I think Richard Hamming's n-Dimensional Space lecture
https://www.youtube.com/watch?v=uU_Q2a0S0zI might be pertinent.  I hope
some of you will enjoy watching this lecture.
Cordially,
Vijay.

On Fri, Nov 15, 2019 at 2:40 PM R.E. Boss <[email protected]> wrote:

> Or here https://arxiv.org/pdf/1908.03795
>
>
> R.E. Boss
>
>
> > -----Oorspronkelijk bericht-----
> > Van: Chat <[email protected]> Namens Roger Hui
> > Verzonden: vrijdag 15 november 2019 17:22
> > Aan: [email protected]
> > Onderwerp: Re: [Jchat] geometric intuition
> >
> > The actual theorem and proofs:
> > https://terrytao.wordpress.com/tag/xining-zhang/
> >
> >
> >
> > On Fri, Nov 15, 2019 at 2:13 AM R.E. Boss <[email protected]> wrote:
> >
> > > Well, what about this
> > > https://www.quantamagazine.org/neutrinos-lead-to-unexpected-
> > discovery-
> > > in-basic-math-20191113/
> > > ?
> > >
> > >
> > > R.E. Boss
> > >
> > >
> > > > -----Oorspronkelijk bericht-----
> > > > Van: Chat <[email protected]> Namens Raul Miller
> > > > Verzonden: donderdag 14 november 2019 17:16
> > > > Aan: Chat forum <[email protected]>
> > > > Onderwerp: [Jchat] geometric intuition
> > > >
> > > > I stumbled across this today:
> > > > https://github.com/leopd/geometric-intuition accompanied by an
> > > > assertion that you can find the eigenvectors for a hermitian matrix
> > > > from its
> > > eigenvalues
> > > > and the eigenvalues of its submatrices.  I have not yet worked
> > > > through
> > > the
> > > > details of that, but it sounds plausible and might be of interest to
> > > some of
> > > > you, here.
> > > >
> > > > But the repository itself covers a lot more ground  than that.
> > > >
> > > > Anyways, the code is python, but a lot of it is fairly
> > > > straightforward
> > > to re-
> > > > implement, and there's good english descriptions and illustrations,
> > > also. So
> > > > this looks like fun.
> > > >
> > > > FYI,
> > > > --
> > > > Raul
> > > > --------------------------------------------------------------------
> > > > -- For information about J forums see
> > > > http://www.jsoftware.com/forums.htm
> > > ----------------------------------------------------------------------
> > > For information about J forums see
> > http://www.jsoftware.com/forums.htm
> > >
> > ----------------------------------------------------------------------
> > For information about J forums see http://www.jsoftware.com/forums.htm
> ----------------------------------------------------------------------
> For information about J forums see http://www.jsoftware.com/forums.htm
>
----------------------------------------------------------------------
For information about J forums see http://www.jsoftware.com/forums.htm

Reply via email to