Script 'mail_helper' called by obssrc Hello community, here is the log from the commit of package gap-wedderga for openSUSE:Factory checked in at 2025-06-17 18:21:36 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Comparing /work/SRC/openSUSE:Factory/gap-wedderga (Old) and /work/SRC/openSUSE:Factory/.gap-wedderga.new.19631 (New) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Package is "gap-wedderga" Tue Jun 17 18:21:36 2025 rev:3 rq:1286117 version:4.11.0 Changes: -------- --- /work/SRC/openSUSE:Factory/gap-wedderga/gap-wedderga.changes 2024-02-20 21:15:01.575364093 +0100 +++ /work/SRC/openSUSE:Factory/.gap-wedderga.new.19631/gap-wedderga.changes 2025-06-17 18:21:59.821744944 +0200 @@ -1,0 +2,7 @@ +Mon Jun 16 12:40:45 UTC 2025 - Jan Engelhardt <jeng...@inai.de> + +- Update to release 4.11.0 + * New version of IsDyadicSchurGroup + * Disable checking commutativity of a crossed product + +------------------------------------------------------------------- Old: ---- wedderga-4.10.5.tar.gz New: ---- _scmsync.obsinfo build.specials.obscpio wedderga-4.11.0.tar.gz ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Other differences: ------------------ ++++++ gap-wedderga.spec ++++++ --- /var/tmp/diff_new_pack.fTp453/_old 2025-06-17 18:22:00.341766569 +0200 +++ /var/tmp/diff_new_pack.fTp453/_new 2025-06-17 18:22:00.345766735 +0200 @@ -1,7 +1,7 @@ # # spec file for package gap-wedderga # -# Copyright (c) 2024 SUSE LLC +# Copyright (c) 2025 SUSE LLC # # All modifications and additions to the file contributed by third parties # remain the property of their copyright owners, unless otherwise agreed @@ -17,7 +17,7 @@ Name: gap-wedderga -Version: 4.10.5 +Version: 4.11.0 Release: 0 Summary: GAP: Wedderburn Decomposition of Group Algebras License: GPL-2.0-or-later ++++++ _scmsync.obsinfo ++++++ mtime: 1750077978 commit: d14f61f546d7a5d6f0215da575b152e04a83b891ec064746451ddaac1b5e4cad url: https://src.opensuse.org/jengelh/gap-wedderga revision: master ++++++ wedderga-4.10.5.tar.gz -> wedderga-4.11.0.tar.gz ++++++ diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' '--exclude=.svnignore' old/wedderga-4.10.5/PackageInfo.g new/wedderga-4.11.0/PackageInfo.g --- old/wedderga-4.10.5/PackageInfo.g 2024-02-19 15:57:47.000000000 +0100 +++ new/wedderga-4.11.0/PackageInfo.g 2025-06-16 12:47:37.000000000 +0200 @@ -17,13 +17,13 @@ PackageName := "Wedderga", Subtitle := Concatenation( [ "Wedderburn Decomposition of Group Algebras" ] ), -Version := "4.10.5", -Date := "19/02/2024", # dd/mm/yyyy format +Version := "4.11.0", +Date := "16/06/2025", # dd/mm/yyyy format License := "GPL-2.0-or-later", ## <#GAPDoc Label="PKGVERSIONDATA"> -## <!ENTITY VERSION "4.10.5"> -## <!ENTITY RELEASEDATE "19 Feburary 2024"> -## <!ENTITY RELEASEYEAR "2024"> +## <!ENTITY VERSION "4.11.0"> +## <!ENTITY RELEASEDATE "16 June 2025"> +## <!ENTITY RELEASEYEAR "2025"> ## <#/GAPDoc> SourceRepository := rec( @@ -187,7 +187,6 @@ PDFFile := "doc/manual.pdf", SixFile := "doc/manual.six", LongTitle := "Wedderga", - Autoload := true ), Dependencies := rec( diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' '--exclude=.svnignore' old/wedderga-4.10.5/README.md new/wedderga-4.11.0/README.md --- old/wedderga-4.10.5/README.md 2024-02-19 15:57:47.000000000 +0100 +++ new/wedderga-4.11.0/README.md 2025-06-16 12:47:37.000000000 +0200 @@ -1,5 +1,6 @@ -[](https://github.com/gap-packages/wedderga/actions?query=workflow%3ACI+branch%3Amaster) +[](https://github.com/gap-packages/wedderga/actions/workflows/CI.yml) [](https://codecov.io/gh/gap-packages/wedderga) +[](https://doi.org/10.5281/zenodo.3827913) # GAP package Wedderga diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' '--exclude=.svnignore' old/wedderga-4.10.5/doc/chap0.html new/wedderga-4.11.0/doc/chap0.html --- old/wedderga-4.10.5/doc/chap0.html 2024-02-19 15:58:14.000000000 +0100 +++ new/wedderga-4.11.0/doc/chap0.html 2025-06-16 12:47:58.000000000 +0200 @@ -28,9 +28,9 @@ <h2>Wedderburn Decomposition of Group Algebras</h2> -<p>Version 4.10.5</p> +<p>Version 4.11.0</p> -<p>19 Feburary 2024</p> +<p>16 June 2025</p> </div> <p><b>Gurmeet Kaur Bakshi @@ -105,13 +105,13 @@ <p><a id="X81488B807F2A1CF1" name="X81488B807F2A1CF1"></a></p> <h3>Copyright</h3> -<p>© 2006-2024 by Gurmeet Kaur Bakshi, Osnel Broche Cristo, Allen Herman, Olexandr Konovalov, Sugandha Maheshwary, Aurora Olivieri, Gabriela Olteanu, Ángel del Río and Inneke Van Gelder.</p> +<p>© 2006-2025 by Gurmeet Kaur Bakshi, Osnel Broche Cristo, Allen Herman, Olexandr Konovalov, Sugandha Maheshwary, Aurora Olivieri, Gabriela Olteanu, Ángel del Río and Inneke Van Gelder.</p> <p><strong class="pkg">Wedderga</strong> is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. For details, see the FSF's own site <span class="URL"><a href="https://www.gnu.org/licenses/gpl.html">https://www.gnu.org/licenses/gpl.html</a></span>.</p> <p>If you obtained <strong class="pkg">Wedderga</strong>, we would be grateful for a short notification sent to one of the authors. If you publish a result which was partially obtained with the usage of <strong class="pkg">Wedderga</strong>, please cite it in the following form:</p> -<p>G. K. Bakshi, O. Broche Cristo, A. Herman, O. Konovalov, S. Maheshwary, A. Olivieri, G. Olteanu, Á. del Río and I. Van Gelder. <em>Wedderga --- Wedderburn Decomposition of Group Algebras, Version 4.10.5;</em> 2024 (<span class="URL"><a href="https://gap-packages.github.io/wedderga/">https://gap-packages.github.io/wedderga/</a></span>).</p> +<p>G. K. Bakshi, O. Broche Cristo, A. Herman, O. Konovalov, S. Maheshwary, A. Olivieri, G. Olteanu, Á. del Río and I. Van Gelder. <em>Wedderga --- Wedderburn Decomposition of Group Algebras, Version 4.11.0;</em> 2025 (<span class="URL"><a href="https://gap-packages.github.io/wedderga/">https://gap-packages.github.io/wedderga/</a></span>).</p> <p><a id="X82A988D47DFAFCFA" name="X82A988D47DFAFCFA"></a></p> <h3>Acknowledgements</h3> @@ -413,6 +413,6 @@ <div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a> <a href="chap1.html">1</a> <a href="chap2.html">2</a> <a href="chap3.html">3</a> <a href="chap4.html">4</a> <a href="chap5.html">5</a> <a href="chap6.html">6</a> <a href="chap7.html">7</a> <a href="chap8.html">8</a> <a href="chap9.html">9</a> <a href="chapBib.html">Bib</a> <a href="chapInd.html">Ind</a> </div> <hr /> -<p class="foot">generated by <a href="http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p> +<p class="foot">generated by <a href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p> </body> </html> diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' '--exclude=.svnignore' old/wedderga-4.10.5/doc/chap0.txt new/wedderga-4.11.0/doc/chap0.txt --- old/wedderga-4.10.5/doc/chap0.txt 2024-02-19 15:58:08.000000000 +0100 +++ new/wedderga-4.11.0/doc/chap0.txt 2025-06-16 12:47:53.000000000 +0200 @@ -6,10 +6,10 @@ [1XWedderburn Decomposition of Group Algebras[101X - Version 4.10.5 + Version 4.11.0 - 19 Feburary 2024 + 16 June 2025 Gurmeet Kaur Bakshi @@ -116,7 +116,7 @@ ------------------------------------------------------- [1XCopyright[101X - [33X[0;0Y© 2006-2024 by Gurmeet Kaur Bakshi, Osnel Broche Cristo, Allen Herman, + [33X[0;0Y© 2006-2025 by Gurmeet Kaur Bakshi, Osnel Broche Cristo, Allen Herman, Olexandr Konovalov, Sugandha Maheshwary, Aurora Olivieri, Gabriela Olteanu, Ángel del Río and Inneke Van Gelder.[133X @@ -132,7 +132,7 @@ [33X[0;0YG. K. Bakshi, O. Broche Cristo, A. Herman, O. Konovalov, S. Maheshwary, A. Olivieri, G. Olteanu, Á. del Río and I. Van Gelder. [13XWedderga --- Wedderburn - Decomposition of Group Algebras, Version 4.10.5;[113X 2024 + Decomposition of Group Algebras, Version 4.11.0;[113X 2025 ([7Xhttps://gap-packages.github.io/wedderga/[107X).[133X diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' '--exclude=.svnignore' old/wedderga-4.10.5/doc/chap0_mj.html new/wedderga-4.11.0/doc/chap0_mj.html --- old/wedderga-4.10.5/doc/chap0_mj.html 2024-02-19 15:58:14.000000000 +0100 +++ new/wedderga-4.11.0/doc/chap0_mj.html 2025-06-16 12:47:59.000000000 +0200 @@ -6,7 +6,7 @@ <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"> <head> <script type="text/javascript" - src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML"> + src="https://cdn.jsdelivr.net/npm/mathjax@2/MathJax.js?config=TeX-AMS-MML_HTMLorMML"> </script> <title>GAP (Wedderga) - Contents</title> <meta http-equiv="content-type" content="text/html; charset=UTF-8" /> @@ -31,9 +31,9 @@ <h2>Wedderburn Decomposition of Group Algebras</h2> -<p>Version 4.10.5</p> +<p>Version 4.11.0</p> -<p>19 Feburary 2024</p> +<p>16 June 2025</p> </div> <p><b>Gurmeet Kaur Bakshi @@ -108,13 +108,13 @@ <p><a id="X81488B807F2A1CF1" name="X81488B807F2A1CF1"></a></p> <h3>Copyright</h3> -<p>© 2006-2024 by Gurmeet Kaur Bakshi, Osnel Broche Cristo, Allen Herman, Olexandr Konovalov, Sugandha Maheshwary, Aurora Olivieri, Gabriela Olteanu, Ángel del Río and Inneke Van Gelder.</p> +<p>© 2006-2025 by Gurmeet Kaur Bakshi, Osnel Broche Cristo, Allen Herman, Olexandr Konovalov, Sugandha Maheshwary, Aurora Olivieri, Gabriela Olteanu, Ángel del Río and Inneke Van Gelder.</p> <p><strong class="pkg">Wedderga</strong> is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. For details, see the FSF's own site <span class="URL"><a href="https://www.gnu.org/licenses/gpl.html">https://www.gnu.org/licenses/gpl.html</a></span>.</p> <p>If you obtained <strong class="pkg">Wedderga</strong>, we would be grateful for a short notification sent to one of the authors. If you publish a result which was partially obtained with the usage of <strong class="pkg">Wedderga</strong>, please cite it in the following form:</p> -<p>G. K. Bakshi, O. Broche Cristo, A. Herman, O. Konovalov, S. Maheshwary, A. Olivieri, G. Olteanu, Á. del Río and I. Van Gelder. <em>Wedderga --- Wedderburn Decomposition of Group Algebras, Version 4.10.5;</em> 2024 (<span class="URL"><a href="https://gap-packages.github.io/wedderga/">https://gap-packages.github.io/wedderga/</a></span>).</p> +<p>G. K. Bakshi, O. Broche Cristo, A. Herman, O. Konovalov, S. Maheshwary, A. Olivieri, G. Olteanu, Á. del Río and I. Van Gelder. <em>Wedderga --- Wedderburn Decomposition of Group Algebras, Version 4.11.0;</em> 2025 (<span class="URL"><a href="https://gap-packages.github.io/wedderga/">https://gap-packages.github.io/wedderga/</a></span>).</p> <p><a id="X82A988D47DFAFCFA" name="X82A988D47DFAFCFA"></a></p> <h3>Acknowledgements</h3> @@ -416,6 +416,6 @@ <div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0_mj.html">Top</a> <a href="chap1_mj.html">1</a> <a href="chap2_mj.html">2</a> <a href="chap3_mj.html">3</a> <a href="chap4_mj.html">4</a> <a href="chap5_mj.html">5</a> <a href="chap6_mj.html">6</a> <a href="chap7_mj.html">7</a> <a href="chap8_mj.html">8</a> <a href="chap9_mj.html">9</a> <a href="chapBib_mj.html">Bib</a> <a href="chapInd_mj.html">Ind</a> </div> <hr /> -<p class="foot">generated by <a href="http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p> +<p class="foot">generated by <a href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p> </body> </html> diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' '--exclude=.svnignore' old/wedderga-4.10.5/doc/chap1.html new/wedderga-4.11.0/doc/chap1.html --- old/wedderga-4.10.5/doc/chap1.html 2024-02-19 15:58:14.000000000 +0100 +++ new/wedderga-4.11.0/doc/chap1.html 2025-06-16 12:47:58.000000000 +0200 @@ -136,6 +136,6 @@ <div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a> <a href="chap1.html">1</a> <a href="chap2.html">2</a> <a href="chap3.html">3</a> <a href="chap4.html">4</a> <a href="chap5.html">5</a> <a href="chap6.html">6</a> <a href="chap7.html">7</a> <a href="chap8.html">8</a> <a href="chap9.html">9</a> <a href="chapBib.html">Bib</a> <a href="chapInd.html">Ind</a> </div> <hr /> -<p class="foot">generated by <a href="http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p> +<p class="foot">generated by <a href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p> </body> </html> diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' '--exclude=.svnignore' old/wedderga-4.10.5/doc/chap1_mj.html new/wedderga-4.11.0/doc/chap1_mj.html --- old/wedderga-4.10.5/doc/chap1_mj.html 2024-02-19 15:58:14.000000000 +0100 +++ new/wedderga-4.11.0/doc/chap1_mj.html 2025-06-16 12:47:59.000000000 +0200 @@ -6,7 +6,7 @@ <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"> <head> <script type="text/javascript" - src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML"> + src="https://cdn.jsdelivr.net/npm/mathjax@2/MathJax.js?config=TeX-AMS-MML_HTMLorMML"> </script> <title>GAP (Wedderga) - Chapter 1: Introduction</title> <meta http-equiv="content-type" content="text/html; charset=UTF-8" /> @@ -139,6 +139,6 @@ <div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0_mj.html">Top</a> <a href="chap1_mj.html">1</a> <a href="chap2_mj.html">2</a> <a href="chap3_mj.html">3</a> <a href="chap4_mj.html">4</a> <a href="chap5_mj.html">5</a> <a href="chap6_mj.html">6</a> <a href="chap7_mj.html">7</a> <a href="chap8_mj.html">8</a> <a href="chap9_mj.html">9</a> <a href="chapBib_mj.html">Bib</a> <a href="chapInd_mj.html">Ind</a> </div> <hr /> -<p class="foot">generated by <a href="http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p> +<p class="foot">generated by <a href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p> </body> </html> diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' '--exclude=.svnignore' old/wedderga-4.10.5/doc/chap2.html new/wedderga-4.11.0/doc/chap2.html --- old/wedderga-4.10.5/doc/chap2.html 2024-02-19 15:58:14.000000000 +0100 +++ new/wedderga-4.11.0/doc/chap2.html 2025-06-16 12:47:58.000000000 +0200 @@ -476,6 +476,6 @@ <div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a> <a href="chap1.html">1</a> <a href="chap2.html">2</a> <a href="chap3.html">3</a> <a href="chap4.html">4</a> <a href="chap5.html">5</a> <a href="chap6.html">6</a> <a href="chap7.html">7</a> <a href="chap8.html">8</a> <a href="chap9.html">9</a> <a href="chapBib.html">Bib</a> <a href="chapInd.html">Ind</a> </div> <hr /> -<p class="foot">generated by <a href="http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p> +<p class="foot">generated by <a href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p> </body> </html> diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' '--exclude=.svnignore' old/wedderga-4.10.5/doc/chap2_mj.html new/wedderga-4.11.0/doc/chap2_mj.html --- old/wedderga-4.10.5/doc/chap2_mj.html 2024-02-19 15:58:14.000000000 +0100 +++ new/wedderga-4.11.0/doc/chap2_mj.html 2025-06-16 12:47:59.000000000 +0200 @@ -6,7 +6,7 @@ <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"> <head> <script type="text/javascript" - src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML"> + src="https://cdn.jsdelivr.net/npm/mathjax@2/MathJax.js?config=TeX-AMS-MML_HTMLorMML"> </script> <title>GAP (Wedderga) - Chapter 2: Wedderburn decomposition</title> <meta http-equiv="content-type" content="text/html; charset=UTF-8" /> @@ -479,6 +479,6 @@ <div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0_mj.html">Top</a> <a href="chap1_mj.html">1</a> <a href="chap2_mj.html">2</a> <a href="chap3_mj.html">3</a> <a href="chap4_mj.html">4</a> <a href="chap5_mj.html">5</a> <a href="chap6_mj.html">6</a> <a href="chap7_mj.html">7</a> <a href="chap8_mj.html">8</a> <a href="chap9_mj.html">9</a> <a href="chapBib_mj.html">Bib</a> <a href="chapInd_mj.html">Ind</a> </div> <hr /> -<p class="foot">generated by <a href="http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p> +<p class="foot">generated by <a href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p> </body> </html> diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' '--exclude=.svnignore' old/wedderga-4.10.5/doc/chap3.html new/wedderga-4.11.0/doc/chap3.html --- old/wedderga-4.10.5/doc/chap3.html 2024-02-19 15:58:14.000000000 +0100 +++ new/wedderga-4.11.0/doc/chap3.html 2025-06-16 12:47:58.000000000 +0200 @@ -276,6 +276,6 @@ <div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a> <a href="chap1.html">1</a> <a href="chap2.html">2</a> <a href="chap3.html">3</a> <a href="chap4.html">4</a> <a href="chap5.html">5</a> <a href="chap6.html">6</a> <a href="chap7.html">7</a> <a href="chap8.html">8</a> <a href="chap9.html">9</a> <a href="chapBib.html">Bib</a> <a href="chapInd.html">Ind</a> </div> <hr /> -<p class="foot">generated by <a href="http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p> +<p class="foot">generated by <a href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p> </body> </html> diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' '--exclude=.svnignore' old/wedderga-4.10.5/doc/chap3_mj.html new/wedderga-4.11.0/doc/chap3_mj.html --- old/wedderga-4.10.5/doc/chap3_mj.html 2024-02-19 15:58:14.000000000 +0100 +++ new/wedderga-4.11.0/doc/chap3_mj.html 2025-06-16 12:47:59.000000000 +0200 @@ -6,7 +6,7 @@ <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"> <head> <script type="text/javascript" - src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML"> + src="https://cdn.jsdelivr.net/npm/mathjax@2/MathJax.js?config=TeX-AMS-MML_HTMLorMML"> </script> <title>GAP (Wedderga) - Chapter 3: Shoda pairs</title> <meta http-equiv="content-type" content="text/html; charset=UTF-8" /> @@ -279,6 +279,6 @@ <div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0_mj.html">Top</a> <a href="chap1_mj.html">1</a> <a href="chap2_mj.html">2</a> <a href="chap3_mj.html">3</a> <a href="chap4_mj.html">4</a> <a href="chap5_mj.html">5</a> <a href="chap6_mj.html">6</a> <a href="chap7_mj.html">7</a> <a href="chap8_mj.html">8</a> <a href="chap9_mj.html">9</a> <a href="chapBib_mj.html">Bib</a> <a href="chapInd_mj.html">Ind</a> </div> <hr /> -<p class="foot">generated by <a href="http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p> +<p class="foot">generated by <a href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p> </body> </html> diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' '--exclude=.svnignore' old/wedderga-4.10.5/doc/chap4.html new/wedderga-4.11.0/doc/chap4.html --- old/wedderga-4.10.5/doc/chap4.html 2024-02-19 15:58:14.000000000 +0100 +++ new/wedderga-4.11.0/doc/chap4.html 2025-06-16 12:47:58.000000000 +0200 @@ -386,6 +386,6 @@ <div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a> <a href="chap1.html">1</a> <a href="chap2.html">2</a> <a href="chap3.html">3</a> <a href="chap4.html">4</a> <a href="chap5.html">5</a> <a href="chap6.html">6</a> <a href="chap7.html">7</a> <a href="chap8.html">8</a> <a href="chap9.html">9</a> <a href="chapBib.html">Bib</a> <a href="chapInd.html">Ind</a> </div> <hr /> -<p class="foot">generated by <a href="http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p> +<p class="foot">generated by <a href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p> </body> </html> diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' '--exclude=.svnignore' old/wedderga-4.10.5/doc/chap4_mj.html new/wedderga-4.11.0/doc/chap4_mj.html --- old/wedderga-4.10.5/doc/chap4_mj.html 2024-02-19 15:58:14.000000000 +0100 +++ new/wedderga-4.11.0/doc/chap4_mj.html 2025-06-16 12:47:59.000000000 +0200 @@ -6,7 +6,7 @@ <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"> <head> <script type="text/javascript" - src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML"> + src="https://cdn.jsdelivr.net/npm/mathjax@2/MathJax.js?config=TeX-AMS-MML_HTMLorMML"> </script> <title>GAP (Wedderga) - Chapter 4: Idempotents</title> <meta http-equiv="content-type" content="text/html; charset=UTF-8" /> @@ -389,6 +389,6 @@ <div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0_mj.html">Top</a> <a href="chap1_mj.html">1</a> <a href="chap2_mj.html">2</a> <a href="chap3_mj.html">3</a> <a href="chap4_mj.html">4</a> <a href="chap5_mj.html">5</a> <a href="chap6_mj.html">6</a> <a href="chap7_mj.html">7</a> <a href="chap8_mj.html">8</a> <a href="chap9_mj.html">9</a> <a href="chapBib_mj.html">Bib</a> <a href="chapInd_mj.html">Ind</a> </div> <hr /> -<p class="foot">generated by <a href="http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p> +<p class="foot">generated by <a href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p> </body> </html> diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' '--exclude=.svnignore' old/wedderga-4.10.5/doc/chap5.html new/wedderga-4.11.0/doc/chap5.html --- old/wedderga-4.10.5/doc/chap5.html 2024-02-19 15:58:14.000000000 +0100 +++ new/wedderga-4.11.0/doc/chap5.html 2025-06-16 12:47:58.000000000 +0200 @@ -471,6 +471,6 @@ <div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a> <a href="chap1.html">1</a> <a href="chap2.html">2</a> <a href="chap3.html">3</a> <a href="chap4.html">4</a> <a href="chap5.html">5</a> <a href="chap6.html">6</a> <a href="chap7.html">7</a> <a href="chap8.html">8</a> <a href="chap9.html">9</a> <a href="chapBib.html">Bib</a> <a href="chapInd.html">Ind</a> </div> <hr /> -<p class="foot">generated by <a href="http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p> +<p class="foot">generated by <a href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p> </body> </html> diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' '--exclude=.svnignore' old/wedderga-4.10.5/doc/chap5_mj.html new/wedderga-4.11.0/doc/chap5_mj.html --- old/wedderga-4.10.5/doc/chap5_mj.html 2024-02-19 15:58:14.000000000 +0100 +++ new/wedderga-4.11.0/doc/chap5_mj.html 2025-06-16 12:47:59.000000000 +0200 @@ -6,7 +6,7 @@ <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"> <head> <script type="text/javascript" - src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML"> + src="https://cdn.jsdelivr.net/npm/mathjax@2/MathJax.js?config=TeX-AMS-MML_HTMLorMML"> </script> <title>GAP (Wedderga) - Chapter 5: Crossed products and their elements</title> <meta http-equiv="content-type" content="text/html; charset=UTF-8" /> @@ -474,6 +474,6 @@ <div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0_mj.html">Top</a> <a href="chap1_mj.html">1</a> <a href="chap2_mj.html">2</a> <a href="chap3_mj.html">3</a> <a href="chap4_mj.html">4</a> <a href="chap5_mj.html">5</a> <a href="chap6_mj.html">6</a> <a href="chap7_mj.html">7</a> <a href="chap8_mj.html">8</a> <a href="chap9_mj.html">9</a> <a href="chapBib_mj.html">Bib</a> <a href="chapInd_mj.html">Ind</a> </div> <hr /> -<p class="foot">generated by <a href="http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p> +<p class="foot">generated by <a href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p> </body> </html> diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' '--exclude=.svnignore' old/wedderga-4.10.5/doc/chap6.html new/wedderga-4.11.0/doc/chap6.html --- old/wedderga-4.10.5/doc/chap6.html 2024-02-19 15:58:14.000000000 +0100 +++ new/wedderga-4.11.0/doc/chap6.html 2025-06-16 12:47:58.000000000 +0200 @@ -355,6 +355,6 @@ <div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a> <a href="chap1.html">1</a> <a href="chap2.html">2</a> <a href="chap3.html">3</a> <a href="chap4.html">4</a> <a href="chap5.html">5</a> <a href="chap6.html">6</a> <a href="chap7.html">7</a> <a href="chap8.html">8</a> <a href="chap9.html">9</a> <a href="chapBib.html">Bib</a> <a href="chapInd.html">Ind</a> </div> <hr /> -<p class="foot">generated by <a href="http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p> +<p class="foot">generated by <a href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p> </body> </html> diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' '--exclude=.svnignore' old/wedderga-4.10.5/doc/chap6_mj.html new/wedderga-4.11.0/doc/chap6_mj.html --- old/wedderga-4.10.5/doc/chap6_mj.html 2024-02-19 15:58:14.000000000 +0100 +++ new/wedderga-4.11.0/doc/chap6_mj.html 2025-06-16 12:47:59.000000000 +0200 @@ -6,7 +6,7 @@ <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"> <head> <script type="text/javascript" - src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML"> + src="https://cdn.jsdelivr.net/npm/mathjax@2/MathJax.js?config=TeX-AMS-MML_HTMLorMML"> </script> <title>GAP (Wedderga) - Chapter 6: Useful properties and functions</title> <meta http-equiv="content-type" content="text/html; charset=UTF-8" /> @@ -358,6 +358,6 @@ <div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0_mj.html">Top</a> <a href="chap1_mj.html">1</a> <a href="chap2_mj.html">2</a> <a href="chap3_mj.html">3</a> <a href="chap4_mj.html">4</a> <a href="chap5_mj.html">5</a> <a href="chap6_mj.html">6</a> <a href="chap7_mj.html">7</a> <a href="chap8_mj.html">8</a> <a href="chap9_mj.html">9</a> <a href="chapBib_mj.html">Bib</a> <a href="chapInd_mj.html">Ind</a> </div> <hr /> -<p class="foot">generated by <a href="http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p> +<p class="foot">generated by <a href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p> </body> </html> diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' '--exclude=.svnignore' old/wedderga-4.10.5/doc/chap7.html new/wedderga-4.11.0/doc/chap7.html --- old/wedderga-4.10.5/doc/chap7.html 2024-02-19 15:58:14.000000000 +0100 +++ new/wedderga-4.11.0/doc/chap7.html 2025-06-16 12:47:58.000000000 +0200 @@ -160,7 +160,7 @@ <div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ SchurIndexByCharacter</code>( <var class="Arg">F</var>, <var class="Arg">G</var>, <var class="Arg">n</var> )</td><td class="tdright">( operation )</td></tr></table></div> <p>Returns: The first of these returns the Schur index of the simple algebra <var class="Arg">A</var>. The second returns the Schur index of the simple component of the group ring <var class="Arg">FG</var> corresponding to the irreducible character <code class="code">Irr(G)[n]</code> of <var class="Arg">G</var>.</p> -<p>These are the main functions for computing Schur indices. The first can be used to find the rational Schur index of a simple component of the group ring of a finite group over an abelian number field, or a quaternion algebra in <strong class="pkg">GAP</strong> (see <code class="func">QuaternionAlgebra</code> (<a href="../../../doc/ref/chap62_mj.html#X83DF4BCC7CE494FC"><span class="RefLink">Reference: QuaternionAlgebra</span></a>)) whose center is the field of rational numbers. If <var class="Arg">A</var> is a quaternion algebra over a number field other than the Rationals, <code class="code">fail</code> is returned. In these cases, the quaternion algebra can be converted to a cyclic algebra and the Schur index of the cyclic algebra can be determined through the solution of norm equations. Currently this functionality is not implemented in <strong class="pkg">GAP</strong>, but available in number theory packages such as <strong class="pkg">PARI/GP</strong>.</p> +<p>These are the main functions for computing Schur indices. The first can be used to find the rational Schur index of a simple component of the group ring of a finite group over an abelian number field, or a quaternion algebra in <strong class="pkg">GAP</strong> (see <code class="func">QuaternionAlgebra</code> (<a href="../../../doc/ref/chap62.html#X83DF4BCC7CE494FC"><span class="RefLink">Reference: QuaternionAlgebra</span></a>)) whose center is the field of rational numbers. If <var class="Arg">A</var> is a quaternion algebra over a number field other than the Rationals, <code class="code">fail</code> is returned. In these cases, the quaternion algebra can be converted to a cyclic algebra and the Schur index of the cyclic algebra can be determined through the solution of norm equations. Currently this functionality is not implemented in <strong class="pkg">GAP</strong>, but available in number theory packages such as <strong class="pkg">PARI/GP</strong>.</p> <p>The second function computes the Schur index of the cyclotomic algebra that would occur as the simple component of the group ring <var class="Arg">FG</var> that corresponds to the irreducible character <code class="code">Irr(G)[n]</code>. The function uses <code class="func">SimpleComponentByCharacterDescent</code> (<a href="chap7.html#X81FBABAB856C676F"><span class="RefLink">7.3-2</span></a>), which uses the character descent algorithm to reduce to as small a group as possible. For larger groups this is preferrable as it is less demanding on memory. The Schur index of the resulting cyclotomic algebra is then computed with the <code class="func">SchurIndex</code> function.</p> @@ -204,7 +204,7 @@ <div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ WedderburnDecompositionAsSCAlgebras</code>( <var class="Arg">R</var> )</td><td class="tdright">( operation )</td></tr></table></div> <div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ CyclotomicAlgebraAsSCAlgebra</code>( <var class="Arg">A</var> )</td><td class="tdright">( operation )</td></tr></table></div> <div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ SimpleComponentByCharacterAsSCAlgebra</code>( <var class="Arg">F</var>, <var class="Arg">G</var>, <var class="Arg">n</var> )</td><td class="tdright">( operation )</td></tr></table></div> -<p>Returns: The first of these returns the Wedderburn decomposition of the group ring <code class="code">R</code> with each simple component presented as an algebra with structure constants in <strong class="pkg">GAP</strong> (see <a href="../../../doc/ref/chap62_mj.html#X7E8F45547CC07CE5"><span class="RefLink">Reference: Constructing Algebras by Structure Constants</span></a> in the main <strong class="pkg">GAP</strong> manual). The second converts a list <code class="code">A</code> that is output from <code class="func">WedderburnDecompositionInfo</code> (<a href="chap2.html#X8710F98A85F0DD29"><span class="RefLink">2.1-2</span></a>) into an algebra with structure constants in <strong class="pkg">GAP</strong>. The third determines an algebra with structure constants that is isomorphic to the simple component of the group ring of the finite group <code class="code">G</code> over the field <code class="code">F</code> that corresponds to the irreducible character <code class="code">Ir r(G)[n]</code>.</p> +<p>Returns: The first of these returns the Wedderburn decomposition of the group ring <code class="code">R</code> with each simple component presented as an algebra with structure constants in <strong class="pkg">GAP</strong> (see <a href="../../../doc/ref/chap62.html#X7E8F45547CC07CE5"><span class="RefLink">Reference: Constructing Algebras by Structure Constants</span></a> in the main <strong class="pkg">GAP</strong> manual). The second converts a list <code class="code">A</code> that is output from <code class="func">WedderburnDecompositionInfo</code> (<a href="chap2.html#X8710F98A85F0DD29"><span class="RefLink">2.1-2</span></a>) into an algebra with structure constants in <strong class="pkg">GAP</strong>. The third determines an algebra with structure constants that is isomorphic to the simple component of the group ring of the finite group <code class="code">G</code> over the field <code class="code">F</code> that corresponds to the irreducible character <code class="code">Irr(G )[n]</code>.</p> <p>These functions are an option for obtaining a Wedderburn decomposition or simple component of the group ring <code class="code">FG</code> in which the output is in the form of an algebra with structure constants, which is more compatible with GAP's built-in operations for finite-dimensional algebras.</p> @@ -482,7 +482,7 @@ <div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ LocalIndicesOfCyclotomicAlgebra</code>( <var class="Arg">A</var> )</td><td class="tdright">( operation )</td></tr></table></div> <p>Returns: A list of pairs <code class="code">[p,m]</code> indicating the nontrivial local indices <code class="code">m</code> at the primes <code class="code">p</code> of the cyclic cyclotomic algebra indicated by <code class="code">A</code>.</p> -<p>The input <code class="code">A</code> should be a cyclotomic algebra; i.e. a list of length 2, 4, or 5 in the form of the output by <strong class="pkg">Wedderga</strong>'s "-Info" functions. If the cyclotomic algebra <var class="Arg">A</var> is represented by a list of length 2, the local indices are all <span class="SimpleMath">1</span>, so the function will return an empty list. If the cyclotomic algebra <var class="Arg">A</var> is given by a list of length 4, then it represents a cyclic cyclotomic algebra, so the function <code class="func">LocalIndicesOfCyclicCyclotomicAlgebra</code> (<a href="chap7.html#X8780F8E87B6EC023"><span class="RefLink">7.4-1</span></a>) is utilized. If the cyclotomic algebra <code class="code">A</code> is presented as a list of length 5 or more, the function first applies <code class="func">GlobalSplittingOfCyclotomicAlgebra</code> (<a href="chap7.html#X80B04A237F4C19FF"><span class="RefLink">7.3-1</span></a>) to reduce the length as much as possible . If this does not reduce the length to 4 or less, it applies the character descent algorithm to try to reduce it again with Clifford theory: it determines the group and character <code class="code">chi</code> that faithfully represent the algebra using <code class="func">DefiningGroupOfCyclotomicAlgebra</code> (<a href="chap7.html#X7F33FE4F7E029BF7"><span class="RefLink">7.5-3</span></a>) and <code class="func">DefiningCharacterOfCyclotomicAlgebra</code> (<a href="chap7.html#X7F33FE4F7E029BF7"><span class="RefLink">7.5-3</span></a>), then applies <code class="func">SimpleComponentByCharacterDescent</code> (<a href="chap7.html#X81FBABAB856C676F"><span class="RefLink">7.3-2</span></a>). It repeats this until it cannot reduce the length of cyclotomic algebra any longer. If the length is 4 it will apply the local index functions for cyclic cyclotomic algebras to compute the local indices at each prime dividing the order of the group. If the length is 5 or more, it applies the character -theoretic local Schur index functions to the output <code class="code">[G,chi]</code> of <code class="func">DefiningGroupAndCharacterOfCyclotAlg</code> (<a href="chap7.html#X7F33FE4F7E029BF7"><span class="RefLink">7.5-3</span></a>). It uses the Frobenius-Schur indicator of <code class="code">chi</code> to determine the local index at infinity (see <code class="func">LocalIndexAtInftyByCharacter</code> (<a href="chap7.html#X8656B34387EC74EF"><span class="RefLink">7.5-4</span></a>)). For local indices at odd primes and sometimes for the prime <span class="SimpleMath">2</span>, the defect group of the block containing <code class="code">chi</code> will be cyclic, so the local index can be found using the values of a Brauer character by a theorem of Benard (see <code class="func">LocalIndexAtPByBrauerCharacter</code> (<a href="chap7.html#X80D1046284577B32"><span class="RefLink">7.5-6</span></a>).) Sometimes for the prime 2 the defect group is not necessarily cyclic, so in these cases w e appeal to the classification of dyadic Schur groups by Schmid and Riese (see <code class="func">LocalIndexAtTwoByCharacter</code> (<a href="chap7.html#X82A979548619CB85"><span class="RefLink">7.5-7</span></a>)).</p> +<p>The input <code class="code">A</code> should be a cyclotomic algebra; i.e. a list of length 2, 4, or 5 in the form of the output by <strong class="pkg">Wedderga</strong>'s <q>-Info</q> functions. If the cyclotomic algebra <var class="Arg">A</var> is represented by a list of length 2, the local indices are all <span class="SimpleMath">1</span>, so the function will return an empty list. If the cyclotomic algebra <var class="Arg">A</var> is given by a list of length 4, then it represents a cyclic cyclotomic algebra, so the function <code class="func">LocalIndicesOfCyclicCyclotomicAlgebra</code> (<a href="chap7.html#X8780F8E87B6EC023"><span class="RefLink">7.4-1</span></a>) is utilized. If the cyclotomic algebra <code class="code">A</code> is presented as a list of length 5 or more, the function first applies <code class="func">GlobalSplittingOfCyclotomicAlgebra</code> (<a href="chap7.html#X80B04A237F4C19FF"><span class="RefLink">7.3-1</span></a>) to reduce the length as much as pos sible. If this does not reduce the length to 4 or less, it applies the character descent algorithm to try to reduce it again with Clifford theory: it determines the group and character <code class="code">chi</code> that faithfully represent the algebra using <code class="func">DefiningGroupOfCyclotomicAlgebra</code> (<a href="chap7.html#X7F33FE4F7E029BF7"><span class="RefLink">7.5-3</span></a>) and <code class="func">DefiningCharacterOfCyclotomicAlgebra</code> (<a href="chap7.html#X7F33FE4F7E029BF7"><span class="RefLink">7.5-3</span></a>), then applies <code class="func">SimpleComponentByCharacterDescent</code> (<a href="chap7.html#X81FBABAB856C676F"><span class="RefLink">7.3-2</span></a>). It repeats this until it cannot reduce the length of cyclotomic algebra any longer. If the length is 4 it will apply the local index functions for cyclic cyclotomic algebras to compute the local indices at each prime dividing the order of the group. If the length is 5 or more, it applies the char acter-theoretic local Schur index functions to the output <code class="code">[G,chi]</code> of <code class="func">DefiningGroupAndCharacterOfCyclotAlg</code> (<a href="chap7.html#X7F33FE4F7E029BF7"><span class="RefLink">7.5-3</span></a>). It uses the Frobenius-Schur indicator of <code class="code">chi</code> to determine the local index at infinity (see <code class="func">LocalIndexAtInftyByCharacter</code> (<a href="chap7.html#X8656B34387EC74EF"><span class="RefLink">7.5-4</span></a>)). For local indices at odd primes and sometimes for the prime <span class="SimpleMath">2</span>, the defect group of the block containing <code class="code">chi</code> will be cyclic, so the local index can be found using the values of a Brauer character by a theorem of Benard (see <code class="func">LocalIndexAtPByBrauerCharacter</code> (<a href="chap7.html#X80D1046284577B32"><span class="RefLink">7.5-6</span></a>).) Sometimes for the prime 2 the defect group is not necessarily cyclic, so in these ca ses we appeal to the classification of dyadic Schur groups by Schmid and Riese (see <code class="func">LocalIndexAtTwoByCharacter</code> (<a href="chap7.html#X82A979548619CB85"><span class="RefLink">7.5-7</span></a>)).</p> <div class="example"><pre> @@ -742,7 +742,7 @@ <p>The function calculates the rational Schur index of the algebra using <code class="func">LocalIndicesOfRationalQuaternionAlgebra</code> (<a href="chap7.html#X78E6B3807EDDE82E"><span class="RefLink">7.6-1</span></a>), and returns <code class="keyw">true</code> if the rational Schur index of the algebra is <code class="code">2</code>, and <code class="keyw">false</code> if the rational Schur index is <code class="code">1</code>.</p> -<p>This function should be preferred over <code class="keyw">GAP</code>'s <code class="func">IsDivisionRing</code> (<a href="../../../doc/ref/chap58_mj.html#X7F2CAA9E7A16913D"><span class="RefLink">Reference: IsDivisionRing</span></a>) when dealing with rational quaternion algebras, since the result of latter function only depends on the local index at infinity for quaternion algebras, and makes no use of the local indices at the finite primes.</p> +<p>This function should be preferred over <code class="keyw">GAP</code>'s <code class="func">IsDivisionRing</code> (<a href="../../../doc/ref/chap58.html#X7F2CAA9E7A16913D"><span class="RefLink">Reference: IsDivisionRing</span></a>) when dealing with rational quaternion algebras, since the result of latter function only depends on the local index at infinity for quaternion algebras, and makes no use of the local indices at the finite primes.</p> <div class="example"><pre> @@ -779,7 +779,7 @@ <p>The input must be list representing a cyclotomic algebra of length 5 whose Galois group has <code class="code">2</code> generators. This is represented in <strong class="pkg">Wedderga</strong> as a list of the form <code class="code">[r,F,n,[[m1,k1,l1],[m2,k2,l2]],[[d]]]</code>. (Longer presentations of cyclotomic algebras do occur in <strong class="pkg">Wedderga</strong> output. Currently we do not have a general decomposition algorithm for them.)</p> -<p>For these algebras, the extension <code class="code">F(E(n))/F</code> is the tensor product of two disjoint extensions <code class="code">K1</code> and <code class="code">K2</code> of <code class="code">F</code>, and the program adjusts one of the factor sets (corresponding to <span class="SimpleMath">l1</span> or <span class="SimpleMath">l2</span>) so that <span class="SimpleMath">d</span> becomes <code class="code">0</code>. After this adjustment, the algebra is then the tensor product of cyclic algebras of the form <code class="code">[F,K1,[c1]]</code> and <code class="code">[F,K2,[c2]]</code> provided <code class="code">c1</code> and <code class="code">c2</code> lie in <code class="code">F</code>. If the latter condition is not satisfied, the string "fails" is appended to the output. (We have not encountered this problem among the group algebras of small groups we have tested so far.)</p> +<p>For these algebras, the extension <code class="code">F(E(n))/F</code> is the tensor product of two disjoint extensions <code class="code">K1</code> and <code class="code">K2</code> of <code class="code">F</code>, and the program adjusts one of the factor sets (corresponding to <span class="SimpleMath">l1</span> or <span class="SimpleMath">l2</span>) so that <span class="SimpleMath">d</span> becomes <code class="code">0</code>. After this adjustment, the algebra is then the tensor product of cyclic algebras of the form <code class="code">[F,K1,[c1]]</code> and <code class="code">[F,K2,[c2]]</code> provided <code class="code">c1</code> and <code class="code">c2</code> lie in <code class="code">F</code>. If the latter condition is not satisfied, the string <q>fails</q> is appended to the output. (We have not encountered this problem among the group algebras of small groups we have tested so far.)</p> <div class="example"><pre> @@ -876,6 +876,6 @@ <div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a> <a href="chap1.html">1</a> <a href="chap2.html">2</a> <a href="chap3.html">3</a> <a href="chap4.html">4</a> <a href="chap5.html">5</a> <a href="chap6.html">6</a> <a href="chap7.html">7</a> <a href="chap8.html">8</a> <a href="chap9.html">9</a> <a href="chapBib.html">Bib</a> <a href="chapInd.html">Ind</a> </div> <hr /> -<p class="foot">generated by <a href="http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p> +<p class="foot">generated by <a href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p> </body> </html> diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' '--exclude=.svnignore' old/wedderga-4.10.5/doc/chap7_mj.html new/wedderga-4.11.0/doc/chap7_mj.html --- old/wedderga-4.10.5/doc/chap7_mj.html 2024-02-19 15:58:14.000000000 +0100 +++ new/wedderga-4.11.0/doc/chap7_mj.html 2025-06-16 12:47:59.000000000 +0200 @@ -6,7 +6,7 @@ <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"> <head> <script type="text/javascript" - src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML"> + src="https://cdn.jsdelivr.net/npm/mathjax@2/MathJax.js?config=TeX-AMS-MML_HTMLorMML"> </script> <title>GAP (Wedderga) - Chapter 7: Functions for calculating Schur indices and identifying division algebras</title> <meta http-equiv="content-type" content="text/html; charset=UTF-8" /> @@ -485,7 +485,7 @@ <div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ LocalIndicesOfCyclotomicAlgebra</code>( <var class="Arg">A</var> )</td><td class="tdright">( operation )</td></tr></table></div> <p>Returns: A list of pairs <code class="code">[p,m]</code> indicating the nontrivial local indices <code class="code">m</code> at the primes <code class="code">p</code> of the cyclic cyclotomic algebra indicated by <code class="code">A</code>.</p> -<p>The input <code class="code">A</code> should be a cyclotomic algebra; i.e. a list of length 2, 4, or 5 in the form of the output by <strong class="pkg">Wedderga</strong>'s "-Info" functions. If the cyclotomic algebra <var class="Arg">A</var> is represented by a list of length 2, the local indices are all <span class="SimpleMath">\(1\)</span>, so the function will return an empty list. If the cyclotomic algebra <var class="Arg">A</var> is given by a list of length 4, then it represents a cyclic cyclotomic algebra, so the function <code class="func">LocalIndicesOfCyclicCyclotomicAlgebra</code> (<a href="chap7_mj.html#X8780F8E87B6EC023"><span class="RefLink">7.4-1</span></a>) is utilized. If the cyclotomic algebra <code class="code">A</code> is presented as a list of length 5 or more, the function first applies <code class="func">GlobalSplittingOfCyclotomicAlgebra</code> (<a href="chap7_mj.html#X80B04A237F4C19FF"><span class="RefLink">7.3-1</span></a>) to reduce the length as much a s possible. If this does not reduce the length to 4 or less, it applies the character descent algorithm to try to reduce it again with Clifford theory: it determines the group and character <code class="code">chi</code> that faithfully represent the algebra using <code class="func">DefiningGroupOfCyclotomicAlgebra</code> (<a href="chap7_mj.html#X7F33FE4F7E029BF7"><span class="RefLink">7.5-3</span></a>) and <code class="func">DefiningCharacterOfCyclotomicAlgebra</code> (<a href="chap7_mj.html#X7F33FE4F7E029BF7"><span class="RefLink">7.5-3</span></a>), then applies <code class="func">SimpleComponentByCharacterDescent</code> (<a href="chap7_mj.html#X81FBABAB856C676F"><span class="RefLink">7.3-2</span></a>). It repeats this until it cannot reduce the length of cyclotomic algebra any longer. If the length is 4 it will apply the local index functions for cyclic cyclotomic algebras to compute the local indices at each prime dividing the order of the group. If the length is 5 or more, it ap plies the character-theoretic local Schur index functions to the output <code class="code">[G,chi]</code> of <code class="func">DefiningGroupAndCharacterOfCyclotAlg</code> (<a href="chap7_mj.html#X7F33FE4F7E029BF7"><span class="RefLink">7.5-3</span></a>). It uses the Frobenius-Schur indicator of <code class="code">chi</code> to determine the local index at infinity (see <code class="func">LocalIndexAtInftyByCharacter</code> (<a href="chap7_mj.html#X8656B34387EC74EF"><span class="RefLink">7.5-4</span></a>)). For local indices at odd primes and sometimes for the prime <span class="SimpleMath">\(2\)</span>, the defect group of the block containing <code class="code">chi</code> will be cyclic, so the local index can be found using the values of a Brauer character by a theorem of Benard (see <code class="func">LocalIndexAtPByBrauerCharacter</code> (<a href="chap7_mj.html#X80D1046284577B32"><span class="RefLink">7.5-6</span></a>).) Sometimes for the prime 2 the defect group is not necessa rily cyclic, so in these cases we appeal to the classification of dyadic Schur groups by Schmid and Riese (see <code class="func">LocalIndexAtTwoByCharacter</code> (<a href="chap7_mj.html#X82A979548619CB85"><span class="RefLink">7.5-7</span></a>)).</p> +<p>The input <code class="code">A</code> should be a cyclotomic algebra; i.e. a list of length 2, 4, or 5 in the form of the output by <strong class="pkg">Wedderga</strong>'s <q>-Info</q> functions. If the cyclotomic algebra <var class="Arg">A</var> is represented by a list of length 2, the local indices are all <span class="SimpleMath">\(1\)</span>, so the function will return an empty list. If the cyclotomic algebra <var class="Arg">A</var> is given by a list of length 4, then it represents a cyclic cyclotomic algebra, so the function <code class="func">LocalIndicesOfCyclicCyclotomicAlgebra</code> (<a href="chap7_mj.html#X8780F8E87B6EC023"><span class="RefLink">7.4-1</span></a>) is utilized. If the cyclotomic algebra <code class="code">A</code> is presented as a list of length 5 or more, the function first applies <code class="func">GlobalSplittingOfCyclotomicAlgebra</code> (<a href="chap7_mj.html#X80B04A237F4C19FF"><span class="RefLink">7.3-1</span></a>) to reduce the length as m uch as possible. If this does not reduce the length to 4 or less, it applies the character descent algorithm to try to reduce it again with Clifford theory: it determines the group and character <code class="code">chi</code> that faithfully represent the algebra using <code class="func">DefiningGroupOfCyclotomicAlgebra</code> (<a href="chap7_mj.html#X7F33FE4F7E029BF7"><span class="RefLink">7.5-3</span></a>) and <code class="func">DefiningCharacterOfCyclotomicAlgebra</code> (<a href="chap7_mj.html#X7F33FE4F7E029BF7"><span class="RefLink">7.5-3</span></a>), then applies <code class="func">SimpleComponentByCharacterDescent</code> (<a href="chap7_mj.html#X81FBABAB856C676F"><span class="RefLink">7.3-2</span></a>). It repeats this until it cannot reduce the length of cyclotomic algebra any longer. If the length is 4 it will apply the local index functions for cyclic cyclotomic algebras to compute the local indices at each prime dividing the order of the group. If the length is 5 or more, it applies the character-theoretic local Schur index functions to the output <code class="code">[G,chi]</code> of <code class="func">DefiningGroupAndCharacterOfCyclotAlg</code> (<a href="chap7_mj.html#X7F33FE4F7E029BF7"><span class="RefLink">7.5-3</span></a>). It uses the Frobenius-Schur indicator of <code class="code">chi</code> to determine the local index at infinity (see <code class="func">LocalIndexAtInftyByCharacter</code> (<a href="chap7_mj.html#X8656B34387EC74EF"><span class="RefLink">7.5-4</span></a>)). For local indices at odd primes and sometimes for the prime <span class="SimpleMath">\(2\)</span>, the defect group of the block containing <code class="code">chi</code> will be cyclic, so the local index can be found using the values of a Brauer character by a theorem of Benard (see <code class="func">LocalIndexAtPByBrauerCharacter</code> (<a href="chap7_mj.html#X80D1046284577B32"><span class="RefLink">7.5-6</span></a>).) Sometimes for the prime 2 the defect group is not ne cessarily cyclic, so in these cases we appeal to the classification of dyadic Schur groups by Schmid and Riese (see <code class="func">LocalIndexAtTwoByCharacter</code> (<a href="chap7_mj.html#X82A979548619CB85"><span class="RefLink">7.5-7</span></a>)).</p> <div class="example"><pre> @@ -782,7 +782,7 @@ <p>The input must be list representing a cyclotomic algebra of length 5 whose Galois group has <code class="code">2</code> generators. This is represented in <strong class="pkg">Wedderga</strong> as a list of the form <code class="code">[r,F,n,[[m1,k1,l1],[m2,k2,l2]],[[d]]]</code>. (Longer presentations of cyclotomic algebras do occur in <strong class="pkg">Wedderga</strong> output. Currently we do not have a general decomposition algorithm for them.)</p> -<p>For these algebras, the extension <code class="code">F(E(n))/F</code> is the tensor product of two disjoint extensions <code class="code">K1</code> and <code class="code">K2</code> of <code class="code">F</code>, and the program adjusts one of the factor sets (corresponding to <span class="SimpleMath">\(l1\)</span> or <span class="SimpleMath">\(l2\)</span>) so that <span class="SimpleMath">\(d\)</span> becomes <code class="code">0</code>. After this adjustment, the algebra is then the tensor product of cyclic algebras of the form <code class="code">[F,K1,[c1]]</code> and <code class="code">[F,K2,[c2]]</code> provided <code class="code">c1</code> and <code class="code">c2</code> lie in <code class="code">F</code>. If the latter condition is not satisfied, the string "fails" is appended to the output. (We have not encountered this problem among the group algebras of small groups we have tested so far.)</p> +<p>For these algebras, the extension <code class="code">F(E(n))/F</code> is the tensor product of two disjoint extensions <code class="code">K1</code> and <code class="code">K2</code> of <code class="code">F</code>, and the program adjusts one of the factor sets (corresponding to <span class="SimpleMath">\(l1\)</span> or <span class="SimpleMath">\(l2\)</span>) so that <span class="SimpleMath">\(d\)</span> becomes <code class="code">0</code>. After this adjustment, the algebra is then the tensor product of cyclic algebras of the form <code class="code">[F,K1,[c1]]</code> and <code class="code">[F,K2,[c2]]</code> provided <code class="code">c1</code> and <code class="code">c2</code> lie in <code class="code">F</code>. If the latter condition is not satisfied, the string <q>fails</q> is appended to the output. (We have not encountered this problem among the group algebras of small groups we have tested so far.)</p> <div class="example"><pre> @@ -879,6 +879,6 @@ <div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0_mj.html">Top</a> <a href="chap1_mj.html">1</a> <a href="chap2_mj.html">2</a> <a href="chap3_mj.html">3</a> <a href="chap4_mj.html">4</a> <a href="chap5_mj.html">5</a> <a href="chap6_mj.html">6</a> <a href="chap7_mj.html">7</a> <a href="chap8_mj.html">8</a> <a href="chap9_mj.html">9</a> <a href="chapBib_mj.html">Bib</a> <a href="chapInd_mj.html">Ind</a> </div> <hr /> -<p class="foot">generated by <a href="http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p> +<p class="foot">generated by <a href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p> </body> </html> diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' '--exclude=.svnignore' old/wedderga-4.10.5/doc/chap8.html new/wedderga-4.11.0/doc/chap8.html --- old/wedderga-4.10.5/doc/chap8.html 2024-02-19 15:58:14.000000000 +0100 +++ new/wedderga-4.11.0/doc/chap8.html 2025-06-16 12:47:58.000000000 +0200 @@ -117,6 +117,6 @@ <div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a> <a href="chap1.html">1</a> <a href="chap2.html">2</a> <a href="chap3.html">3</a> <a href="chap4.html">4</a> <a href="chap5.html">5</a> <a href="chap6.html">6</a> <a href="chap7.html">7</a> <a href="chap8.html">8</a> <a href="chap9.html">9</a> <a href="chapBib.html">Bib</a> <a href="chapInd.html">Ind</a> </div> <hr /> -<p class="foot">generated by <a href="http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p> +<p class="foot">generated by <a href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p> </body> </html> diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' '--exclude=.svnignore' old/wedderga-4.10.5/doc/chap8_mj.html new/wedderga-4.11.0/doc/chap8_mj.html --- old/wedderga-4.10.5/doc/chap8_mj.html 2024-02-19 15:58:14.000000000 +0100 +++ new/wedderga-4.11.0/doc/chap8_mj.html 2025-06-16 12:47:59.000000000 +0200 @@ -6,7 +6,7 @@ <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"> <head> <script type="text/javascript" - src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML"> + src="https://cdn.jsdelivr.net/npm/mathjax@2/MathJax.js?config=TeX-AMS-MML_HTMLorMML"> </script> <title>GAP (Wedderga) - Chapter 8: Applications of the Wedderga package</title> <meta http-equiv="content-type" content="text/html; charset=UTF-8" /> @@ -120,6 +120,6 @@ <div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0_mj.html">Top</a> <a href="chap1_mj.html">1</a> <a href="chap2_mj.html">2</a> <a href="chap3_mj.html">3</a> <a href="chap4_mj.html">4</a> <a href="chap5_mj.html">5</a> <a href="chap6_mj.html">6</a> <a href="chap7_mj.html">7</a> <a href="chap8_mj.html">8</a> <a href="chap9_mj.html">9</a> <a href="chapBib_mj.html">Bib</a> <a href="chapInd_mj.html">Ind</a> </div> <hr /> -<p class="foot">generated by <a href="http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p> +<p class="foot">generated by <a href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p> </body> </html> diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' '--exclude=.svnignore' old/wedderga-4.10.5/doc/chap9.html new/wedderga-4.11.0/doc/chap9.html --- old/wedderga-4.10.5/doc/chap9.html 2024-02-19 15:58:14.000000000 +0100 +++ new/wedderga-4.11.0/doc/chap9.html 2025-06-16 12:47:58.000000000 +0200 @@ -594,7 +594,7 @@ <h4>9.21 <span class="Heading"> Obtaining Algebras with structure constants as terms of the Wedderburn decomposition </span></h4> -<p>Some users may find it desirable to have an alternative description for the components of the Wedderburn decomposition of a group ring as algebras with structure constants, because the operations for algebras in <strong class="pkg">GAP</strong> are designed for algebras with structure constants. We have provided such an algorithm that converts the output of <code class="func">WedderburnDecompositionInfo</code> (<a href="chap2.html#X8710F98A85F0DD29"><span class="RefLink">2.1-2</span></a>) into algebras with structure constants. Matrix rings over fields are converted directly. For components that are cyclotomic algebras, it calculates their defining group and defining character using those <strong class="pkg">Wedderga</strong> operations, then uses <code class="func">IrreducibleRepresentationsDixon</code> (<a href="../../../doc/ref/chap71_mj.html#X8493ED7A86FFCB8A"><span class="RefLink">Reference: IrreducibleRepresentationsDixon</span></a>) to obtain matrix generators of an algebr a isomorphic to the simple component corresponding to the character over a suitable field. An algebra with structure constants version of this is finally obtained by applying <code class="func">IsomorphismSCAlgebra</code> (<a href="../../../doc/ref/chap62_mj.html#X7F8D3DF2863EC50D"><span class="RefLink">Reference: IsomorphismSCAlgebra w.r.t. a given basis</span></a>) to this algebra.</p> +<p>Some users may find it desirable to have an alternative description for the components of the Wedderburn decomposition of a group ring as algebras with structure constants, because the operations for algebras in <strong class="pkg">GAP</strong> are designed for algebras with structure constants. We have provided such an algorithm that converts the output of <code class="func">WedderburnDecompositionInfo</code> (<a href="chap2.html#X8710F98A85F0DD29"><span class="RefLink">2.1-2</span></a>) into algebras with structure constants. Matrix rings over fields are converted directly. For components that are cyclotomic algebras, it calculates their defining group and defining character using those <strong class="pkg">Wedderga</strong> operations, then uses <code class="func">IrreducibleRepresentationsDixon</code> (<a href="../../../doc/ref/chap71.html#X8493ED7A86FFCB8A"><span class="RefLink">Reference: IrreducibleRepresentationsDixon</span></a>) to obtain matrix generators of an algebra i somorphic to the simple component corresponding to the character over a suitable field. An algebra with structure constants version of this is finally obtained by applying <code class="func">IsomorphismSCAlgebra</code> (<a href="../../../doc/ref/chap62.html#X7F8D3DF2863EC50D"><span class="RefLink">Reference: IsomorphismSCAlgebra w.r.t. a given basis</span></a>) to this algebra.</p> <p><a id="X8472ACCF802EC188" name="X8472ACCF802EC188"></a></p> @@ -671,7 +671,7 @@ \{x\widehat{T_1}\varepsilon x^{-1} \mid x\in T_2\langle{x_e}\rangle\} </p> -<p>is a complete set of orthogonal primitive idempotents of <span class="SimpleMath">F G e</span> where <span class="SimpleMath">x_e=ψ^-1(PAP^-1)</span>, <span class="SimpleMath">T_1</span> is a transversal of <span class="SimpleMath">H</span> in <span class="SimpleMath">E</span> and <span class="SimpleMath">T_2</span> is a right transversal of <span class="SimpleMath">E</span> in <span class="SimpleMath">G</span> (<a href="chapBib.html#biBOV2">[OVGnt]</a>). By <span class="SimpleMath">widehatT_1</span> we denote the element <span class="SimpleMath">frac1|T_1|∑_t∈ T_1t</span> in <span class="SimpleMath">F G</span>.</p> +<p>is a complete set of orthogonal primitive idempotents of <span class="SimpleMath">F G e</span> where <span class="SimpleMath">x_e=ψ^-1(PAP^-1)</span>, <span class="SimpleMath">T_1</span> is a transversal of <span class="SimpleMath">H</span> in <span class="SimpleMath">E</span> and <span class="SimpleMath">T_2</span> is a right transversal of <span class="SimpleMath">E</span> in <span class="SimpleMath">G</span> (<a href="chapBib.html#biBOV2">[OVG15]</a>). By <span class="SimpleMath">widehatT_1</span> we denote the element <span class="SimpleMath">frac1|T_1|∑_t∈ T_1t</span> in <span class="SimpleMath">F G</span>.</p> <p><a id="X856D7975810BF987" name="X856D7975810BF987"></a></p> @@ -692,6 +692,6 @@ <div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a> <a href="chap1.html">1</a> <a href="chap2.html">2</a> <a href="chap3.html">3</a> <a href="chap4.html">4</a> <a href="chap5.html">5</a> <a href="chap6.html">6</a> <a href="chap7.html">7</a> <a href="chap8.html">8</a> <a href="chap9.html">9</a> <a href="chapBib.html">Bib</a> <a href="chapInd.html">Ind</a> </div> <hr /> -<p class="foot">generated by <a href="http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p> +<p class="foot">generated by <a href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p> </body> </html> diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' '--exclude=.svnignore' old/wedderga-4.10.5/doc/chap9.txt new/wedderga-4.11.0/doc/chap9.txt --- old/wedderga-4.10.5/doc/chap9.txt 2024-02-19 15:58:08.000000000 +0100 +++ new/wedderga-4.11.0/doc/chap9.txt 2025-06-16 12:47:53.000000000 +0200 @@ -955,7 +955,7 @@ [33X[0;0Yis a complete set of orthogonal primitive idempotents of [22XF G e[122X where [22Xx_e=ψ^-1(PAP^-1)[122X, [22XT_1[122X is a transversal of [22XH[122X in [22XE[122X and [22XT_2[122X is a right - transversal of [22XE[122X in [22XG[122X ([OVGnt]). By [22XwidehatT_1[122X we denote the element + transversal of [22XE[122X in [22XG[122X ([OVG15]). By [22XwidehatT_1[122X we denote the element [22Xfrac1|T_1|∑_t∈ T_1t[122X in [22XF G[122X.[133X diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' '--exclude=.svnignore' old/wedderga-4.10.5/doc/chap9_mj.html new/wedderga-4.11.0/doc/chap9_mj.html --- old/wedderga-4.10.5/doc/chap9_mj.html 2024-02-19 15:58:14.000000000 +0100 +++ new/wedderga-4.11.0/doc/chap9_mj.html 2025-06-16 12:47:59.000000000 +0200 @@ -6,7 +6,7 @@ <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"> <head> <script type="text/javascript" - src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML"> + src="https://cdn.jsdelivr.net/npm/mathjax@2/MathJax.js?config=TeX-AMS-MML_HTMLorMML"> </script> <title>GAP (Wedderga) - Chapter 9: The basic theory behind Wedderga</title> <meta http-equiv="content-type" content="text/html; charset=UTF-8" /> @@ -674,7 +674,7 @@ \{x\widehat{T_1}\varepsilon x^{-1} \mid x\in T_2\langle{x_e}\rangle\} \]</p> -<p>is a complete set of orthogonal primitive idempotents of <span class="SimpleMath">\(\mathbb F G e\)</span> where <span class="SimpleMath">\(x_e=\psi^{-1}(PAP^{-1})\)</span>, <span class="SimpleMath">\(T_1\)</span> is a transversal of <span class="SimpleMath">\(H\)</span> in <span class="SimpleMath">\(E\)</span> and <span class="SimpleMath">\(T_2\)</span> is a right transversal of <span class="SimpleMath">\(E\)</span> in <span class="SimpleMath">\(G\)</span> (<a href="chapBib_mj.html#biBOV2">[OVGnt]</a>). By <span class="SimpleMath">\(\widehat{T_1}\)</span> we denote the element <span class="SimpleMath">\(\frac{1}{|T_1|}\sum_{t\in T_1}{t}\)</span> in <span class="SimpleMath">\(\mathbb F G\)</span>.</p> +<p>is a complete set of orthogonal primitive idempotents of <span class="SimpleMath">\(\mathbb F G e\)</span> where <span class="SimpleMath">\(x_e=\psi^{-1}(PAP^{-1})\)</span>, <span class="SimpleMath">\(T_1\)</span> is a transversal of <span class="SimpleMath">\(H\)</span> in <span class="SimpleMath">\(E\)</span> and <span class="SimpleMath">\(T_2\)</span> is a right transversal of <span class="SimpleMath">\(E\)</span> in <span class="SimpleMath">\(G\)</span> (<a href="chapBib_mj.html#biBOV2">[OVG15]</a>). By <span class="SimpleMath">\(\widehat{T_1}\)</span> we denote the element <span class="SimpleMath">\(\frac{1}{|T_1|}\sum_{t\in T_1}{t}\)</span> in <span class="SimpleMath">\(\mathbb F G\)</span>.</p> <p><a id="X856D7975810BF987" name="X856D7975810BF987"></a></p> @@ -695,6 +695,6 @@ <div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0_mj.html">Top</a> <a href="chap1_mj.html">1</a> <a href="chap2_mj.html">2</a> <a href="chap3_mj.html">3</a> <a href="chap4_mj.html">4</a> <a href="chap5_mj.html">5</a> <a href="chap6_mj.html">6</a> <a href="chap7_mj.html">7</a> <a href="chap8_mj.html">8</a> <a href="chap9_mj.html">9</a> <a href="chapBib_mj.html">Bib</a> <a href="chapInd_mj.html">Ind</a> </div> <hr /> -<p class="foot">generated by <a href="http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p> +<p class="foot">generated by <a href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p> </body> </html> diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' '--exclude=.svnignore' old/wedderga-4.10.5/doc/chapBib.html new/wedderga-4.11.0/doc/chapBib.html --- old/wedderga-4.10.5/doc/chapBib.html 2024-02-19 15:58:14.000000000 +0100 +++ new/wedderga-4.11.0/doc/chapBib.html 2025-06-16 12:47:58.000000000 +0200 @@ -27,7 +27,7 @@ <p><a id="biBBR" name="biBBR"></a></p> <p class='BibEntry'> -[<span class='BibKeyLink'><a href="http://www.ams.org/mathscinet-getitem?mr=MR2284667">BdR07</a></span>] <b class='BibAuthor'>Broche, O. and del Río, Á.</b>, +[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=MR2284667">BdR07</a></span>] <b class='BibAuthor'>Broche, O. and del Río, Á.</b>, <i class='BibTitle'>Wedderburn decomposition of finite group algebras</i>, <span class='BibJournal'>Finite Fields Appl.</span>, <em class='BibVolume'>13</em> (<span class='BibNumber'>1</span>) @@ -38,7 +38,7 @@ <p><a id="biBB" name="biBB"></a></p> <p class='BibEntry'> -[<span class='BibKeyLink'><a href="http://www.ams.org/mathscinet-getitem?mr=MR0412265">Ben76</a></span>] <b class='BibAuthor'>Benard, M.</b>, +[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=MR0412265">Ben76</a></span>] <b class='BibAuthor'>Benard, M.</b>, <i class='BibTitle'>Schur indices and cyclic defect groups</i>, <span class='BibJournal'>Ann. of Math. (2) </span>, <em class='BibVolume'>103</em> (<span class='BibNumber'>2</span>) @@ -49,7 +49,7 @@ <p><a id="biBBM14" name="biBBM14"></a></p> <p class='BibEntry'> -[<span class='BibKeyLink'><a href="http://www.ams.org/mathscinet-getitem?mr=MR3188857">BM14</a></span>] <b class='BibAuthor'>Bakshi, G. K. and Maheshwary, S.</b>, +[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=MR3188857">BM14</a></span>] <b class='BibAuthor'>Bakshi, G. K. and Maheshwary, S.</b>, <i class='BibTitle'>The rational group algebra of a normally monomial group</i>, <span class='BibJournal'>J. Pure Appl. Algebra</span>, <em class='BibVolume'>218</em> (<span class='BibNumber'>9</span>) @@ -60,7 +60,7 @@ <p><a id="biBBM16" name="biBBM16"></a></p> <p class='BibEntry'> -[<span class='BibKeyLink'><a href="http://www.ams.org/mathscinet-getitem?mr=3461261">BM16</a></span>] <b class='BibAuthor'>Bakshi, G. K. and Maheshwary, S.</b>, +[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=3461261">BM16</a></span>] <b class='BibAuthor'>Bakshi, G. K. and Maheshwary, S.</b>, <i class='BibTitle'>Extremely strong Shoda pairs with GAP</i>, <span class='BibJournal'>J. Symbolic Comput.</span>, <em class='BibVolume'>76</em> (<span class='BibNumber'>9</span>) @@ -71,7 +71,7 @@ <p><a id="biBBS" name="biBBS"></a></p> <p class='BibEntry'> -[<span class='BibKeyLink'><a href="http://www.ams.org/mathscinet-getitem?mr=MR0302747">BS72</a></span>] <b class='BibAuthor'>Benard, M. and Schacher, M.</b>, +[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=MR0302747">BS72</a></span>] <b class='BibAuthor'>Benard, M. and Schacher, M.</b>, <i class='BibTitle'>The Schur subgroup. II.</i>, <span class='BibJournal'>J. Algebra</span>, <em class='BibVolume'>22</em> (<span class='BibNumber'>1</span>) @@ -82,7 +82,7 @@ <p><a id="biBJ" name="biBJ"></a></p> <p class='BibEntry'> -[<span class='BibKeyLink'><a href="http://www.ams.org/mathscinet-getitem?mr=MR0389849">Jan75</a></span>] <b class='BibAuthor'>Janusz, G.</b>, +[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=MR0389849">Jan75</a></span>] <b class='BibAuthor'>Janusz, G.</b>, <i class='BibTitle'>Generators for the Schur group of local and global number fields</i>, <span class='BibJournal'>Pacific J. Math.</span>, <em class='BibVolume'>56</em> (<span class='BibNumber'>2</span>) @@ -93,7 +93,7 @@ <p><a id="biBN" name="biBN"></a></p> <p class='BibEntry'> -[<span class='BibKeyLink'><a href="http://www.ams.org/mathscinet-getitem?mr=MR1632299">Nav98</a></span>] <b class='BibAuthor'>Navarro, G.</b>, +[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=MR1632299">Nav98</a></span>] <b class='BibAuthor'>Navarro, G.</b>, <i class='BibTitle'>Characters and Blocks of Finite Groups</i>, <span class='BibPublisher'>London Mathematical Society</span>, <span class='BibSeries'>Lecture Note Series</span>, @@ -106,7 +106,7 @@ <p><a id="biBOR" name="biBOR"></a></p> <p class='BibEntry'> -[<span class='BibKeyLink'><a href="http://www.ams.org/mathscinet-getitem?mr=MR1981041">OdR03</a></span>] <b class='BibAuthor'>Olivieri, A. and del Río, Á.</b>, +[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=MR1981041">OdR03</a></span>] <b class='BibAuthor'>Olivieri, A. and del Río, Á.</b>, <i class='BibTitle'>An algorithm to compute the primitive central idempotents and the Wedderburn decomposition of a rational group algebra</i>, <span class='BibJournal'>J. Symbolic Comput.</span>, @@ -118,7 +118,7 @@ <p><a id="biBORS" name="biBORS"></a></p> <p class='BibEntry'> -[<span class='BibKeyLink'><a href="http://www.ams.org/mathscinet-getitem?mr=MR2100373">OdRS04</a></span>] <b class='BibAuthor'>Olivieri, A., del Río, Á. and Simón, J. J.</b>, +[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=MR2100373">OdRS04</a></span>] <b class='BibAuthor'>Olivieri, A., del Río, Á. and Simón, J. J.</b>, <i class='BibTitle'>On monomial characters and central idempotents of rational group algebras</i>, <span class='BibJournal'>Comm. Algebra</span>, @@ -130,7 +130,7 @@ <p><a id="biBO" name="biBO"></a></p> <p class='BibEntry'> -[<span class='BibKeyLink'><a href="http://www.ams.org/mathscinet-getitem?mr=MR2291851">Olt07</a></span>] <b class='BibAuthor'>Olteanu, G.</b>, +[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=MR2291851">Olt07</a></span>] <b class='BibAuthor'>Olteanu, G.</b>, <i class='BibTitle'>Computing the Wedderburn decomposition of group algebras by the Brauer-Witt theorem</i>, <span class='BibJournal'>Math. Comp.</span>, @@ -153,15 +153,18 @@ <p><a id="biBOV2" name="biBOV2"></a></p> <p class='BibEntry'> -[<span class='BibKey'>OVGnt</span>] <b class='BibAuthor'>Olteanu, G. and Van Gelder, I.</b>, - <i class='BibTitle'>Construction of minimal non-abelian left group codes</i> - (<span class='BibYear'>preprint</span>). +[<span class='BibKey'>OVG15</span>] <b class='BibAuthor'>Olteanu, G. and Van Gelder, I.</b>, + <i class='BibTitle'>Construction of minimal non-abelian left group codes</i>, + <span class='BibJournal'>Des. Codes Cryptography</span>, + <em class='BibVolume'>75</em> (<span class='BibNumber'>3</span>) + (<span class='BibYear'>2015</span>), + <span class='BibPages'>359–373</span>. </p> <p><a id="biBP" name="biBP"></a></p> <p class='BibEntry'> -[<span class='BibKeyLink'><a href="http://www.ams.org/mathscinet-getitem?mr=MR979094">Pas89</a></span>] <b class='BibAuthor'>Passman, D. S.</b>, +[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=MR979094">Pas89</a></span>] <b class='BibAuthor'>Passman, D. S.</b>, <i class='BibTitle'>Infinite crossed products</i>, <span class='BibPublisher'>Academic Press Inc.</span>, <span class='BibSeries'>Pure and Applied Mathematics</span>, @@ -174,7 +177,7 @@ <p><a id="biBPi" name="biBPi"></a></p> <p class='BibEntry'> -[<span class='BibKeyLink'><a href="http://www.ams.org/mathscinet-getitem?mr=MR0674652">Pie82</a></span>] <b class='BibAuthor'>Pierce, R. S.</b>, +[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=MR0674652">Pie82</a></span>] <b class='BibAuthor'>Pierce, R. S.</b>, <i class='BibTitle'>Associative Algebras</i>, <span class='BibPublisher'>Springer Verlag</span>, <span class='BibSeries'>Graduate Texts in Mathematics</span>, @@ -187,7 +190,7 @@ <p><a id="biBR" name="biBR"></a></p> <p class='BibEntry'> -[<span class='BibKeyLink'><a href="http://www.ams.org/mathscinet-getitem?mr=MR1972204">Rei03</a></span>] <b class='BibAuthor'>Reiner, I.</b>, +[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=MR1972204">Rei03</a></span>] <b class='BibAuthor'>Reiner, I.</b>, <i class='BibTitle'>Maximal orders</i>, <span class='BibPublisher'>The Clarendon Press Oxford University Press</span>, <span class='BibSeries'>London Mathematical Society Monographs. New Series</span>, @@ -202,7 +205,7 @@ <p><a id="biBRSch" name="biBRSch"></a></p> <p class='BibEntry'> -[<span class='BibKeyLink'><a href="http://www.ams.org/mathscinet-getitem?mr=MR1388863">RS96</a></span>] <b class='BibAuthor'>Riese, U. and Schmid, P.</b>, +[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=MR1388863">RS96</a></span>] <b class='BibAuthor'>Riese, U. and Schmid, P.</b>, <i class='BibTitle'>Schur indices and Schur groups, II </i>, <span class='BibJournal'>J. Algebra</span>, <em class='BibVolume'>182</em> (<span class='BibNumber'>1</span>) @@ -213,7 +216,7 @@ <p><a id="biBSch" name="biBSch"></a></p> <p class='BibEntry'> -[<span class='BibKeyLink'><a href="http://www.ams.org/mathscinet-getitem?mr=MR1296591">Sch94</a></span>] <b class='BibAuthor'>Schmid, P.</b>, +[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=MR1296591">Sch94</a></span>] <b class='BibAuthor'>Schmid, P.</b>, <i class='BibTitle'>Schur indices and Schur groups </i>, <span class='BibJournal'>J. Algebra</span>, <em class='BibVolume'>169</em> (<span class='BibNumber'>15</span>) @@ -235,7 +238,7 @@ <p><a id="biBY" name="biBY"></a></p> <p class='BibEntry'> -[<span class='BibKeyLink'><a href="http://www.ams.org/mathscinet-getitem?mr=MR0347957">Yam74</a></span>] <b class='BibAuthor'>Yamada, T.</b>, +[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=MR0347957">Yam74</a></span>] <b class='BibAuthor'>Yamada, T.</b>, <i class='BibTitle'>The Schur subgroup of the Brauer group</i>, <span class='BibPublisher'>Springer-Verlag</span>, <span class='BibAddress'>Berlin</span> @@ -253,6 +256,6 @@ <div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a> <a href="chap1.html">1</a> <a href="chap2.html">2</a> <a href="chap3.html">3</a> <a href="chap4.html">4</a> <a href="chap5.html">5</a> <a href="chap6.html">6</a> <a href="chap7.html">7</a> <a href="chap8.html">8</a> <a href="chap9.html">9</a> <a href="chapBib.html">Bib</a> <a href="chapInd.html">Ind</a> </div> <hr /> -<p class="foot">generated by <a href="http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p> +<p class="foot">generated by <a href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p> </body> </html> diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' '--exclude=.svnignore' old/wedderga-4.10.5/doc/chapBib.txt new/wedderga-4.11.0/doc/chapBib.txt --- old/wedderga-4.10.5/doc/chapBib.txt 2024-02-19 15:58:08.000000000 +0100 +++ new/wedderga-4.11.0/doc/chapBib.txt 2025-06-16 12:47:53.000000000 +0200 @@ -40,8 +40,8 @@ groups: A complete set of orthogonal primitive idempotents[117X, [18XFinite Fields Appl.[118X, [19X17[119X, 2 (2011), 157–165. - [[20XOVGnt[120X] [16XOlteanu, G. and Van Gelder, I.[116X, [17XConstruction of minimal non-abelian - left group codes[117X (preprint). + [[20XOVG15[120X] [16XOlteanu, G. and Van Gelder, I.[116X, [17XConstruction of minimal non-abelian + left group codes[117X, [18XDes. Codes Cryptography[118X, [19X75[119X, 3 (2015), 359–373. [[20XPas89[120X] [16XPassman, D. S.[116X, [17XInfinite crossed products[117X, Academic Press Inc., Pure and Applied Mathematics, [19X135[119X, Boston, MA (1989), xii+468 pages. diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' '--exclude=.svnignore' old/wedderga-4.10.5/doc/chapBib_mj.html new/wedderga-4.11.0/doc/chapBib_mj.html --- old/wedderga-4.10.5/doc/chapBib_mj.html 2024-02-19 15:58:14.000000000 +0100 +++ new/wedderga-4.11.0/doc/chapBib_mj.html 2025-06-16 12:47:59.000000000 +0200 @@ -6,7 +6,7 @@ <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"> <head> <script type="text/javascript" - src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML"> + src="https://cdn.jsdelivr.net/npm/mathjax@2/MathJax.js?config=TeX-AMS-MML_HTMLorMML"> </script> <title>GAP (Wedderga) - References</title> <meta http-equiv="content-type" content="text/html; charset=UTF-8" /> @@ -30,7 +30,7 @@ <p><a id="biBBR" name="biBBR"></a></p> <p class='BibEntry'> -[<span class='BibKeyLink'><a href="http://www.ams.org/mathscinet-getitem?mr=MR2284667">BdR07</a></span>] <b class='BibAuthor'>Broche, O. and del Río, Á.</b>, +[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=MR2284667">BdR07</a></span>] <b class='BibAuthor'>Broche, O. and del Río, Á.</b>, <i class='BibTitle'>Wedderburn decomposition of finite group algebras</i>, <span class='BibJournal'>Finite Fields Appl.</span>, <em class='BibVolume'>13</em> (<span class='BibNumber'>1</span>) @@ -41,7 +41,7 @@ <p><a id="biBB" name="biBB"></a></p> <p class='BibEntry'> -[<span class='BibKeyLink'><a href="http://www.ams.org/mathscinet-getitem?mr=MR0412265">Ben76</a></span>] <b class='BibAuthor'>Benard, M.</b>, +[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=MR0412265">Ben76</a></span>] <b class='BibAuthor'>Benard, M.</b>, <i class='BibTitle'>Schur indices and cyclic defect groups</i>, <span class='BibJournal'>Ann. of Math. (2) </span>, <em class='BibVolume'>103</em> (<span class='BibNumber'>2</span>) @@ -52,7 +52,7 @@ <p><a id="biBBM14" name="biBBM14"></a></p> <p class='BibEntry'> -[<span class='BibKeyLink'><a href="http://www.ams.org/mathscinet-getitem?mr=MR3188857">BM14</a></span>] <b class='BibAuthor'>Bakshi, G. K. and Maheshwary, S.</b>, +[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=MR3188857">BM14</a></span>] <b class='BibAuthor'>Bakshi, G. K. and Maheshwary, S.</b>, <i class='BibTitle'>The rational group algebra of a normally monomial group</i>, <span class='BibJournal'>J. Pure Appl. Algebra</span>, <em class='BibVolume'>218</em> (<span class='BibNumber'>9</span>) @@ -63,7 +63,7 @@ <p><a id="biBBM16" name="biBBM16"></a></p> <p class='BibEntry'> -[<span class='BibKeyLink'><a href="http://www.ams.org/mathscinet-getitem?mr=3461261">BM16</a></span>] <b class='BibAuthor'>Bakshi, G. K. and Maheshwary, S.</b>, +[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=3461261">BM16</a></span>] <b class='BibAuthor'>Bakshi, G. K. and Maheshwary, S.</b>, <i class='BibTitle'>Extremely strong Shoda pairs with GAP</i>, <span class='BibJournal'>J. Symbolic Comput.</span>, <em class='BibVolume'>76</em> (<span class='BibNumber'>9</span>) @@ -74,7 +74,7 @@ <p><a id="biBBS" name="biBBS"></a></p> <p class='BibEntry'> -[<span class='BibKeyLink'><a href="http://www.ams.org/mathscinet-getitem?mr=MR0302747">BS72</a></span>] <b class='BibAuthor'>Benard, M. and Schacher, M.</b>, +[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=MR0302747">BS72</a></span>] <b class='BibAuthor'>Benard, M. and Schacher, M.</b>, <i class='BibTitle'>The Schur subgroup. II.</i>, <span class='BibJournal'>J. Algebra</span>, <em class='BibVolume'>22</em> (<span class='BibNumber'>1</span>) @@ -85,7 +85,7 @@ <p><a id="biBJ" name="biBJ"></a></p> <p class='BibEntry'> -[<span class='BibKeyLink'><a href="http://www.ams.org/mathscinet-getitem?mr=MR0389849">Jan75</a></span>] <b class='BibAuthor'>Janusz, G.</b>, +[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=MR0389849">Jan75</a></span>] <b class='BibAuthor'>Janusz, G.</b>, <i class='BibTitle'>Generators for the Schur group of local and global number fields</i>, <span class='BibJournal'>Pacific J. Math.</span>, <em class='BibVolume'>56</em> (<span class='BibNumber'>2</span>) @@ -96,7 +96,7 @@ <p><a id="biBN" name="biBN"></a></p> <p class='BibEntry'> -[<span class='BibKeyLink'><a href="http://www.ams.org/mathscinet-getitem?mr=MR1632299">Nav98</a></span>] <b class='BibAuthor'>Navarro, G.</b>, +[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=MR1632299">Nav98</a></span>] <b class='BibAuthor'>Navarro, G.</b>, <i class='BibTitle'>Characters and Blocks of Finite Groups</i>, <span class='BibPublisher'>London Mathematical Society</span>, <span class='BibSeries'>Lecture Note Series</span>, @@ -109,7 +109,7 @@ <p><a id="biBOR" name="biBOR"></a></p> <p class='BibEntry'> -[<span class='BibKeyLink'><a href="http://www.ams.org/mathscinet-getitem?mr=MR1981041">OdR03</a></span>] <b class='BibAuthor'>Olivieri, A. and del Río, Á.</b>, +[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=MR1981041">OdR03</a></span>] <b class='BibAuthor'>Olivieri, A. and del Río, Á.</b>, <i class='BibTitle'>An algorithm to compute the primitive central idempotents and the Wedderburn decomposition of a rational group algebra</i>, <span class='BibJournal'>J. Symbolic Comput.</span>, @@ -121,7 +121,7 @@ <p><a id="biBORS" name="biBORS"></a></p> <p class='BibEntry'> -[<span class='BibKeyLink'><a href="http://www.ams.org/mathscinet-getitem?mr=MR2100373">OdRS04</a></span>] <b class='BibAuthor'>Olivieri, A., del Río, Á. and Simón, J. J.</b>, +[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=MR2100373">OdRS04</a></span>] <b class='BibAuthor'>Olivieri, A., del Río, Á. and Simón, J. J.</b>, <i class='BibTitle'>On monomial characters and central idempotents of rational group algebras</i>, <span class='BibJournal'>Comm. Algebra</span>, @@ -133,7 +133,7 @@ <p><a id="biBO" name="biBO"></a></p> <p class='BibEntry'> -[<span class='BibKeyLink'><a href="http://www.ams.org/mathscinet-getitem?mr=MR2291851">Olt07</a></span>] <b class='BibAuthor'>Olteanu, G.</b>, +[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=MR2291851">Olt07</a></span>] <b class='BibAuthor'>Olteanu, G.</b>, <i class='BibTitle'>Computing the Wedderburn decomposition of group algebras by the Brauer-Witt theorem</i>, <span class='BibJournal'>Math. Comp.</span>, @@ -156,15 +156,18 @@ <p><a id="biBOV2" name="biBOV2"></a></p> <p class='BibEntry'> -[<span class='BibKey'>OVGnt</span>] <b class='BibAuthor'>Olteanu, G. and Van Gelder, I.</b>, - <i class='BibTitle'>Construction of minimal non-abelian left group codes</i> - (<span class='BibYear'>preprint</span>). +[<span class='BibKey'>OVG15</span>] <b class='BibAuthor'>Olteanu, G. and Van Gelder, I.</b>, + <i class='BibTitle'>Construction of minimal non-abelian left group codes</i>, + <span class='BibJournal'>Des. Codes Cryptography</span>, + <em class='BibVolume'>75</em> (<span class='BibNumber'>3</span>) + (<span class='BibYear'>2015</span>), + <span class='BibPages'>359–373</span>. </p> <p><a id="biBP" name="biBP"></a></p> <p class='BibEntry'> -[<span class='BibKeyLink'><a href="http://www.ams.org/mathscinet-getitem?mr=MR979094">Pas89</a></span>] <b class='BibAuthor'>Passman, D. S.</b>, +[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=MR979094">Pas89</a></span>] <b class='BibAuthor'>Passman, D. S.</b>, <i class='BibTitle'>Infinite crossed products</i>, <span class='BibPublisher'>Academic Press Inc.</span>, <span class='BibSeries'>Pure and Applied Mathematics</span>, @@ -177,7 +180,7 @@ <p><a id="biBPi" name="biBPi"></a></p> <p class='BibEntry'> -[<span class='BibKeyLink'><a href="http://www.ams.org/mathscinet-getitem?mr=MR0674652">Pie82</a></span>] <b class='BibAuthor'>Pierce, R. S.</b>, +[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=MR0674652">Pie82</a></span>] <b class='BibAuthor'>Pierce, R. S.</b>, <i class='BibTitle'>Associative Algebras</i>, <span class='BibPublisher'>Springer Verlag</span>, <span class='BibSeries'>Graduate Texts in Mathematics</span>, @@ -190,7 +193,7 @@ <p><a id="biBR" name="biBR"></a></p> <p class='BibEntry'> -[<span class='BibKeyLink'><a href="http://www.ams.org/mathscinet-getitem?mr=MR1972204">Rei03</a></span>] <b class='BibAuthor'>Reiner, I.</b>, +[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=MR1972204">Rei03</a></span>] <b class='BibAuthor'>Reiner, I.</b>, <i class='BibTitle'>Maximal orders</i>, <span class='BibPublisher'>The Clarendon Press Oxford University Press</span>, <span class='BibSeries'>London Mathematical Society Monographs. New Series</span>, @@ -205,7 +208,7 @@ <p><a id="biBRSch" name="biBRSch"></a></p> <p class='BibEntry'> -[<span class='BibKeyLink'><a href="http://www.ams.org/mathscinet-getitem?mr=MR1388863">RS96</a></span>] <b class='BibAuthor'>Riese, U. and Schmid, P.</b>, +[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=MR1388863">RS96</a></span>] <b class='BibAuthor'>Riese, U. and Schmid, P.</b>, <i class='BibTitle'>Schur indices and Schur groups, II </i>, <span class='BibJournal'>J. Algebra</span>, <em class='BibVolume'>182</em> (<span class='BibNumber'>1</span>) @@ -216,7 +219,7 @@ <p><a id="biBSch" name="biBSch"></a></p> <p class='BibEntry'> -[<span class='BibKeyLink'><a href="http://www.ams.org/mathscinet-getitem?mr=MR1296591">Sch94</a></span>] <b class='BibAuthor'>Schmid, P.</b>, +[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=MR1296591">Sch94</a></span>] <b class='BibAuthor'>Schmid, P.</b>, <i class='BibTitle'>Schur indices and Schur groups </i>, <span class='BibJournal'>J. Algebra</span>, <em class='BibVolume'>169</em> (<span class='BibNumber'>15</span>) @@ -238,7 +241,7 @@ <p><a id="biBY" name="biBY"></a></p> <p class='BibEntry'> -[<span class='BibKeyLink'><a href="http://www.ams.org/mathscinet-getitem?mr=MR0347957">Yam74</a></span>] <b class='BibAuthor'>Yamada, T.</b>, +[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=MR0347957">Yam74</a></span>] <b class='BibAuthor'>Yamada, T.</b>, <i class='BibTitle'>The Schur subgroup of the Brauer group</i>, <span class='BibPublisher'>Springer-Verlag</span>, <span class='BibAddress'>Berlin</span> @@ -256,6 +259,6 @@ <div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0_mj.html">Top</a> <a href="chap1_mj.html">1</a> <a href="chap2_mj.html">2</a> <a href="chap3_mj.html">3</a> <a href="chap4_mj.html">4</a> <a href="chap5_mj.html">5</a> <a href="chap6_mj.html">6</a> <a href="chap7_mj.html">7</a> <a href="chap8_mj.html">8</a> <a href="chap9_mj.html">9</a> <a href="chapBib_mj.html">Bib</a> <a href="chapInd_mj.html">Ind</a> </div> <hr /> -<p class="foot">generated by <a href="http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p> +<p class="foot">generated by <a href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p> </body> </html> diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' '--exclude=.svnignore' old/wedderga-4.10.5/doc/chapInd.html new/wedderga-4.11.0/doc/chapInd.html --- old/wedderga-4.10.5/doc/chapInd.html 2024-02-19 15:58:14.000000000 +0100 +++ new/wedderga-4.11.0/doc/chapInd.html 2025-06-16 12:47:58.000000000 +0200 @@ -176,6 +176,6 @@ <div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a> <a href="chap1.html">1</a> <a href="chap2.html">2</a> <a href="chap3.html">3</a> <a href="chap4.html">4</a> <a href="chap5.html">5</a> <a href="chap6.html">6</a> <a href="chap7.html">7</a> <a href="chap8.html">8</a> <a href="chap9.html">9</a> <a href="chapBib.html">Bib</a> <a href="chapInd.html">Ind</a> </div> <hr /> -<p class="foot">generated by <a href="http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p> +<p class="foot">generated by <a href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p> </body> </html> diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' '--exclude=.svnignore' old/wedderga-4.10.5/doc/chapInd.txt new/wedderga-4.11.0/doc/chapInd.txt --- old/wedderga-4.10.5/doc/chapInd.txt 2024-02-19 15:58:08.000000000 +0100 +++ new/wedderga-4.11.0/doc/chapInd.txt 2025-06-16 12:47:53.000000000 +0200 @@ -141,7 +141,7 @@ [2XWedderburnDecompositionByCharacterDescent[102X 7.3-4 [2XWedderburnDecompositionInfo[102X 2.1-2 [2XWedderburnDecompositionWithDivAlgParts[102X 7.1-1 - [5XWedderga[105X package .-1 + [5XWedderga[105X package 0.0-1 [10XZeroCoefficient[110X 5.2-1 [22Xε(K,H)[122X 9.13 diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' '--exclude=.svnignore' old/wedderga-4.10.5/doc/chapInd_mj.html new/wedderga-4.11.0/doc/chapInd_mj.html --- old/wedderga-4.10.5/doc/chapInd_mj.html 2024-02-19 15:58:14.000000000 +0100 +++ new/wedderga-4.11.0/doc/chapInd_mj.html 2025-06-16 12:47:59.000000000 +0200 @@ -6,7 +6,7 @@ <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"> <head> <script type="text/javascript" - src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML"> + src="https://cdn.jsdelivr.net/npm/mathjax@2/MathJax.js?config=TeX-AMS-MML_HTMLorMML"> </script> <title>GAP (Wedderga) - Index</title> <meta http-equiv="content-type" content="text/html; charset=UTF-8" /> @@ -179,6 +179,6 @@ <div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0_mj.html">Top</a> <a href="chap1_mj.html">1</a> <a href="chap2_mj.html">2</a> <a href="chap3_mj.html">3</a> <a href="chap4_mj.html">4</a> <a href="chap5_mj.html">5</a> <a href="chap6_mj.html">6</a> <a href="chap7_mj.html">7</a> <a href="chap8_mj.html">8</a> <a href="chap9_mj.html">9</a> <a href="chapBib_mj.html">Bib</a> <a href="chapInd_mj.html">Ind</a> </div> <hr /> -<p class="foot">generated by <a href="http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p> +<p class="foot">generated by <a href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p> </body> </html> Binary files old/wedderga-4.10.5/doc/manual.pdf and new/wedderga-4.11.0/doc/manual.pdf differ diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' '--exclude=.svnignore' old/wedderga-4.10.5/doc/manual.six new/wedderga-4.11.0/doc/manual.six --- old/wedderga-4.10.5/doc/manual.six 2024-02-19 15:58:14.000000000 +0100 +++ new/wedderga-4.11.0/doc/manual.six 2025-06-16 12:47:58.000000000 +0200 @@ -3,12 +3,15 @@ encoding := "UTF-8", bookname := "Wedderga", entries := -[ [ "Title page", ".", [ 0, 0, 0 ], 1, 1, "title page", "X7D2C85EC87DD46E5" ], - [ "Abstract", ".-1", [ 0, 0, 1 ], 105, 2, "abstract", "X7AA6C5737B711C89" ], - [ "Copyright", ".-2", [ 0, 0, 2 ], 118, 2, "copyright", "X81488B807F2A1CF1" - ], [ "Acknowledgements", ".-3", [ 0, 0, 3 ], 140, 2, "acknowledgements", +[ [ "Title page", "0.0", [ 0, 0, 0 ], 1, 1, "title page", "X7D2C85EC87DD46E5" + ], + [ "Abstract", "0.0-1", [ 0, 0, 1 ], 105, 2, "abstract", "X7AA6C5737B711C89" + ], + [ "Copyright", "0.0-2", [ 0, 0, 2 ], 118, 2, "copyright", + "X81488B807F2A1CF1" ], + [ "Acknowledgements", "0.0-3", [ 0, 0, 3 ], 140, 2, "acknowledgements", "X82A988D47DFAFCFA" ], - [ "Table of Contents", ".-4", [ 0, 0, 4 ], 171, 4, "table of contents", + [ "Table of Contents", "0.0-4", [ 0, 0, 4 ], 171, 4, "table of contents", "X8537FEB07AF2BEC8" ], [ "\033[1X\033[33X\033[0;-2YIntroduction\033[133X\033[101X", "1", [ 1, 0, 0 ], 1, 6, "introduction", "X7DFB63A97E67C0A1" ], @@ -178,7 +181,7 @@ 133X\033[101X", "9.12", [ 9, 12, 0 ], 391, 65, "numerical description of cyclotomic algebras", "X84A142407B7565E0" ], [ "\033[1X\033[33X\033[0;-2YIdempotents given by subgroups\033[133X\033[101X\ -", "9.13", [ 9, 13, 0 ], 462, 65, "idempotents given by subgroups", +", "9.13", [ 9, 13, 0 ], 462, 66, "idempotents given by subgroups", "X8310E96086509397" ], [ "\033[1X\033[33X\033[0;-2YShoda pairs of a group\033[133X\033[101X", "9.14", [ 9, 14, 0 ], 502, 66, "shoda pairs of a group", @@ -192,7 +195,7 @@ "extremely strong shoda pairs of a group", "X81B5CE0378DC4913" ], [ "\033[1X\033[33X\033[0;-2YStrongly monomial characters and strongly monomia\ -l groups\033[133X\033[101X", "9.17", [ 9, 17, 0 ], 622, 67, +l groups\033[133X\033[101X", "9.17", [ 9, 17, 0 ], 622, 68, "strongly monomial characters and strongly monomial groups", "X84C694978557EFE5" ], [ @@ -228,7 +231,7 @@ [ "References", "bib", [ "Bib", 0, 0 ], 1, 74, "references", "X7A6F98FD85F02BFE" ], [ "Index", "ind", [ "Ind", 0, 0 ], 1, 76, "index", "X83A0356F839C696F" ], - [ "\033[5XWedderga\033[105X package", ".-1", [ 0, 0, 1 ], 105, 2, + [ "\033[5XWedderga\033[105X package", "0.0-1", [ 0, 0, 1 ], 105, 2, "wedderga package", "X7AA6C5737B711C89" ], [ "\033[2XWedderburnDecomposition\033[102X", "2.1-1", [ 2, 1, 1 ], 7, 9, "wedderburndecomposition", "X7F1779ED8777F3E7" ], @@ -519,11 +522,11 @@ "X84C98BB8859BBEE2" ], [ "Cyclotomic algebra", "9.11", [ 9, 11, 0 ], 380, 65, "cyclotomic algebra", "X8099A8C784255672" ], - [ "\033[22X\316\265(K,H)\033[122X", "9.13", [ 9, 13, 0 ], 462, 65, + [ "\033[22X\316\265(K,H)\033[122X", "9.13", [ 9, 13, 0 ], 462, 66, "i\265 k h", "X8310E96086509397" ], - [ "\033[22Xe(G,K,H)\033[122X", "9.13", [ 9, 13, 0 ], 462, 65, "e g k h", + [ "\033[22Xe(G,K,H)\033[122X", "9.13", [ 9, 13, 0 ], 462, 66, "e g k h", "X8310E96086509397" ], - [ "\033[22Xe_C(G,K,H)\033[122X", "9.13", [ 9, 13, 0 ], 462, 65, + [ "\033[22Xe_C(G,K,H)\033[122X", "9.13", [ 9, 13, 0 ], 462, 66, "e_c g k h", "X8310E96086509397" ], [ "Shoda pair", "9.14", [ 9, 14, 0 ], 502, 66, "shoda pair", "X7D518BAB80EDE190" ], @@ -539,9 +542,9 @@ "extremely strong shoda pair", "X81B5CE0378DC4913" ], [ "equivalent extremely strong Shoda pairs", "9.16", [ 9, 16, 0 ], 595, 67, "equivalent extremely strong shoda pairs", "X81B5CE0378DC4913" ], - [ "strongly monomial character", "9.17", [ 9, 17, 0 ], 622, 67, + [ "strongly monomial character", "9.17", [ 9, 17, 0 ], 622, 68, "strongly monomial character", "X84C694978557EFE5" ], - [ "strongly monomial group", "9.17", [ 9, 17, 0 ], 622, 67, + [ "strongly monomial group", "9.17", [ 9, 17, 0 ], 622, 68, "strongly monomial group", "X84C694978557EFE5" ], [ "normally monomial character", "9.18", [ 9, 18, 0 ], 643, 68, "normally monomial character", "X7C8D47C180E0ACAD" ], diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' '--exclude=.svnignore' old/wedderga-4.10.5/doc/manualbib.xml new/wedderga-4.11.0/doc/manualbib.xml --- old/wedderga-4.10.5/doc/manualbib.xml 2024-02-19 15:57:47.000000000 +0100 +++ new/wedderga-4.11.0/doc/manualbib.xml 2025-06-16 12:47:37.000000000 +0200 @@ -205,7 +205,11 @@ <name><first>Inneke</first><last>Van Gelder</last></name> </author> <title>Construction of minimal non-abelian left group codes</title> - <year>preprint</year> + <journal>Des. Codes Cryptography</journal> + <year>2015</year> + <volume>75</volume> + <number>3</number> + <pages>359–373</pages> </article></entry> <entry id="P"><book> diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' '--exclude=.svnignore' old/wedderga-4.10.5/doc/manualbib.xml.bib new/wedderga-4.11.0/doc/manualbib.xml.bib --- old/wedderga-4.10.5/doc/manualbib.xml.bib 2024-02-19 15:58:08.000000000 +0100 +++ new/wedderga-4.11.0/doc/manualbib.xml.bib 2025-06-16 12:47:53.000000000 +0200 @@ -11,7 +11,7 @@ year = {1976}, pages = {283{\textendash}304}, fjournal = {Annals of Mathematics. Second series.}, - issn = {0003-486X}, + issn = {0003\texttt{\symbol{45}}486X}, mrclass = {20C20}, mrnumber = {MR0412265 (54 \#391)}, mrreviewer = {W. Feit}, @@ -26,7 +26,7 @@ year = {1972}, pages = {378{\textendash}385}, fjournal = {Journal of Algebra}, - issn = {0021-8693}, + issn = {0021\texttt{\symbol{45}}8693}, mrclass = {20C05 (16A26)}, mrnumber = {MR0302747 (46 \#1890)}, mrreviewer = {T.V. Fossum}, @@ -41,7 +41,7 @@ year = {2007}, pages = {71{\textendash}79}, fjournal = {Finite Fields and their Applications}, - issn = {1071-5797}, + issn = {1071\texttt{\symbol{45}}5797}, mrclass = {16S34}, mrnumber = {MR2284667 (2007m:16027)}, mrreviewer = {E. Jespers}, @@ -57,7 +57,7 @@ year = {1975}, pages = {525{\textendash}546}, fjournal = {Pacific Journal of Mathematics}, - issn = {0030-8730}, + issn = {0030\texttt{\symbol{45}}8730}, mrclass = {12A60 (12A65 20C05)}, mrnumber = {MR0389849 (52 \#10679)}, mrreviewer = {M. Benard}, @@ -72,8 +72,8 @@ address = {Cambridge, UK}, year = {1998}, pages = {x+287}, - isbn = {0-521-59513-4}, - mrclass = {20C20 (20-02 20C15)}, + isbn = {0\texttt{\symbol{45}}521\texttt{\symbol{45}}59513\texttt{\symbol{45}}4}, + mrclass = {20C20 (20\texttt{\symbol{45}}02 20C15)}, mrnumber = {MR1632299 (2000a:20018)}, mrreviewer = {Wolfgang Willems}, printedkey = {Nav98} @@ -88,7 +88,7 @@ year = {2014}, pages = {1583{\textendash}1593}, fjournal = {Journal of Pure and Applied Algebra}, - issn = {0022-4049}, + issn = {0022\texttt{\symbol{45}}4049}, mrclass = {16S34 (20C05)}, mrnumber = {MR3188857}, mrreviewer = {Adalbert Bovdi}, @@ -103,7 +103,7 @@ year = {2016}, pages = {97{\textendash}106}, fjournal = {Journal of Symbolic Computation}, - issn = {0747-7171}, + issn = {0747\texttt{\symbol{45}}7171}, mrclass = {20C05 (68W30)}, mrnumber = {3461261}, mrreviewer = {Kaoru Motose}, @@ -120,7 +120,7 @@ year = {2003}, pages = {673{\textendash}687}, fjournal = {Journal of Symbolic Computation}, - issn = {0747-7171}, + issn = {0747\texttt{\symbol{45}}7171}, mrclass = {16S34 (68W30)}, mrnumber = {MR1981041 (2004k:16073)}, mrreviewer = {E. Jespers}, @@ -138,7 +138,7 @@ pages = {1531{\textendash}1550}, coden = {COALDM}, fjournal = {Communications in Algebra}, - issn = {0092-7872}, + issn = {0092\texttt{\symbol{45}}7872}, mrclass = {16S34 (16U99 20C05)}, mrnumber = {MR2100373 (2005i:16054)}, mrreviewer = {E. Jespers}, @@ -147,7 +147,8 @@ @article{ O, author = {Olteanu, G.}, title = {Computing the {W}edderburn decomposition of group - algebras by the {B}rauer-{W}itt theorem}, + algebras by the {B}rauer\texttt{\symbol{45}}{W}itt + theorem}, journal = {Math. Comp.}, volume = {76}, number = {258}, @@ -155,7 +156,7 @@ pages = {1073{\textendash}1087 (electronic)}, coden = {MCMPAF}, fjournal = {Mathematics of Computation}, - issn = {0025-5718}, + issn = {0025\texttt{\symbol{45}}5718}, mrclass = {16S34 (20C15)}, mrnumber = {MR2291851}, mrreviewer = {E. Jespers}, @@ -174,9 +175,14 @@ } @article{ OV2, author = {Olteanu, G. and Van Gelder, I.}, - title = {Construction of minimal non-abelian left group codes}, - year = {preprint}, - printedkey = {OGnt} + title = {Construction of minimal non\texttt{\symbol{45}}abelian + left group codes}, + journal = {Des. Codes Cryptography}, + volume = {75}, + number = {3}, + year = {2015}, + pages = {359{\textendash}373}, + printedkey = {OG15} } @book{ P, author = {Passman, D. S.}, @@ -187,8 +193,8 @@ address = {Boston, MA}, year = {1989}, pages = {xii+468}, - isbn = {0-12-546390-1}, - mrclass = {16-02 (16A03 16A27 20C07)}, + isbn = {0\texttt{\symbol{45}}12\texttt{\symbol{45}}546390\texttt{\symbol{45}}1}, + mrclass = {16\texttt{\symbol{45}}02 (16A03 16A27 20C07)}, mrnumber = {MR979094 (90g:16002)}, mrreviewer = {Martin Lorenz}, printedkey = {Pas89} @@ -199,11 +205,11 @@ publisher = {Springer Verlag}, series = {Graduate Texts in Mathematics}, volume = {88}, - address = {New York - Berlin}, + address = {New York \texttt{\symbol{45}} Berlin}, year = {1982}, pages = {xii+436}, - isbn = {0-387-90693-2}, - mrclass = {16-01 (12-01)}, + isbn = {0\texttt{\symbol{45}}387\texttt{\symbol{45}}90693\texttt{\symbol{45}}2}, + mrclass = {16\texttt{\symbol{45}}01 (12\texttt{\symbol{45}}01)}, mrnumber = {MR0674652 (84c:16001)}, mrreviewer = {S.S. Page}, printedkey = {Pie82} @@ -219,7 +225,7 @@ pages = {xiv+395}, note = {Corrected reprint of the 1975 original, With a foreword by M. J. Taylor}, - isbn = {0-19-852673-3}, + isbn = {0\texttt{\symbol{45}}19\texttt{\symbol{45}}852673\texttt{\symbol{45}}3}, mrclass = {16H05 (11R54 16K20)}, mrnumber = {MR1972204 (2004c:16026)}, printedkey = {Rei03} @@ -233,7 +239,7 @@ year = {1996}, pages = {183{\textendash}200}, fjournal = {Journal of Algebra}, - issn = {0021-8693}, + issn = {0021\texttt{\symbol{45}}8693}, mrclass = {20C15 (20C11)}, mrnumber = {MR1388863 (97e:20009)}, mrreviewer = {Alexandre Turull}, @@ -248,7 +254,7 @@ year = {1994}, pages = {226{\textendash}247}, fjournal = {Journal of Algebra}, - issn = {0021-8693}, + issn = {0021\texttt{\symbol{45}}8693}, mrclass = {20C15}, mrnumber = {MR1296591 (95i:20012)}, mrreviewer = {W. Feit}, @@ -258,7 +264,7 @@ author = {Shoda, K.}, title = {{\"U}ber die monomialen {D}arstellungen einer endlichen {G}ruppe}, - journal = {Proc. Phys.-Math. Soc. Japan}, + journal = {Proc. Phys.\texttt{\symbol{45}}Math. Soc. Japan}, volume = {III}, number = {15}, year = {1933}, @@ -268,7 +274,7 @@ @book{ Y, author = {Yamada, T.}, title = {The {S}chur subgroup of the {B}rauer group}, - publisher = {Springer-Verlag}, + publisher = {Springer\texttt{\symbol{45}}Verlag}, address = {Berlin}, year = {1974}, pages = {v+159}, diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' '--exclude=.svnignore' old/wedderga-4.10.5/lib/crossed.gi new/wedderga-4.11.0/lib/crossed.gi --- old/wedderga-4.10.5/lib/crossed.gi 2024-02-19 15:57:47.000000000 +0100 +++ new/wedderga-4.11.0/lib/crossed.gi 2025-06-16 12:47:37.000000000 +0200 @@ -600,11 +600,6 @@ SetIsFiniteDimensional( RG, IsFinite( G ) ); fi; - # What about IsCommutative ? In MagmaRings it is as below: - # if HasIsCommutative( R ) and HasIsCommutative( G ) then - # SetIsCommutative( RG, IsCommutative( R ) and IsCommutative( G ) ); - # fi; - if HasIsWholeFamily( R ) and HasIsWholeFamily( G ) then SetIsWholeFamily( RG, IsWholeFamily( R ) and IsWholeFamily( G ) ); fi; @@ -754,6 +749,17 @@ ############################################################################# ## +#M IsCommutative( <RG> ) . . . . . . . . . . . . . . for a crossed product +## +InstallMethod( IsCommutative, + "for a crossed product", + [ IsCrossedProduct ], + 100, + RG -> Error("no method found to check commutativity of a crossed product") ); + + +############################################################################# +## #M Representative( <RG> ) . . . . . . . . . . . . . . for a crossed product ## ## this is a quick-hack solution, should be replaced @@ -998,4 +1004,4 @@ ############################################################################# ## #E -## \ No newline at end of file +## diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' '--exclude=.svnignore' old/wedderga-4.10.5/lib/div-alg.gi new/wedderga-4.11.0/lib/div-alg.gi --- old/wedderga-4.10.5/lib/div-alg.gi 2024-02-19 15:57:47.000000000 +0100 +++ new/wedderga-4.11.0/lib/div-alg.gi 2025-06-16 12:47:37.000000000 +0200 @@ -740,38 +740,78 @@ ########################################## InstallGlobalFunction( IsDyadicSchurGroup, function(G) -local d,j,P,P1,V0,c,g,g1,z,V1,v1,V2,q,s,n1,r,i,y,p1,x,U,V,P2,L; +local t,d,P,l,P1,l1,p1,i,Y,q,U,V,V1,L,P2,l2; d:=false; -j:=0; P:=SylowSubgroup(G,2); -q:=Size(G)/Size(P); -if IsPrimeInt(q) then -U:=SylowSubgroup(G,q); -V:=Centralizer(P,U); - -# First look for G of type (Q_8,q) -if IdSmallGroup(V)=[8,4] then - V1:=Centralizer(P,V); - L:=UnionSet(Elements(V),Elements(V1)); - P2:=GroupByGenerators(L); - if P=P2 then - d:=true; - j:=1; - fi; -else -# Checks if P is of type (QD,q) -P1:=DerivedSubgroup(P); - s:=LogInt(Size(P)/Size(P1),2)-1; - if s=LogInt(PPartOfN(OrderMod(2,q),2),2) then - if not(IsAbelian(V)) then - if Size(P)/Size(V)=2^s then - d:=true; - fi; - fi; - fi; + +#### Check that G = Q8 ###### +if G=P then + if IdSmallGroup(G)=[8,4] then + d:=true; + fi; fi; +#### Check G is semidirect product of C_q by P, q odd prime #### +if d=false then + q:=Size(G)/Size(P); + if IsPrimeInt(q) then + U:=SylowSubgroup(G,q); + V:=Centralizer(P,U); + if not(V=P) then + + ### Check if G is of type (Q8,q) #### + if IdSmallGroup(V)=[8,4] then + V1:=Centralizer(P,V); + L:=UnionSet(Elements(V),Elements(V1)); + P2:=GroupByGenerators(L); + if P=P2 then + if PPartOfN(OrderMod(2,q),2)=Size(P/V) then + d:=true; + fi; + fi; + fi; + + #### Check that P is a dyadic 2-group ##### + if d=false then + t:=false; + l:=Size(P); + P1:=DerivedSubgroup(P); + l1:=Size(P1); + if l>l1 and IsInt(l1/4) and IsCyclic(P1) then + p1:=GeneratorsOfGroup(P1); + for i in [1..Length(p1)] do + if Order(p1[i])=l1 then + break; + fi; + od; + Y:=Centralizer(P,p1[i]^(l1/4)); + if IsCyclic(Y/P1) then + t:=true; + fi; + if IdSmallGroup(V)=[8,4] then + if not(PPartOfN(OrderMod(2,q),2)>Size(P/V)) then + t:=false; + fi; + fi; + + #### Check if G is of type (QD,q) ### + if t=true then + if not(IsAbelian(V)) then + l2:=Size(V); + if l2/l1=2 then + if not(PPartOfN(OrderMod(2,q),2)<Size(P/V)) then + d:=true; + fi; + fi; + fi; + fi; + #### + fi; + fi; + fi; + #### + fi; fi; return d; @@ -1105,36 +1145,40 @@ B:=SimpleComponentOfGroupRingByCharacter(F,G,n); if Length(B)=2 then -m2:=1; + m2:=1; fi; if Length(B)=4 then -m2:=LocalIndexAtTwo(B); + m2:=LocalIndexAtTwo(B); fi; if Length(B)=5 then K:=PSplitSubextension(F,B[3],2); B1:=SimpleComponentOfGroupRingByCharacter(K,G,n); - g:=DefiningGroupAndCharacterOfCyclotAlg(B1); - if g=fail then - m2:=1; + if Length(B1)<5 then + if Length(B1)=2 then m2:=1; fi; + if Length(B1)=4 then m2:=LocalIndexAtTwo(B1); fi; else - m2:=LocalIndexAtPByBrauerCharacter(K,g[1],g[2],2); - fi; - if not(m2 in Integers) then - m:=1; - if IsDyadicSchurGroup(g[1]) then - m:=2; - V:=ValuesOfClassFunction(chi); - F0:=FieldByGenerators(V); - F1:=B1[2]; - if not(F0=F1) then - if E(4) in F1 then - m:=1; - else - n0:=Conductor(F0); - n02:=PPartOfN(n0,2); - n1:=Conductor(F1); - n12:=PPartOfN(n1,2); + g:=DefiningGroupAndCharacterOfCyclotAlg(B1); + if g=fail then + m2:=1; + else + m2:=LocalIndexAtPByBrauerCharacter(K,g[1],g[2],2); + fi; + if not(m2 in Integers) then + m:=1; + if IsDyadicSchurGroup(g[1]) then + m:=2; + V:=ValuesOfClassFunction(chi); + F0:=FieldByGenerators(V); + F1:=B1[2]; + if not(F0=F1) then + if E(4) in F1 then + m:=1; + else + n0:=Conductor(F0); + n02:=PPartOfN(n0,2); + n1:=Conductor(F1); + n12:=PPartOfN(n1,2); if not(n02=n12) then m:=1; else @@ -1143,11 +1187,12 @@ n01:=PDashPartOfN(n0,2); f0:=OrderMod(2,n0); f:=f1/f0; - if IsPosInt(f/2) then - m:=1; - fi; + if IsPosInt(f/2) then + m:=1; + fi; fi; - fi; + fi; + fi; fi; fi; fi; diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' '--exclude=.svnignore' old/wedderga-4.10.5/tst/bugfix.tst new/wedderga-4.11.0/tst/bugfix.tst --- old/wedderga-4.10.5/tst/bugfix.tst 2024-02-19 15:57:47.000000000 +0100 +++ new/wedderga-4.11.0/tst/bugfix.tst 2025-06-16 12:47:37.000000000 +0200 @@ -81,7 +81,7 @@ rec( Center := NF(27,[ 1, 26 ]), DivAlg := true, LocalIndices := [ [ infinity, 2 ] ], SchurIndex := 2 ) ] ] -# Fix for a bug reported by �ngel del Rio on 14/11/2014 +# Fix for a bug reported by Ángel del Río on 14/11/2014 gap> G:=SmallGroup(16,7);; gap> QG:=GroupRing(Rationals,G);; gap> pci := PrimitiveCentralIdempotentsByCharacterTable(QG);; @@ -104,3 +104,7 @@ gap> CyclotomicAlgebraWithDivAlgPart(A); [ 1, rec( Center := CF(7), DivAlg := true, LocalIndices := [ [ 2, 2 ] ], SchurIndex := 2 ) ] + +# Fix returning wrong result determining commutativity of a crossed product (issue #96) +gap> IsCommutative(WedderburnDecomposition(GroupRing(Rationals, QuaternionGroup(8)))[5]); +Error, no method found to check commutativity of a crossed product diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' '--exclude=.svnignore' old/wedderga-4.10.5/tst/div-alg.tst new/wedderga-4.11.0/tst/div-alg.tst --- old/wedderga-4.10.5/tst/div-alg.tst 2024-02-19 15:57:47.000000000 +0100 +++ new/wedderga-4.11.0/tst/div-alg.tst 2025-06-16 12:47:37.000000000 +0200 @@ -87,5 +87,13 @@ gap> List([-2..3],a->LocalIndicesOfRationalSymbolAlgebra(a,11)); [ fail, [ [ 2, 2 ], [ 11, 2 ] ], fail, fail, [ [ 2, 2 ], [ 11, 2 ] ], [ [ 2, 2 ], [ 3, 2 ] ] ] +# IsDyadicSchurGroup (PR #104) +gap> IsDyadicSchurGroup(SmallGroup(8,4)); +true +gap> IsDyadicSchurGroup(SmallGroup(160,208)); +true +gap> IsDyadicSchurGroup(SmallGroup(160,84)); +false + # gap> STOP_TEST( "div-alg.tst", 1 );