itself covers a lot more ground than that. > > > > > > > > Anyways, the code is python, but a lot of it is fairly > > > > straightforward > > > to re- > > > > implement, and there's good english descriptions and illustrations, > > > also. So > > > > this looks like fun. > > > > > > > > FYI, > > > > -- > > > > Raul > > > > -------------------------------------------------------------------- > > > > -- For information about J forums see > > > > http://www.jsoftware.com/forums.htm > > > ---------------------------------------------------------------------- > > > For information about J forums see > > http://www.jsoftware.com/forums.htm > > > > > ---------------------------------------------------------------------- > > For information about J forums see http://www.jsoftware.com/forums.htm > ---------------------------------------------------------------------- > For information about J forums see http://www.jsoftware.com/forums.htm > ---------------------------------------------------------------------- For information about J forums see http://www.jsoftware.com/forums.htm
