Hi,

this adds the expm1 method to java.lang.StrictMath.

Please comment/commit.

        Thanks,
                Carsten

2006-07-22  Carsten Neumann  <[EMAIL PROTECTED]>

        * StrictMath.java (expm1): New method.
        (EXPM1_Q1): New field.
        (EXPM1_Q2): Likewise.
        (EXPM1_Q3): Likewise.
        (EXPM1_Q4): Likewise.
        (EXPM1_Q6): Likewise.
Index: java/lang/StrictMath.java
===================================================================
RCS file: /sources/classpath/classpath/java/lang/StrictMath.java,v
retrieving revision 1.10
diff -u -r1.10 StrictMath.java
--- java/lang/StrictMath.java	16 Jul 2006 20:23:49 -0000	1.10
+++ java/lang/StrictMath.java	22 Jul 2006 14:50:39 -0000
@@ -819,6 +819,254 @@
   }
 
   /**
+   * Returns <em>e</em><sup>x</sup> - 1.
+   * Special cases:
+   * <ul>
+   * <li>If the argument is NaN, the result is NaN.</li>
+   * <li>If the argument is positive infinity, the result is positive
+   * infinity</li>
+   * <li>If the argument is negative infinity, the result is -1.</li>
+   * <li>If the argument is zero, the result is zero.</li>
+   * </ul>
+   *
+   * @param x the argument to <em>e</em><sup>x</sup> - 1.
+   * @return <em>e</em> raised to the power <code>x</code> minus one.
+   * @see #exp(double)
+   */
+  public static double expm1(double x)
+  {
+    // Method
+    //   1. Argument reduction:
+    //	Given x, find r and integer k such that
+    //
+    //            x = k * ln(2) + r,  |r| <= 0.5 * ln(2)
+    //
+    //  Here a correction term c will be computed to compensate
+    //	the error in r when rounded to a floating-point number.
+    //
+    //   2. Approximating expm1(r) by a special rational function on
+    //	the interval [0, 0.5 * ln(2)]:
+    //	Since
+    //	    r*(exp(r)+1)/(exp(r)-1) = 2 + r^2/6 - r^4/360 + ...
+    //	we define R1(r*r) by
+    //	    r*(exp(r)+1)/(exp(r)-1) = 2 + r^2/6 * R1(r*r)
+    //	That is,
+    //	    R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r)
+    //		     = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r))
+    //		     = 1 - r^2/60 + r^4/2520 - r^6/100800 + ...
+    //  We use a special Remes algorithm on [0, 0.347] to generate
+    // 	a polynomial of degree 5 in r*r to approximate R1. The
+    //	maximum error of this polynomial approximation is bounded
+    //	by 2**-61. In other words,
+    //	    R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5
+    //	where 	Q1  =  -1.6666666666666567384E-2,
+    // 		Q2  =   3.9682539681370365873E-4,
+    // 		Q3  =  -9.9206344733435987357E-6,
+    // 		Q4  =   2.5051361420808517002E-7,
+    // 		Q5  =  -6.2843505682382617102E-9;
+    //  	(where z=r*r, and Q1 to Q5 are called EXPM1_Qx in the source)
+    //	with error bounded by
+    //	    |                  5           |     -61
+    //	    | 1.0+Q1*z+...+Q5*z   -  R1(z) | <= 2
+    //	    |                              |
+    //
+    //	expm1(r) = exp(r)-1 is then computed by the following
+    // 	specific way which minimize the accumulation rounding error:
+    //			       2     3
+    //			      r     r    [ 3 - (R1 + R1*r/2)  ]
+    //	      expm1(r) = r + --- + --- * [--------------------]
+    //		              2     2    [ 6 - r*(3 - R1*r/2) ]
+    //
+    //	To compensate the error in the argument reduction, we use
+    //		expm1(r+c) = expm1(r) + c + expm1(r)*c
+    //			   ~ expm1(r) + c + r*c
+    //	Thus c+r*c will be added in as the correction terms for
+    //	expm1(r+c). Now rearrange the term to avoid optimization
+    // 	screw up:
+    //		        (      2                                    2 )
+    //		        ({  ( r    [ R1 -  (3 - R1*r/2) ]  )  }    r  )
+    //	 expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- )
+    //	                ({  ( 2    [ 6 - r*(3 - R1*r/2) ]  )  }    2  )
+    //                      (                                             )
+    //
+    //		   = r - E
+    //   3. Scale back to obtain expm1(x):
+    //	From step 1, we have
+    //	   expm1(x) = either 2^k*[expm1(r)+1] - 1
+    //		    = or     2^k*[expm1(r) + (1-2^-k)]
+    //   4. Implementation notes:
+    //	(A). To save one multiplication, we scale the coefficient Qi
+    //	     to Qi*2^i, and replace z by (x^2)/2.
+    //	(B). To achieve maximum accuracy, we compute expm1(x) by
+    //	  (i)   if x < -56*ln2, return -1.0, (raise inexact if x!=inf)
+    //	  (ii)  if k=0, return r-E
+    //	  (iii) if k=-1, return 0.5*(r-E)-0.5
+    //        (iv)	if k=1 if r < -0.25, return 2*((r+0.5)- E)
+    //	       	       else	     return  1.0+2.0*(r-E);
+    //	  (v)   if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1)
+    //	  (vi)  if k <= 20, return 2^k((1-2^-k)-(E-r)), else
+    //	  (vii) return 2^k(1-((E+2^-k)-r))
+
+    boolean negative = (x < 0);
+    double y, hi, lo, c, t, e, hxs, hfx, r1;
+    int k;
+
+    long bits;
+    int h_bits;
+    int l_bits;
+
+    c = 0.0;
+    y = abs(x);
+
+    bits = Double.doubleToLongBits(y);
+    h_bits = getHighDWord(bits);
+    l_bits = getLowDWord(bits);
+
+    // handle special cases and large arguments
+    if (h_bits >= 0x4043687a)        // if |x| >= 56 * ln(2)
+      {
+	if (h_bits >= 0x40862e42)    // if |x| >= EXP_LIMIT_H
+	  {
+	    if (h_bits >= 0x7ff00000)
+	      {
+		if (((h_bits & 0x000fffff) | (l_bits & 0xffffffff)) != 0)
+		  return Double.NaN;               // exp(NaN) = NaN
+		else
+		  return negative ? -1.0 : x;      // exp({+-inf}) = {+inf, -1}
+	      }
+
+	    if (x > EXP_LIMIT_H)
+	      return Double.POSITIVE_INFINITY;     // overflow
+	  }
+
+	if (negative)                // x <= -56 * ln(2)
+	  return -1.0;
+      }
+
+    // argument reduction
+    if (h_bits > 0x3fd62e42)         // |x| > 0.5 * ln(2)
+      {
+	if (h_bits < 0x3ff0a2b2)     // |x| < 1.5 * ln(2)
+	  {
+	    if (negative)
+	      {
+		hi = x + LN2_H;
+		lo = -LN2_L;
+		k = -1;
+	      }
+	    else
+	      {
+		hi = x - LN2_H;
+		lo = LN2_L;
+		k  = 1;
+	      }
+	  }
+	else
+	  {
+	    k = (int) (INV_LN2 * x + (negative ? - 0.5 : 0.5));
+	    t = k;
+	    hi = x - t * LN2_H;
+	    lo = t * LN2_L;
+	  }
+
+	x = hi - lo;
+	c = (hi - x) - lo;
+
+      }
+    else if (h_bits < 0x3c900000)    // |x| < 2^-54 return x
+      return x;
+    else
+      k = 0;
+
+    // x is now in primary range
+    hfx = 0.5 * x;
+    hxs = x * hfx;
+    r1 = 1.0 + hxs * (EXPM1_Q1
+	     + hxs * (EXPM1_Q2
+             + hxs * (EXPM1_Q3
+	     + hxs * (EXPM1_Q4
+	     + hxs *  EXPM1_Q5))));
+    t = 3.0 - r1 * hfx;
+    e = hxs * ((r1 - t) / (6.0 - x * t));
+
+    if (k == 0)
+      {
+	return x - (x * e - hxs);    // c == 0
+      }
+    else
+      {
+	e = x * (e - c) - c;
+	e -= hxs;
+
+	if (k == -1)
+	  return 0.5 * (x - e) - 0.5;
+
+	if (k == 1)
+	  {
+	    if (x < - 0.25)
+	      return -2.0 * (e - (x + 0.5));
+	    else
+	      return 1.0 + 2.0 * (x - e);
+	  }
+
+	if (k <= -2 || k > 56)       // sufficient to return exp(x) - 1
+	  {
+	    y = 1.0 - (e - x);
+
+	    bits = Double.doubleToLongBits(y);
+	    h_bits = getHighDWord(bits);
+	    l_bits = getLowDWord(bits);
+
+	    h_bits += (k << 20);     // add k to y's exponent
+
+	    y = buildDouble(l_bits, h_bits);
+
+	    return y - 1.0;
+	  }
+
+	t = 1.0;
+	if (k < 20)
+	  {
+	    bits = Double.doubleToLongBits(t);
+	    h_bits = 0x3ff00000 - (0x00200000 >> k);
+	    l_bits = getLowDWord(bits);
+
+	    t = buildDouble(l_bits, h_bits);      // t = 1 - 2^(-k)
+	    y = t - (e - x);
+
+	    bits = Double.doubleToLongBits(y);
+	    h_bits = getHighDWord(bits);
+	    l_bits = getLowDWord(bits);
+
+	    h_bits += (k << 20);     // add k to y's exponent
+
+	    y = buildDouble(l_bits, h_bits);
+	  }
+	else
+	  {
+	    bits = Double.doubleToLongBits(t);
+	    h_bits = (0x000003ff - k) << 20;
+	    l_bits = getLowDWord(bits);
+
+	    t = buildDouble(l_bits, h_bits);      // t = 2^(-k)
+
+	    y = x - (e + t);
+	    y += 1.0;
+
+	    bits = Double.doubleToLongBits(y);
+	    h_bits = getHighDWord(bits);
+	    l_bits = getLowDWord(bits);
+
+	    h_bits += (k << 20);     // add k to y's exponent
+
+	    y = buildDouble(l_bits, h_bits);
+	  }
+      }
+
+    return y;
+  }
+
+  /**
    * Take ln(a) (the natural log).  The opposite of <code>exp()</code>. If the
    * argument is NaN or negative, the result is NaN; if the argument is
    * positive infinity, the result is positive infinity; and if the argument
@@ -1571,6 +1819,16 @@
     CBRT_G =  3.57142857142857150787e-01; // Long bits  0x3fd6db6db6db6db7L
 
   /**
+   * Constants for computing [EMAIL PROTECTED] #expm1(double)}
+   */
+  private static final double
+    EXPM1_Q1 = -3.33333333333331316428e-02, // Long bits  0xbfa11111111110f4L
+    EXPM1_Q2 =  1.58730158725481460165e-03, // Long bits  0x3f5a01a019fe5585L
+    EXPM1_Q3 = -7.93650757867487942473e-05, // Long bits  0xbf14ce199eaadbb7L
+    EXPM1_Q4 =  4.00821782732936239552e-06, // Long bits  0x3ed0cfca86e65239L
+    EXPM1_Q5 = -2.01099218183624371326e-07; // Long bits  0xbe8afdb76e09c32dL
+
+  /**
    * Helper function for reducing an angle to a multiple of pi/2 within
    * [-pi/4, pi/4].
    *

Reply via email to