Script 'mail_helper' called by obssrc
Hello community,

here is the log from the commit of package gap-wedderga for openSUSE:Factory 
checked in at 2025-06-17 18:21:36
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Comparing /work/SRC/openSUSE:Factory/gap-wedderga (Old)
 and      /work/SRC/openSUSE:Factory/.gap-wedderga.new.19631 (New)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Package is "gap-wedderga"

Tue Jun 17 18:21:36 2025 rev:3 rq:1286117 version:4.11.0

Changes:
--------
--- /work/SRC/openSUSE:Factory/gap-wedderga/gap-wedderga.changes        
2024-02-20 21:15:01.575364093 +0100
+++ /work/SRC/openSUSE:Factory/.gap-wedderga.new.19631/gap-wedderga.changes     
2025-06-17 18:21:59.821744944 +0200
@@ -1,0 +2,7 @@
+Mon Jun 16 12:40:45 UTC 2025 - Jan Engelhardt <jeng...@inai.de>
+
+- Update to release 4.11.0
+  * New version of IsDyadicSchurGroup
+  * Disable checking commutativity of a crossed product
+
+-------------------------------------------------------------------

Old:
----
  wedderga-4.10.5.tar.gz

New:
----
  _scmsync.obsinfo
  build.specials.obscpio
  wedderga-4.11.0.tar.gz

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Other differences:
------------------
++++++ gap-wedderga.spec ++++++
--- /var/tmp/diff_new_pack.fTp453/_old  2025-06-17 18:22:00.341766569 +0200
+++ /var/tmp/diff_new_pack.fTp453/_new  2025-06-17 18:22:00.345766735 +0200
@@ -1,7 +1,7 @@
 #
 # spec file for package gap-wedderga
 #
-# Copyright (c) 2024 SUSE LLC
+# Copyright (c) 2025 SUSE LLC
 #
 # All modifications and additions to the file contributed by third parties
 # remain the property of their copyright owners, unless otherwise agreed
@@ -17,7 +17,7 @@
 
 
 Name:           gap-wedderga
-Version:        4.10.5
+Version:        4.11.0
 Release:        0
 Summary:        GAP: Wedderburn Decomposition of Group Algebras
 License:        GPL-2.0-or-later

++++++ _scmsync.obsinfo ++++++
mtime: 1750077978
commit: d14f61f546d7a5d6f0215da575b152e04a83b891ec064746451ddaac1b5e4cad
url: https://src.opensuse.org/jengelh/gap-wedderga
revision: master

++++++ wedderga-4.10.5.tar.gz -> wedderga-4.11.0.tar.gz ++++++
diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' 
'--exclude=.svnignore' old/wedderga-4.10.5/PackageInfo.g 
new/wedderga-4.11.0/PackageInfo.g
--- old/wedderga-4.10.5/PackageInfo.g   2024-02-19 15:57:47.000000000 +0100
+++ new/wedderga-4.11.0/PackageInfo.g   2025-06-16 12:47:37.000000000 +0200
@@ -17,13 +17,13 @@
 PackageName    := "Wedderga",
 Subtitle       := Concatenation( [
                   "Wedderburn Decomposition of Group Algebras" ] ),
-Version        := "4.10.5",
-Date           := "19/02/2024", # dd/mm/yyyy format
+Version        := "4.11.0",
+Date           := "16/06/2025", # dd/mm/yyyy format
 License        := "GPL-2.0-or-later",
 ##  <#GAPDoc Label="PKGVERSIONDATA">
-##  <!ENTITY VERSION "4.10.5">
-##  <!ENTITY RELEASEDATE "19 Feburary 2024">
-##  <!ENTITY RELEASEYEAR "2024">
+##  <!ENTITY VERSION "4.11.0">
+##  <!ENTITY RELEASEDATE "16 June 2025">
+##  <!ENTITY RELEASEYEAR "2025">
 ##  <#/GAPDoc>
 
 SourceRepository := rec(
@@ -187,7 +187,6 @@
   PDFFile := "doc/manual.pdf",
   SixFile := "doc/manual.six",
   LongTitle := "Wedderga",
-  Autoload := true
 ),
 
 Dependencies := rec(
diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' 
'--exclude=.svnignore' old/wedderga-4.10.5/README.md 
new/wedderga-4.11.0/README.md
--- old/wedderga-4.10.5/README.md       2024-02-19 15:57:47.000000000 +0100
+++ new/wedderga-4.11.0/README.md       2025-06-16 12:47:37.000000000 +0200
@@ -1,5 +1,6 @@
-[![Build 
Status](https://github.com/gap-packages/wedderga/workflows/CI/badge.svg?branch=master)](https://github.com/gap-packages/wedderga/actions?query=workflow%3ACI+branch%3Amaster)
+[![Build 
Status](https://github.com/gap-packages/wedderga/actions/workflows/CI.yml/badge.svg)](https://github.com/gap-packages/wedderga/actions/workflows/CI.yml)
 [![Code 
Coverage](https://codecov.io/github/gap-packages/wedderga/coverage.svg?branch=master&token=)](https://codecov.io/gh/gap-packages/wedderga)
+[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.3827913.svg)](https://doi.org/10.5281/zenodo.3827913)
 
 # GAP package Wedderga
 
diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' 
'--exclude=.svnignore' old/wedderga-4.10.5/doc/chap0.html 
new/wedderga-4.11.0/doc/chap0.html
--- old/wedderga-4.10.5/doc/chap0.html  2024-02-19 15:58:14.000000000 +0100
+++ new/wedderga-4.11.0/doc/chap0.html  2025-06-16 12:47:58.000000000 +0200
@@ -28,9 +28,9 @@
 
 <h2>Wedderburn Decomposition of Group Algebras</h2>
 
-<p>Version 4.10.5</p>
+<p>Version 4.11.0</p>
 
-<p>19 Feburary 2024</p>
+<p>16 June 2025</p>
 
 </div>
 <p><b>Gurmeet Kaur Bakshi 
@@ -105,13 +105,13 @@
 
 <p><a id="X81488B807F2A1CF1" name="X81488B807F2A1CF1"></a></p>
 <h3>Copyright</h3>
-<p>© 2006-2024 by Gurmeet Kaur Bakshi, Osnel Broche Cristo, Allen Herman, 
Olexandr Konovalov, Sugandha Maheshwary, Aurora Olivieri, Gabriela Olteanu, 
Ángel del Río and Inneke Van Gelder.</p>
+<p>© 2006-2025 by Gurmeet Kaur Bakshi, Osnel Broche Cristo, Allen Herman, 
Olexandr Konovalov, Sugandha Maheshwary, Aurora Olivieri, Gabriela Olteanu, 
Ángel del Río and Inneke Van Gelder.</p>
 
 <p><strong class="pkg">Wedderga</strong> is free software; you can 
redistribute it and/or modify it under the terms of the GNU General Public 
License as published by the Free Software Foundation; either version 2 of the 
License, or (at your option) any later version. For details, see the FSF's own 
site <span class="URL"><a 
href="https://www.gnu.org/licenses/gpl.html";>https://www.gnu.org/licenses/gpl.html</a></span>.</p>
 
 <p>If you obtained <strong class="pkg">Wedderga</strong>, we would be grateful 
for a short notification sent to one of the authors. If you publish a result 
which was partially obtained with the usage of <strong 
class="pkg">Wedderga</strong>, please cite it in the following form:</p>
 
-<p>G. K. Bakshi, O. Broche Cristo, A. Herman, O. Konovalov, S. Maheshwary, A. 
Olivieri, G. Olteanu, Á. del Río and I. Van Gelder. <em>Wedderga --- Wedderburn 
Decomposition of Group Algebras, Version 4.10.5;</em> 2024 (<span 
class="URL"><a 
href="https://gap-packages.github.io/wedderga/";>https://gap-packages.github.io/wedderga/</a></span>).</p>
+<p>G. K. Bakshi, O. Broche Cristo, A. Herman, O. Konovalov, S. Maheshwary, A. 
Olivieri, G. Olteanu, Á. del Río and I. Van Gelder. <em>Wedderga --- Wedderburn 
Decomposition of Group Algebras, Version 4.11.0;</em> 2025 (<span 
class="URL"><a 
href="https://gap-packages.github.io/wedderga/";>https://gap-packages.github.io/wedderga/</a></span>).</p>
 
 <p><a id="X82A988D47DFAFCFA" name="X82A988D47DFAFCFA"></a></p>
 <h3>Acknowledgements</h3>
@@ -413,6 +413,6 @@
 <div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a 
href="chap0.html">Top</a>  <a href="chap1.html">1</a>  <a 
href="chap2.html">2</a>  <a href="chap3.html">3</a>  <a href="chap4.html">4</a> 
 <a href="chap5.html">5</a>  <a href="chap6.html">6</a>  <a 
href="chap7.html">7</a>  <a href="chap8.html">8</a>  <a href="chap9.html">9</a> 
 <a href="chapBib.html">Bib</a>  <a href="chapInd.html">Ind</a>  </div>
 
 <hr />
-<p class="foot">generated by <a 
href="http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc";>GAPDoc2HTML</a></p>
+<p class="foot">generated by <a 
href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc";>GAPDoc2HTML</a></p>
 </body>
 </html>
diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' 
'--exclude=.svnignore' old/wedderga-4.10.5/doc/chap0.txt 
new/wedderga-4.11.0/doc/chap0.txt
--- old/wedderga-4.10.5/doc/chap0.txt   2024-02-19 15:58:08.000000000 +0100
+++ new/wedderga-4.11.0/doc/chap0.txt   2025-06-16 12:47:53.000000000 +0200
@@ -6,10 +6,10 @@
                    Wedderburn Decomposition of Group Algebras
   
   
-                                 Version 4.10.5
+                                 Version 4.11.0
   
   
-                                19 Feburary 2024
+                                  16 June 2025
   
   
                               Gurmeet Kaur Bakshi
@@ -116,7 +116,7 @@
   
   -------------------------------------------------------
   Copyright
-  ©  2006-2024  by  Gurmeet  Kaur  Bakshi,  Osnel Broche Cristo, 
Allen Herman,
+  ©  2006-2025  by  Gurmeet  Kaur  Bakshi,  Osnel Broche Cristo, 
Allen Herman,
   Olexandr  Konovalov, Sugandha Maheshwary, Aurora Olivieri, Gabriela Olteanu,
   Ángel del Río and Inneke Van Gelder.
   
@@ -132,7 +132,7 @@
   
   G.  K.  Bakshi, O. Broche Cristo, A. Herman, O. Konovalov, S. 
Maheshwary, A.
   Olivieri,  G. Olteanu, Á. del Río and I. Van Gelder. Wedderga --- 
Wedderburn
-  Decomposition     of     Group     Algebras,     Version     4.10.5;   
 2024
+  Decomposition     of     Group     Algebras,     Version     4.11.0;   
 2025
   (https://gap-packages.github.io/wedderga/).
   
   
diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' 
'--exclude=.svnignore' old/wedderga-4.10.5/doc/chap0_mj.html 
new/wedderga-4.11.0/doc/chap0_mj.html
--- old/wedderga-4.10.5/doc/chap0_mj.html       2024-02-19 15:58:14.000000000 
+0100
+++ new/wedderga-4.11.0/doc/chap0_mj.html       2025-06-16 12:47:59.000000000 
+0200
@@ -6,7 +6,7 @@
 <html xmlns="http://www.w3.org/1999/xhtml"; xml:lang="en">
 <head>
 <script type="text/javascript"
-  
src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML";>
+  
src="https://cdn.jsdelivr.net/npm/mathjax@2/MathJax.js?config=TeX-AMS-MML_HTMLorMML";>
 </script>
 <title>GAP (Wedderga) - Contents</title>
 <meta http-equiv="content-type" content="text/html; charset=UTF-8" />
@@ -31,9 +31,9 @@
 
 <h2>Wedderburn Decomposition of Group Algebras</h2>
 
-<p>Version 4.10.5</p>
+<p>Version 4.11.0</p>
 
-<p>19 Feburary 2024</p>
+<p>16 June 2025</p>
 
 </div>
 <p><b>Gurmeet Kaur Bakshi 
@@ -108,13 +108,13 @@
 
 <p><a id="X81488B807F2A1CF1" name="X81488B807F2A1CF1"></a></p>
 <h3>Copyright</h3>
-<p>© 2006-2024 by Gurmeet Kaur Bakshi, Osnel Broche Cristo, Allen Herman, 
Olexandr Konovalov, Sugandha Maheshwary, Aurora Olivieri, Gabriela Olteanu, 
Ángel del Río and Inneke Van Gelder.</p>
+<p>© 2006-2025 by Gurmeet Kaur Bakshi, Osnel Broche Cristo, Allen Herman, 
Olexandr Konovalov, Sugandha Maheshwary, Aurora Olivieri, Gabriela Olteanu, 
Ángel del Río and Inneke Van Gelder.</p>
 
 <p><strong class="pkg">Wedderga</strong> is free software; you can 
redistribute it and/or modify it under the terms of the GNU General Public 
License as published by the Free Software Foundation; either version 2 of the 
License, or (at your option) any later version. For details, see the FSF's own 
site <span class="URL"><a 
href="https://www.gnu.org/licenses/gpl.html";>https://www.gnu.org/licenses/gpl.html</a></span>.</p>
 
 <p>If you obtained <strong class="pkg">Wedderga</strong>, we would be grateful 
for a short notification sent to one of the authors. If you publish a result 
which was partially obtained with the usage of <strong 
class="pkg">Wedderga</strong>, please cite it in the following form:</p>
 
-<p>G. K. Bakshi, O. Broche Cristo, A. Herman, O. Konovalov, S. Maheshwary, A. 
Olivieri, G. Olteanu, Á. del Río and I. Van Gelder. <em>Wedderga --- Wedderburn 
Decomposition of Group Algebras, Version 4.10.5;</em> 2024 (<span 
class="URL"><a 
href="https://gap-packages.github.io/wedderga/";>https://gap-packages.github.io/wedderga/</a></span>).</p>
+<p>G. K. Bakshi, O. Broche Cristo, A. Herman, O. Konovalov, S. Maheshwary, A. 
Olivieri, G. Olteanu, Á. del Río and I. Van Gelder. <em>Wedderga --- Wedderburn 
Decomposition of Group Algebras, Version 4.11.0;</em> 2025 (<span 
class="URL"><a 
href="https://gap-packages.github.io/wedderga/";>https://gap-packages.github.io/wedderga/</a></span>).</p>
 
 <p><a id="X82A988D47DFAFCFA" name="X82A988D47DFAFCFA"></a></p>
 <h3>Acknowledgements</h3>
@@ -416,6 +416,6 @@
 <div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a 
href="chap0_mj.html">Top</a>  <a href="chap1_mj.html">1</a>  <a 
href="chap2_mj.html">2</a>  <a href="chap3_mj.html">3</a>  <a 
href="chap4_mj.html">4</a>  <a href="chap5_mj.html">5</a>  <a 
href="chap6_mj.html">6</a>  <a href="chap7_mj.html">7</a>  <a 
href="chap8_mj.html">8</a>  <a href="chap9_mj.html">9</a>  <a 
href="chapBib_mj.html">Bib</a>  <a href="chapInd_mj.html">Ind</a>  </div>
 
 <hr />
-<p class="foot">generated by <a 
href="http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc";>GAPDoc2HTML</a></p>
+<p class="foot">generated by <a 
href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc";>GAPDoc2HTML</a></p>
 </body>
 </html>
diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' 
'--exclude=.svnignore' old/wedderga-4.10.5/doc/chap1.html 
new/wedderga-4.11.0/doc/chap1.html
--- old/wedderga-4.10.5/doc/chap1.html  2024-02-19 15:58:14.000000000 +0100
+++ new/wedderga-4.11.0/doc/chap1.html  2025-06-16 12:47:58.000000000 +0200
@@ -136,6 +136,6 @@
 <div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a 
href="chap0.html">Top</a>  <a href="chap1.html">1</a>  <a 
href="chap2.html">2</a>  <a href="chap3.html">3</a>  <a href="chap4.html">4</a> 
 <a href="chap5.html">5</a>  <a href="chap6.html">6</a>  <a 
href="chap7.html">7</a>  <a href="chap8.html">8</a>  <a href="chap9.html">9</a> 
 <a href="chapBib.html">Bib</a>  <a href="chapInd.html">Ind</a>  </div>
 
 <hr />
-<p class="foot">generated by <a 
href="http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc";>GAPDoc2HTML</a></p>
+<p class="foot">generated by <a 
href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc";>GAPDoc2HTML</a></p>
 </body>
 </html>
diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' 
'--exclude=.svnignore' old/wedderga-4.10.5/doc/chap1_mj.html 
new/wedderga-4.11.0/doc/chap1_mj.html
--- old/wedderga-4.10.5/doc/chap1_mj.html       2024-02-19 15:58:14.000000000 
+0100
+++ new/wedderga-4.11.0/doc/chap1_mj.html       2025-06-16 12:47:59.000000000 
+0200
@@ -6,7 +6,7 @@
 <html xmlns="http://www.w3.org/1999/xhtml"; xml:lang="en">
 <head>
 <script type="text/javascript"
-  
src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML";>
+  
src="https://cdn.jsdelivr.net/npm/mathjax@2/MathJax.js?config=TeX-AMS-MML_HTMLorMML";>
 </script>
 <title>GAP (Wedderga) - Chapter 1: Introduction</title>
 <meta http-equiv="content-type" content="text/html; charset=UTF-8" />
@@ -139,6 +139,6 @@
 <div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a 
href="chap0_mj.html">Top</a>  <a href="chap1_mj.html">1</a>  <a 
href="chap2_mj.html">2</a>  <a href="chap3_mj.html">3</a>  <a 
href="chap4_mj.html">4</a>  <a href="chap5_mj.html">5</a>  <a 
href="chap6_mj.html">6</a>  <a href="chap7_mj.html">7</a>  <a 
href="chap8_mj.html">8</a>  <a href="chap9_mj.html">9</a>  <a 
href="chapBib_mj.html">Bib</a>  <a href="chapInd_mj.html">Ind</a>  </div>
 
 <hr />
-<p class="foot">generated by <a 
href="http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc";>GAPDoc2HTML</a></p>
+<p class="foot">generated by <a 
href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc";>GAPDoc2HTML</a></p>
 </body>
 </html>
diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' 
'--exclude=.svnignore' old/wedderga-4.10.5/doc/chap2.html 
new/wedderga-4.11.0/doc/chap2.html
--- old/wedderga-4.10.5/doc/chap2.html  2024-02-19 15:58:14.000000000 +0100
+++ new/wedderga-4.11.0/doc/chap2.html  2025-06-16 12:47:58.000000000 +0200
@@ -476,6 +476,6 @@
 <div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a 
href="chap0.html">Top</a>  <a href="chap1.html">1</a>  <a 
href="chap2.html">2</a>  <a href="chap3.html">3</a>  <a href="chap4.html">4</a> 
 <a href="chap5.html">5</a>  <a href="chap6.html">6</a>  <a 
href="chap7.html">7</a>  <a href="chap8.html">8</a>  <a href="chap9.html">9</a> 
 <a href="chapBib.html">Bib</a>  <a href="chapInd.html">Ind</a>  </div>
 
 <hr />
-<p class="foot">generated by <a 
href="http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc";>GAPDoc2HTML</a></p>
+<p class="foot">generated by <a 
href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc";>GAPDoc2HTML</a></p>
 </body>
 </html>
diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' 
'--exclude=.svnignore' old/wedderga-4.10.5/doc/chap2_mj.html 
new/wedderga-4.11.0/doc/chap2_mj.html
--- old/wedderga-4.10.5/doc/chap2_mj.html       2024-02-19 15:58:14.000000000 
+0100
+++ new/wedderga-4.11.0/doc/chap2_mj.html       2025-06-16 12:47:59.000000000 
+0200
@@ -6,7 +6,7 @@
 <html xmlns="http://www.w3.org/1999/xhtml"; xml:lang="en">
 <head>
 <script type="text/javascript"
-  
src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML";>
+  
src="https://cdn.jsdelivr.net/npm/mathjax@2/MathJax.js?config=TeX-AMS-MML_HTMLorMML";>
 </script>
 <title>GAP (Wedderga) - Chapter 2: Wedderburn decomposition</title>
 <meta http-equiv="content-type" content="text/html; charset=UTF-8" />
@@ -479,6 +479,6 @@
 <div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a 
href="chap0_mj.html">Top</a>  <a href="chap1_mj.html">1</a>  <a 
href="chap2_mj.html">2</a>  <a href="chap3_mj.html">3</a>  <a 
href="chap4_mj.html">4</a>  <a href="chap5_mj.html">5</a>  <a 
href="chap6_mj.html">6</a>  <a href="chap7_mj.html">7</a>  <a 
href="chap8_mj.html">8</a>  <a href="chap9_mj.html">9</a>  <a 
href="chapBib_mj.html">Bib</a>  <a href="chapInd_mj.html">Ind</a>  </div>
 
 <hr />
-<p class="foot">generated by <a 
href="http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc";>GAPDoc2HTML</a></p>
+<p class="foot">generated by <a 
href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc";>GAPDoc2HTML</a></p>
 </body>
 </html>
diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' 
'--exclude=.svnignore' old/wedderga-4.10.5/doc/chap3.html 
new/wedderga-4.11.0/doc/chap3.html
--- old/wedderga-4.10.5/doc/chap3.html  2024-02-19 15:58:14.000000000 +0100
+++ new/wedderga-4.11.0/doc/chap3.html  2025-06-16 12:47:58.000000000 +0200
@@ -276,6 +276,6 @@
 <div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a 
href="chap0.html">Top</a>  <a href="chap1.html">1</a>  <a 
href="chap2.html">2</a>  <a href="chap3.html">3</a>  <a href="chap4.html">4</a> 
 <a href="chap5.html">5</a>  <a href="chap6.html">6</a>  <a 
href="chap7.html">7</a>  <a href="chap8.html">8</a>  <a href="chap9.html">9</a> 
 <a href="chapBib.html">Bib</a>  <a href="chapInd.html">Ind</a>  </div>
 
 <hr />
-<p class="foot">generated by <a 
href="http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc";>GAPDoc2HTML</a></p>
+<p class="foot">generated by <a 
href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc";>GAPDoc2HTML</a></p>
 </body>
 </html>
diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' 
'--exclude=.svnignore' old/wedderga-4.10.5/doc/chap3_mj.html 
new/wedderga-4.11.0/doc/chap3_mj.html
--- old/wedderga-4.10.5/doc/chap3_mj.html       2024-02-19 15:58:14.000000000 
+0100
+++ new/wedderga-4.11.0/doc/chap3_mj.html       2025-06-16 12:47:59.000000000 
+0200
@@ -6,7 +6,7 @@
 <html xmlns="http://www.w3.org/1999/xhtml"; xml:lang="en">
 <head>
 <script type="text/javascript"
-  
src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML";>
+  
src="https://cdn.jsdelivr.net/npm/mathjax@2/MathJax.js?config=TeX-AMS-MML_HTMLorMML";>
 </script>
 <title>GAP (Wedderga) - Chapter 3: Shoda pairs</title>
 <meta http-equiv="content-type" content="text/html; charset=UTF-8" />
@@ -279,6 +279,6 @@
 <div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a 
href="chap0_mj.html">Top</a>  <a href="chap1_mj.html">1</a>  <a 
href="chap2_mj.html">2</a>  <a href="chap3_mj.html">3</a>  <a 
href="chap4_mj.html">4</a>  <a href="chap5_mj.html">5</a>  <a 
href="chap6_mj.html">6</a>  <a href="chap7_mj.html">7</a>  <a 
href="chap8_mj.html">8</a>  <a href="chap9_mj.html">9</a>  <a 
href="chapBib_mj.html">Bib</a>  <a href="chapInd_mj.html">Ind</a>  </div>
 
 <hr />
-<p class="foot">generated by <a 
href="http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc";>GAPDoc2HTML</a></p>
+<p class="foot">generated by <a 
href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc";>GAPDoc2HTML</a></p>
 </body>
 </html>
diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' 
'--exclude=.svnignore' old/wedderga-4.10.5/doc/chap4.html 
new/wedderga-4.11.0/doc/chap4.html
--- old/wedderga-4.10.5/doc/chap4.html  2024-02-19 15:58:14.000000000 +0100
+++ new/wedderga-4.11.0/doc/chap4.html  2025-06-16 12:47:58.000000000 +0200
@@ -386,6 +386,6 @@
 <div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a 
href="chap0.html">Top</a>  <a href="chap1.html">1</a>  <a 
href="chap2.html">2</a>  <a href="chap3.html">3</a>  <a href="chap4.html">4</a> 
 <a href="chap5.html">5</a>  <a href="chap6.html">6</a>  <a 
href="chap7.html">7</a>  <a href="chap8.html">8</a>  <a href="chap9.html">9</a> 
 <a href="chapBib.html">Bib</a>  <a href="chapInd.html">Ind</a>  </div>
 
 <hr />
-<p class="foot">generated by <a 
href="http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc";>GAPDoc2HTML</a></p>
+<p class="foot">generated by <a 
href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc";>GAPDoc2HTML</a></p>
 </body>
 </html>
diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' 
'--exclude=.svnignore' old/wedderga-4.10.5/doc/chap4_mj.html 
new/wedderga-4.11.0/doc/chap4_mj.html
--- old/wedderga-4.10.5/doc/chap4_mj.html       2024-02-19 15:58:14.000000000 
+0100
+++ new/wedderga-4.11.0/doc/chap4_mj.html       2025-06-16 12:47:59.000000000 
+0200
@@ -6,7 +6,7 @@
 <html xmlns="http://www.w3.org/1999/xhtml"; xml:lang="en">
 <head>
 <script type="text/javascript"
-  
src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML";>
+  
src="https://cdn.jsdelivr.net/npm/mathjax@2/MathJax.js?config=TeX-AMS-MML_HTMLorMML";>
 </script>
 <title>GAP (Wedderga) - Chapter 4: Idempotents</title>
 <meta http-equiv="content-type" content="text/html; charset=UTF-8" />
@@ -389,6 +389,6 @@
 <div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a 
href="chap0_mj.html">Top</a>  <a href="chap1_mj.html">1</a>  <a 
href="chap2_mj.html">2</a>  <a href="chap3_mj.html">3</a>  <a 
href="chap4_mj.html">4</a>  <a href="chap5_mj.html">5</a>  <a 
href="chap6_mj.html">6</a>  <a href="chap7_mj.html">7</a>  <a 
href="chap8_mj.html">8</a>  <a href="chap9_mj.html">9</a>  <a 
href="chapBib_mj.html">Bib</a>  <a href="chapInd_mj.html">Ind</a>  </div>
 
 <hr />
-<p class="foot">generated by <a 
href="http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc";>GAPDoc2HTML</a></p>
+<p class="foot">generated by <a 
href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc";>GAPDoc2HTML</a></p>
 </body>
 </html>
diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' 
'--exclude=.svnignore' old/wedderga-4.10.5/doc/chap5.html 
new/wedderga-4.11.0/doc/chap5.html
--- old/wedderga-4.10.5/doc/chap5.html  2024-02-19 15:58:14.000000000 +0100
+++ new/wedderga-4.11.0/doc/chap5.html  2025-06-16 12:47:58.000000000 +0200
@@ -471,6 +471,6 @@
 <div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a 
href="chap0.html">Top</a>  <a href="chap1.html">1</a>  <a 
href="chap2.html">2</a>  <a href="chap3.html">3</a>  <a href="chap4.html">4</a> 
 <a href="chap5.html">5</a>  <a href="chap6.html">6</a>  <a 
href="chap7.html">7</a>  <a href="chap8.html">8</a>  <a href="chap9.html">9</a> 
 <a href="chapBib.html">Bib</a>  <a href="chapInd.html">Ind</a>  </div>
 
 <hr />
-<p class="foot">generated by <a 
href="http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc";>GAPDoc2HTML</a></p>
+<p class="foot">generated by <a 
href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc";>GAPDoc2HTML</a></p>
 </body>
 </html>
diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' 
'--exclude=.svnignore' old/wedderga-4.10.5/doc/chap5_mj.html 
new/wedderga-4.11.0/doc/chap5_mj.html
--- old/wedderga-4.10.5/doc/chap5_mj.html       2024-02-19 15:58:14.000000000 
+0100
+++ new/wedderga-4.11.0/doc/chap5_mj.html       2025-06-16 12:47:59.000000000 
+0200
@@ -6,7 +6,7 @@
 <html xmlns="http://www.w3.org/1999/xhtml"; xml:lang="en">
 <head>
 <script type="text/javascript"
-  
src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML";>
+  
src="https://cdn.jsdelivr.net/npm/mathjax@2/MathJax.js?config=TeX-AMS-MML_HTMLorMML";>
 </script>
 <title>GAP (Wedderga) - Chapter 5: Crossed products and their elements</title>
 <meta http-equiv="content-type" content="text/html; charset=UTF-8" />
@@ -474,6 +474,6 @@
 <div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a 
href="chap0_mj.html">Top</a>  <a href="chap1_mj.html">1</a>  <a 
href="chap2_mj.html">2</a>  <a href="chap3_mj.html">3</a>  <a 
href="chap4_mj.html">4</a>  <a href="chap5_mj.html">5</a>  <a 
href="chap6_mj.html">6</a>  <a href="chap7_mj.html">7</a>  <a 
href="chap8_mj.html">8</a>  <a href="chap9_mj.html">9</a>  <a 
href="chapBib_mj.html">Bib</a>  <a href="chapInd_mj.html">Ind</a>  </div>
 
 <hr />
-<p class="foot">generated by <a 
href="http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc";>GAPDoc2HTML</a></p>
+<p class="foot">generated by <a 
href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc";>GAPDoc2HTML</a></p>
 </body>
 </html>
diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' 
'--exclude=.svnignore' old/wedderga-4.10.5/doc/chap6.html 
new/wedderga-4.11.0/doc/chap6.html
--- old/wedderga-4.10.5/doc/chap6.html  2024-02-19 15:58:14.000000000 +0100
+++ new/wedderga-4.11.0/doc/chap6.html  2025-06-16 12:47:58.000000000 +0200
@@ -355,6 +355,6 @@
 <div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a 
href="chap0.html">Top</a>  <a href="chap1.html">1</a>  <a 
href="chap2.html">2</a>  <a href="chap3.html">3</a>  <a href="chap4.html">4</a> 
 <a href="chap5.html">5</a>  <a href="chap6.html">6</a>  <a 
href="chap7.html">7</a>  <a href="chap8.html">8</a>  <a href="chap9.html">9</a> 
 <a href="chapBib.html">Bib</a>  <a href="chapInd.html">Ind</a>  </div>
 
 <hr />
-<p class="foot">generated by <a 
href="http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc";>GAPDoc2HTML</a></p>
+<p class="foot">generated by <a 
href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc";>GAPDoc2HTML</a></p>
 </body>
 </html>
diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' 
'--exclude=.svnignore' old/wedderga-4.10.5/doc/chap6_mj.html 
new/wedderga-4.11.0/doc/chap6_mj.html
--- old/wedderga-4.10.5/doc/chap6_mj.html       2024-02-19 15:58:14.000000000 
+0100
+++ new/wedderga-4.11.0/doc/chap6_mj.html       2025-06-16 12:47:59.000000000 
+0200
@@ -6,7 +6,7 @@
 <html xmlns="http://www.w3.org/1999/xhtml"; xml:lang="en">
 <head>
 <script type="text/javascript"
-  
src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML";>
+  
src="https://cdn.jsdelivr.net/npm/mathjax@2/MathJax.js?config=TeX-AMS-MML_HTMLorMML";>
 </script>
 <title>GAP (Wedderga) - Chapter 6: Useful properties and functions</title>
 <meta http-equiv="content-type" content="text/html; charset=UTF-8" />
@@ -358,6 +358,6 @@
 <div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a 
href="chap0_mj.html">Top</a>  <a href="chap1_mj.html">1</a>  <a 
href="chap2_mj.html">2</a>  <a href="chap3_mj.html">3</a>  <a 
href="chap4_mj.html">4</a>  <a href="chap5_mj.html">5</a>  <a 
href="chap6_mj.html">6</a>  <a href="chap7_mj.html">7</a>  <a 
href="chap8_mj.html">8</a>  <a href="chap9_mj.html">9</a>  <a 
href="chapBib_mj.html">Bib</a>  <a href="chapInd_mj.html">Ind</a>  </div>
 
 <hr />
-<p class="foot">generated by <a 
href="http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc";>GAPDoc2HTML</a></p>
+<p class="foot">generated by <a 
href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc";>GAPDoc2HTML</a></p>
 </body>
 </html>
diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' 
'--exclude=.svnignore' old/wedderga-4.10.5/doc/chap7.html 
new/wedderga-4.11.0/doc/chap7.html
--- old/wedderga-4.10.5/doc/chap7.html  2024-02-19 15:58:14.000000000 +0100
+++ new/wedderga-4.11.0/doc/chap7.html  2025-06-16 12:47:58.000000000 +0200
@@ -160,7 +160,7 @@
 <div class="func"><table class="func" width="100%"><tr><td 
class="tdleft"><code class="func">&#8227; SchurIndexByCharacter</code>( <var 
class="Arg">F</var>, <var class="Arg">G</var>, <var class="Arg">n</var> 
)</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
 <p>Returns: The first of these returns the Schur index of the simple algebra 
<var class="Arg">A</var>. The second returns the Schur index of the simple 
component of the group ring <var class="Arg">FG</var> corresponding to the 
irreducible character <code class="code">Irr(G)[n]</code> of <var 
class="Arg">G</var>.</p>
 
-<p>These are the main functions for computing Schur indices. The first can be 
used to find the rational Schur index of a simple component of the group ring 
of a finite group over an abelian number field, or a quaternion algebra in 
<strong class="pkg">GAP</strong> (see <code 
class="func">QuaternionAlgebra</code> (<a 
href="../../../doc/ref/chap62_mj.html#X83DF4BCC7CE494FC"><span 
class="RefLink">Reference: QuaternionAlgebra</span></a>)) whose center is the 
field of rational numbers. If <var class="Arg">A</var> is a quaternion algebra 
over a number field other than the Rationals, <code class="code">fail</code> is 
returned. In these cases, the quaternion algebra can be converted to a cyclic 
algebra and the Schur index of the cyclic algebra can be determined through the 
solution of norm equations. Currently this functionality is not implemented in 
<strong class="pkg">GAP</strong>, but available in number theory packages such 
as <strong class="pkg">PARI/GP</strong>.</p>
+<p>These are the main functions for computing Schur indices. The first can be 
used to find the rational Schur index of a simple component of the group ring 
of a finite group over an abelian number field, or a quaternion algebra in 
<strong class="pkg">GAP</strong> (see <code 
class="func">QuaternionAlgebra</code> (<a 
href="../../../doc/ref/chap62.html#X83DF4BCC7CE494FC"><span 
class="RefLink">Reference: QuaternionAlgebra</span></a>)) whose center is the 
field of rational numbers. If <var class="Arg">A</var> is a quaternion algebra 
over a number field other than the Rationals, <code class="code">fail</code> is 
returned. In these cases, the quaternion algebra can be converted to a cyclic 
algebra and the Schur index of the cyclic algebra can be determined through the 
solution of norm equations. Currently this functionality is not implemented in 
<strong class="pkg">GAP</strong>, but available in number theory packages such 
as <strong class="pkg">PARI/GP</strong>.</p>
 
 <p>The second function computes the Schur index of the cyclotomic algebra that 
would occur as the simple component of the group ring <var class="Arg">FG</var> 
that corresponds to the irreducible character <code 
class="code">Irr(G)[n]</code>. The function uses <code 
class="func">SimpleComponentByCharacterDescent</code> (<a 
href="chap7.html#X81FBABAB856C676F"><span class="RefLink">7.3-2</span></a>), 
which uses the character descent algorithm to reduce to as small a group as 
possible. For larger groups this is preferrable as it is less demanding on 
memory. The Schur index of the resulting cyclotomic algebra is then computed 
with the <code class="func">SchurIndex</code> function.</p>
 
@@ -204,7 +204,7 @@
 <div class="func"><table class="func" width="100%"><tr><td 
class="tdleft"><code class="func">&#8227; 
WedderburnDecompositionAsSCAlgebras</code>( <var class="Arg">R</var> )</td><td 
class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
 <div class="func"><table class="func" width="100%"><tr><td 
class="tdleft"><code class="func">&#8227; CyclotomicAlgebraAsSCAlgebra</code>( 
<var class="Arg">A</var> )</td><td 
class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
 <div class="func"><table class="func" width="100%"><tr><td 
class="tdleft"><code class="func">&#8227; 
SimpleComponentByCharacterAsSCAlgebra</code>( <var class="Arg">F</var>, <var 
class="Arg">G</var>, <var class="Arg">n</var> )</td><td 
class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
-<p>Returns: The first of these returns the Wedderburn decomposition of the 
group ring <code class="code">R</code> with each simple component presented as 
an algebra with structure constants in <strong class="pkg">GAP</strong> (see <a 
href="../../../doc/ref/chap62_mj.html#X7E8F45547CC07CE5"><span 
class="RefLink">Reference: Constructing Algebras by Structure 
Constants</span></a> in the main <strong class="pkg">GAP</strong> manual). The 
second converts a list <code class="code">A</code> that is output from <code 
class="func">WedderburnDecompositionInfo</code> (<a 
href="chap2.html#X8710F98A85F0DD29"><span class="RefLink">2.1-2</span></a>) 
into an algebra with structure constants in <strong class="pkg">GAP</strong>. 
The third determines an algebra with structure constants that is isomorphic to 
the simple component of the group ring of the finite group <code 
class="code">G</code> over the field <code class="code">F</code> that 
corresponds to the irreducible character <code class="code">Ir
 r(G)[n]</code>.</p>
+<p>Returns: The first of these returns the Wedderburn decomposition of the 
group ring <code class="code">R</code> with each simple component presented as 
an algebra with structure constants in <strong class="pkg">GAP</strong> (see <a 
href="../../../doc/ref/chap62.html#X7E8F45547CC07CE5"><span 
class="RefLink">Reference: Constructing Algebras by Structure 
Constants</span></a> in the main <strong class="pkg">GAP</strong> manual). The 
second converts a list <code class="code">A</code> that is output from <code 
class="func">WedderburnDecompositionInfo</code> (<a 
href="chap2.html#X8710F98A85F0DD29"><span class="RefLink">2.1-2</span></a>) 
into an algebra with structure constants in <strong class="pkg">GAP</strong>. 
The third determines an algebra with structure constants that is isomorphic to 
the simple component of the group ring of the finite group <code 
class="code">G</code> over the field <code class="code">F</code> that 
corresponds to the irreducible character <code class="code">Irr(G
 )[n]</code>.</p>
 
 <p>These functions are an option for obtaining a Wedderburn decomposition or 
simple component of the group ring <code class="code">FG</code> in which the 
output is in the form of an algebra with structure constants, which is more 
compatible with GAP's built-in operations for finite-dimensional algebras.</p>
 
@@ -482,7 +482,7 @@
 <div class="func"><table class="func" width="100%"><tr><td 
class="tdleft"><code class="func">&#8227; 
LocalIndicesOfCyclotomicAlgebra</code>( <var class="Arg">A</var> )</td><td 
class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
 <p>Returns: A list of pairs <code class="code">[p,m]</code> indicating the 
nontrivial local indices <code class="code">m</code> at the primes <code 
class="code">p</code> of the cyclic cyclotomic algebra indicated by <code 
class="code">A</code>.</p>
 
-<p>The input <code class="code">A</code> should be a cyclotomic algebra; i.e. 
a list of length 2, 4, or 5 in the form of the output by <strong 
class="pkg">Wedderga</strong>'s "-Info" functions. If the cyclotomic algebra 
<var class="Arg">A</var> is represented by a list of length 2, the local 
indices are all <span class="SimpleMath">1</span>, so the function will return 
an empty list. If the cyclotomic algebra <var class="Arg">A</var> is given by a 
list of length 4, then it represents a cyclic cyclotomic algebra, so the 
function <code class="func">LocalIndicesOfCyclicCyclotomicAlgebra</code> (<a 
href="chap7.html#X8780F8E87B6EC023"><span class="RefLink">7.4-1</span></a>) is 
utilized. If the cyclotomic algebra <code class="code">A</code> is presented as 
a list of length 5 or more, the function first applies <code 
class="func">GlobalSplittingOfCyclotomicAlgebra</code> (<a 
href="chap7.html#X80B04A237F4C19FF"><span class="RefLink">7.3-1</span></a>) to 
reduce the length as much as possible
 . If this does not reduce the length to 4 or less, it applies the character 
descent algorithm to try to reduce it again with Clifford theory: it determines 
the group and character <code class="code">chi</code> that faithfully represent 
the algebra using <code class="func">DefiningGroupOfCyclotomicAlgebra</code> 
(<a href="chap7.html#X7F33FE4F7E029BF7"><span class="RefLink">7.5-3</span></a>) 
and <code class="func">DefiningCharacterOfCyclotomicAlgebra</code> (<a 
href="chap7.html#X7F33FE4F7E029BF7"><span class="RefLink">7.5-3</span></a>), 
then applies <code class="func">SimpleComponentByCharacterDescent</code> (<a 
href="chap7.html#X81FBABAB856C676F"><span class="RefLink">7.3-2</span></a>). It 
repeats this until it cannot reduce the length of cyclotomic algebra any 
longer. If the length is 4 it will apply the local index functions for cyclic 
cyclotomic algebras to compute the local indices at each prime dividing the 
order of the group. If the length is 5 or more, it applies the character
 -theoretic local Schur index functions to the output <code 
class="code">[G,chi]</code> of <code 
class="func">DefiningGroupAndCharacterOfCyclotAlg</code> (<a 
href="chap7.html#X7F33FE4F7E029BF7"><span class="RefLink">7.5-3</span></a>). It 
uses the Frobenius-Schur indicator of <code class="code">chi</code> to 
determine the local index at infinity (see <code 
class="func">LocalIndexAtInftyByCharacter</code> (<a 
href="chap7.html#X8656B34387EC74EF"><span class="RefLink">7.5-4</span></a>)). 
For local indices at odd primes and sometimes for the prime <span 
class="SimpleMath">2</span>, the defect group of the block containing <code 
class="code">chi</code> will be cyclic, so the local index can be found using 
the values of a Brauer character by a theorem of Benard (see <code 
class="func">LocalIndexAtPByBrauerCharacter</code> (<a 
href="chap7.html#X80D1046284577B32"><span class="RefLink">7.5-6</span></a>).) 
Sometimes for the prime 2 the defect group is not necessarily cyclic, so in 
these cases w
 e appeal to the classification of dyadic Schur groups by Schmid and Riese (see 
<code class="func">LocalIndexAtTwoByCharacter</code> (<a 
href="chap7.html#X82A979548619CB85"><span 
class="RefLink">7.5-7</span></a>)).</p>
+<p>The input <code class="code">A</code> should be a cyclotomic algebra; i.e. 
a list of length 2, 4, or 5 in the form of the output by <strong 
class="pkg">Wedderga</strong>'s <q>-Info</q> functions. If the cyclotomic 
algebra <var class="Arg">A</var> is represented by a list of length 2, the 
local indices are all <span class="SimpleMath">1</span>, so the function will 
return an empty list. If the cyclotomic algebra <var class="Arg">A</var> is 
given by a list of length 4, then it represents a cyclic cyclotomic algebra, so 
the function <code class="func">LocalIndicesOfCyclicCyclotomicAlgebra</code> 
(<a href="chap7.html#X8780F8E87B6EC023"><span class="RefLink">7.4-1</span></a>) 
is utilized. If the cyclotomic algebra <code class="code">A</code> is presented 
as a list of length 5 or more, the function first applies <code 
class="func">GlobalSplittingOfCyclotomicAlgebra</code> (<a 
href="chap7.html#X80B04A237F4C19FF"><span class="RefLink">7.3-1</span></a>) to 
reduce the length as much as pos
 sible. If this does not reduce the length to 4 or less, it applies the 
character descent algorithm to try to reduce it again with Clifford theory: it 
determines the group and character <code class="code">chi</code> that 
faithfully represent the algebra using <code 
class="func">DefiningGroupOfCyclotomicAlgebra</code> (<a 
href="chap7.html#X7F33FE4F7E029BF7"><span class="RefLink">7.5-3</span></a>) and 
<code class="func">DefiningCharacterOfCyclotomicAlgebra</code> (<a 
href="chap7.html#X7F33FE4F7E029BF7"><span class="RefLink">7.5-3</span></a>), 
then applies <code class="func">SimpleComponentByCharacterDescent</code> (<a 
href="chap7.html#X81FBABAB856C676F"><span class="RefLink">7.3-2</span></a>). It 
repeats this until it cannot reduce the length of cyclotomic algebra any 
longer. If the length is 4 it will apply the local index functions for cyclic 
cyclotomic algebras to compute the local indices at each prime dividing the 
order of the group. If the length is 5 or more, it applies the char
 acter-theoretic local Schur index functions to the output <code 
class="code">[G,chi]</code> of <code 
class="func">DefiningGroupAndCharacterOfCyclotAlg</code> (<a 
href="chap7.html#X7F33FE4F7E029BF7"><span class="RefLink">7.5-3</span></a>). It 
uses the Frobenius-Schur indicator of <code class="code">chi</code> to 
determine the local index at infinity (see <code 
class="func">LocalIndexAtInftyByCharacter</code> (<a 
href="chap7.html#X8656B34387EC74EF"><span class="RefLink">7.5-4</span></a>)). 
For local indices at odd primes and sometimes for the prime <span 
class="SimpleMath">2</span>, the defect group of the block containing <code 
class="code">chi</code> will be cyclic, so the local index can be found using 
the values of a Brauer character by a theorem of Benard (see <code 
class="func">LocalIndexAtPByBrauerCharacter</code> (<a 
href="chap7.html#X80D1046284577B32"><span class="RefLink">7.5-6</span></a>).) 
Sometimes for the prime 2 the defect group is not necessarily cyclic, so in 
these ca
 ses we appeal to the classification of dyadic Schur groups by Schmid and Riese 
(see <code class="func">LocalIndexAtTwoByCharacter</code> (<a 
href="chap7.html#X82A979548619CB85"><span 
class="RefLink">7.5-7</span></a>)).</p>
 
 
 <div class="example"><pre>
@@ -742,7 +742,7 @@
 
 <p>The function calculates the rational Schur index of the algebra using <code 
class="func">LocalIndicesOfRationalQuaternionAlgebra</code> (<a 
href="chap7.html#X78E6B3807EDDE82E"><span class="RefLink">7.6-1</span></a>), 
and returns <code class="keyw">true</code> if the rational Schur index of the 
algebra is <code class="code">2</code>, and <code class="keyw">false</code> if 
the rational Schur index is <code class="code">1</code>.</p>
 
-<p>This function should be preferred over <code class="keyw">GAP</code>'s 
<code class="func">IsDivisionRing</code> (<a 
href="../../../doc/ref/chap58_mj.html#X7F2CAA9E7A16913D"><span 
class="RefLink">Reference: IsDivisionRing</span></a>) when dealing with 
rational quaternion algebras, since the result of latter function only depends 
on the local index at infinity for quaternion algebras, and makes no use of the 
local indices at the finite primes.</p>
+<p>This function should be preferred over <code class="keyw">GAP</code>'s 
<code class="func">IsDivisionRing</code> (<a 
href="../../../doc/ref/chap58.html#X7F2CAA9E7A16913D"><span 
class="RefLink">Reference: IsDivisionRing</span></a>) when dealing with 
rational quaternion algebras, since the result of latter function only depends 
on the local index at infinity for quaternion algebras, and makes no use of the 
local indices at the finite primes.</p>
 
 
 <div class="example"><pre>
@@ -779,7 +779,7 @@
 
 <p>The input must be list representing a cyclotomic algebra of length 5 whose 
Galois group has <code class="code">2</code> generators. This is represented in 
<strong class="pkg">Wedderga</strong> as a list of the form <code 
class="code">[r,F,n,[[m1,k1,l1],[m2,k2,l2]],[[d]]]</code>. (Longer 
presentations of cyclotomic algebras do occur in <strong 
class="pkg">Wedderga</strong> output. Currently we do not have a general 
decomposition algorithm for them.)</p>
 
-<p>For these algebras, the extension <code class="code">F(E(n))/F</code> is 
the tensor product of two disjoint extensions <code class="code">K1</code> and 
<code class="code">K2</code> of <code class="code">F</code>, and the program 
adjusts one of the factor sets (corresponding to <span 
class="SimpleMath">l1</span> or <span class="SimpleMath">l2</span>) so that 
<span class="SimpleMath">d</span> becomes <code class="code">0</code>. After 
this adjustment, the algebra is then the tensor product of cyclic algebras of 
the form <code class="code">[F,K1,[c1]]</code> and <code 
class="code">[F,K2,[c2]]</code> provided <code class="code">c1</code> and <code 
class="code">c2</code> lie in <code class="code">F</code>. If the latter 
condition is not satisfied, the string "fails" is appended to the output. (We 
have not encountered this problem among the group algebras of small groups we 
have tested so far.)</p>
+<p>For these algebras, the extension <code class="code">F(E(n))/F</code> is 
the tensor product of two disjoint extensions <code class="code">K1</code> and 
<code class="code">K2</code> of <code class="code">F</code>, and the program 
adjusts one of the factor sets (corresponding to <span 
class="SimpleMath">l1</span> or <span class="SimpleMath">l2</span>) so that 
<span class="SimpleMath">d</span> becomes <code class="code">0</code>. After 
this adjustment, the algebra is then the tensor product of cyclic algebras of 
the form <code class="code">[F,K1,[c1]]</code> and <code 
class="code">[F,K2,[c2]]</code> provided <code class="code">c1</code> and <code 
class="code">c2</code> lie in <code class="code">F</code>. If the latter 
condition is not satisfied, the string <q>fails</q> is appended to the output. 
(We have not encountered this problem among the group algebras of small groups 
we have tested so far.)</p>
 
 
 <div class="example"><pre>
@@ -876,6 +876,6 @@
 <div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a 
href="chap0.html">Top</a>  <a href="chap1.html">1</a>  <a 
href="chap2.html">2</a>  <a href="chap3.html">3</a>  <a href="chap4.html">4</a> 
 <a href="chap5.html">5</a>  <a href="chap6.html">6</a>  <a 
href="chap7.html">7</a>  <a href="chap8.html">8</a>  <a href="chap9.html">9</a> 
 <a href="chapBib.html">Bib</a>  <a href="chapInd.html">Ind</a>  </div>
 
 <hr />
-<p class="foot">generated by <a 
href="http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc";>GAPDoc2HTML</a></p>
+<p class="foot">generated by <a 
href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc";>GAPDoc2HTML</a></p>
 </body>
 </html>
diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' 
'--exclude=.svnignore' old/wedderga-4.10.5/doc/chap7_mj.html 
new/wedderga-4.11.0/doc/chap7_mj.html
--- old/wedderga-4.10.5/doc/chap7_mj.html       2024-02-19 15:58:14.000000000 
+0100
+++ new/wedderga-4.11.0/doc/chap7_mj.html       2025-06-16 12:47:59.000000000 
+0200
@@ -6,7 +6,7 @@
 <html xmlns="http://www.w3.org/1999/xhtml"; xml:lang="en">
 <head>
 <script type="text/javascript"
-  
src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML";>
+  
src="https://cdn.jsdelivr.net/npm/mathjax@2/MathJax.js?config=TeX-AMS-MML_HTMLorMML";>
 </script>
 <title>GAP (Wedderga) - Chapter 7: Functions for calculating Schur indices and 
identifying division algebras</title>
 <meta http-equiv="content-type" content="text/html; charset=UTF-8" />
@@ -485,7 +485,7 @@
 <div class="func"><table class="func" width="100%"><tr><td 
class="tdleft"><code class="func">&#8227; 
LocalIndicesOfCyclotomicAlgebra</code>( <var class="Arg">A</var> )</td><td 
class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
 <p>Returns: A list of pairs <code class="code">[p,m]</code> indicating the 
nontrivial local indices <code class="code">m</code> at the primes <code 
class="code">p</code> of the cyclic cyclotomic algebra indicated by <code 
class="code">A</code>.</p>
 
-<p>The input <code class="code">A</code> should be a cyclotomic algebra; i.e. 
a list of length 2, 4, or 5 in the form of the output by <strong 
class="pkg">Wedderga</strong>'s "-Info" functions. If the cyclotomic algebra 
<var class="Arg">A</var> is represented by a list of length 2, the local 
indices are all <span class="SimpleMath">\(1\)</span>, so the function will 
return an empty list. If the cyclotomic algebra <var class="Arg">A</var> is 
given by a list of length 4, then it represents a cyclic cyclotomic algebra, so 
the function <code class="func">LocalIndicesOfCyclicCyclotomicAlgebra</code> 
(<a href="chap7_mj.html#X8780F8E87B6EC023"><span 
class="RefLink">7.4-1</span></a>) is utilized. If the cyclotomic algebra <code 
class="code">A</code> is presented as a list of length 5 or more, the function 
first applies <code class="func">GlobalSplittingOfCyclotomicAlgebra</code> (<a 
href="chap7_mj.html#X80B04A237F4C19FF"><span class="RefLink">7.3-1</span></a>) 
to reduce the length as much a
 s possible. If this does not reduce the length to 4 or less, it applies the 
character descent algorithm to try to reduce it again with Clifford theory: it 
determines the group and character <code class="code">chi</code> that 
faithfully represent the algebra using <code 
class="func">DefiningGroupOfCyclotomicAlgebra</code> (<a 
href="chap7_mj.html#X7F33FE4F7E029BF7"><span class="RefLink">7.5-3</span></a>) 
and <code class="func">DefiningCharacterOfCyclotomicAlgebra</code> (<a 
href="chap7_mj.html#X7F33FE4F7E029BF7"><span class="RefLink">7.5-3</span></a>), 
then applies <code class="func">SimpleComponentByCharacterDescent</code> (<a 
href="chap7_mj.html#X81FBABAB856C676F"><span class="RefLink">7.3-2</span></a>). 
It repeats this until it cannot reduce the length of cyclotomic algebra any 
longer. If the length is 4 it will apply the local index functions for cyclic 
cyclotomic algebras to compute the local indices at each prime dividing the 
order of the group. If the length is 5 or more, it ap
 plies the character-theoretic local Schur index functions to the output <code 
class="code">[G,chi]</code> of <code 
class="func">DefiningGroupAndCharacterOfCyclotAlg</code> (<a 
href="chap7_mj.html#X7F33FE4F7E029BF7"><span class="RefLink">7.5-3</span></a>). 
It uses the Frobenius-Schur indicator of <code class="code">chi</code> to 
determine the local index at infinity (see <code 
class="func">LocalIndexAtInftyByCharacter</code> (<a 
href="chap7_mj.html#X8656B34387EC74EF"><span 
class="RefLink">7.5-4</span></a>)). For local indices at odd primes and 
sometimes for the prime <span class="SimpleMath">\(2\)</span>, the defect group 
of the block containing <code class="code">chi</code> will be cyclic, so the 
local index can be found using the values of a Brauer character by a theorem of 
Benard (see <code class="func">LocalIndexAtPByBrauerCharacter</code> (<a 
href="chap7_mj.html#X80D1046284577B32"><span 
class="RefLink">7.5-6</span></a>).) Sometimes for the prime 2 the defect group 
is not necessa
 rily cyclic, so in these cases we appeal to the classification of dyadic Schur 
groups by Schmid and Riese (see <code 
class="func">LocalIndexAtTwoByCharacter</code> (<a 
href="chap7_mj.html#X82A979548619CB85"><span 
class="RefLink">7.5-7</span></a>)).</p>
+<p>The input <code class="code">A</code> should be a cyclotomic algebra; i.e. 
a list of length 2, 4, or 5 in the form of the output by <strong 
class="pkg">Wedderga</strong>'s <q>-Info</q> functions. If the cyclotomic 
algebra <var class="Arg">A</var> is represented by a list of length 2, the 
local indices are all <span class="SimpleMath">\(1\)</span>, so the function 
will return an empty list. If the cyclotomic algebra <var class="Arg">A</var> 
is given by a list of length 4, then it represents a cyclic cyclotomic algebra, 
so the function <code class="func">LocalIndicesOfCyclicCyclotomicAlgebra</code> 
(<a href="chap7_mj.html#X8780F8E87B6EC023"><span 
class="RefLink">7.4-1</span></a>) is utilized. If the cyclotomic algebra <code 
class="code">A</code> is presented as a list of length 5 or more, the function 
first applies <code class="func">GlobalSplittingOfCyclotomicAlgebra</code> (<a 
href="chap7_mj.html#X80B04A237F4C19FF"><span class="RefLink">7.3-1</span></a>) 
to reduce the length as m
 uch as possible. If this does not reduce the length to 4 or less, it applies 
the character descent algorithm to try to reduce it again with Clifford theory: 
it determines the group and character <code class="code">chi</code> that 
faithfully represent the algebra using <code 
class="func">DefiningGroupOfCyclotomicAlgebra</code> (<a 
href="chap7_mj.html#X7F33FE4F7E029BF7"><span class="RefLink">7.5-3</span></a>) 
and <code class="func">DefiningCharacterOfCyclotomicAlgebra</code> (<a 
href="chap7_mj.html#X7F33FE4F7E029BF7"><span class="RefLink">7.5-3</span></a>), 
then applies <code class="func">SimpleComponentByCharacterDescent</code> (<a 
href="chap7_mj.html#X81FBABAB856C676F"><span class="RefLink">7.3-2</span></a>). 
It repeats this until it cannot reduce the length of cyclotomic algebra any 
longer. If the length is 4 it will apply the local index functions for cyclic 
cyclotomic algebras to compute the local indices at each prime dividing the 
order of the group. If the length is 5 or more, 
 it applies the character-theoretic local Schur index functions to the output 
<code class="code">[G,chi]</code> of <code 
class="func">DefiningGroupAndCharacterOfCyclotAlg</code> (<a 
href="chap7_mj.html#X7F33FE4F7E029BF7"><span class="RefLink">7.5-3</span></a>). 
It uses the Frobenius-Schur indicator of <code class="code">chi</code> to 
determine the local index at infinity (see <code 
class="func">LocalIndexAtInftyByCharacter</code> (<a 
href="chap7_mj.html#X8656B34387EC74EF"><span 
class="RefLink">7.5-4</span></a>)). For local indices at odd primes and 
sometimes for the prime <span class="SimpleMath">\(2\)</span>, the defect group 
of the block containing <code class="code">chi</code> will be cyclic, so the 
local index can be found using the values of a Brauer character by a theorem of 
Benard (see <code class="func">LocalIndexAtPByBrauerCharacter</code> (<a 
href="chap7_mj.html#X80D1046284577B32"><span 
class="RefLink">7.5-6</span></a>).) Sometimes for the prime 2 the defect group 
is not ne
 cessarily cyclic, so in these cases we appeal to the classification of dyadic 
Schur groups by Schmid and Riese (see <code 
class="func">LocalIndexAtTwoByCharacter</code> (<a 
href="chap7_mj.html#X82A979548619CB85"><span 
class="RefLink">7.5-7</span></a>)).</p>
 
 
 <div class="example"><pre>
@@ -782,7 +782,7 @@
 
 <p>The input must be list representing a cyclotomic algebra of length 5 whose 
Galois group has <code class="code">2</code> generators. This is represented in 
<strong class="pkg">Wedderga</strong> as a list of the form <code 
class="code">[r,F,n,[[m1,k1,l1],[m2,k2,l2]],[[d]]]</code>. (Longer 
presentations of cyclotomic algebras do occur in <strong 
class="pkg">Wedderga</strong> output. Currently we do not have a general 
decomposition algorithm for them.)</p>
 
-<p>For these algebras, the extension <code class="code">F(E(n))/F</code> is 
the tensor product of two disjoint extensions <code class="code">K1</code> and 
<code class="code">K2</code> of <code class="code">F</code>, and the program 
adjusts one of the factor sets (corresponding to <span 
class="SimpleMath">\(l1\)</span> or <span class="SimpleMath">\(l2\)</span>) so 
that <span class="SimpleMath">\(d\)</span> becomes <code class="code">0</code>. 
After this adjustment, the algebra is then the tensor product of cyclic 
algebras of the form <code class="code">[F,K1,[c1]]</code> and <code 
class="code">[F,K2,[c2]]</code> provided <code class="code">c1</code> and <code 
class="code">c2</code> lie in <code class="code">F</code>. If the latter 
condition is not satisfied, the string "fails" is appended to the output. (We 
have not encountered this problem among the group algebras of small groups we 
have tested so far.)</p>
+<p>For these algebras, the extension <code class="code">F(E(n))/F</code> is 
the tensor product of two disjoint extensions <code class="code">K1</code> and 
<code class="code">K2</code> of <code class="code">F</code>, and the program 
adjusts one of the factor sets (corresponding to <span 
class="SimpleMath">\(l1\)</span> or <span class="SimpleMath">\(l2\)</span>) so 
that <span class="SimpleMath">\(d\)</span> becomes <code class="code">0</code>. 
After this adjustment, the algebra is then the tensor product of cyclic 
algebras of the form <code class="code">[F,K1,[c1]]</code> and <code 
class="code">[F,K2,[c2]]</code> provided <code class="code">c1</code> and <code 
class="code">c2</code> lie in <code class="code">F</code>. If the latter 
condition is not satisfied, the string <q>fails</q> is appended to the output. 
(We have not encountered this problem among the group algebras of small groups 
we have tested so far.)</p>
 
 
 <div class="example"><pre>
@@ -879,6 +879,6 @@
 <div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a 
href="chap0_mj.html">Top</a>  <a href="chap1_mj.html">1</a>  <a 
href="chap2_mj.html">2</a>  <a href="chap3_mj.html">3</a>  <a 
href="chap4_mj.html">4</a>  <a href="chap5_mj.html">5</a>  <a 
href="chap6_mj.html">6</a>  <a href="chap7_mj.html">7</a>  <a 
href="chap8_mj.html">8</a>  <a href="chap9_mj.html">9</a>  <a 
href="chapBib_mj.html">Bib</a>  <a href="chapInd_mj.html">Ind</a>  </div>
 
 <hr />
-<p class="foot">generated by <a 
href="http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc";>GAPDoc2HTML</a></p>
+<p class="foot">generated by <a 
href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc";>GAPDoc2HTML</a></p>
 </body>
 </html>
diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' 
'--exclude=.svnignore' old/wedderga-4.10.5/doc/chap8.html 
new/wedderga-4.11.0/doc/chap8.html
--- old/wedderga-4.10.5/doc/chap8.html  2024-02-19 15:58:14.000000000 +0100
+++ new/wedderga-4.11.0/doc/chap8.html  2025-06-16 12:47:58.000000000 +0200
@@ -117,6 +117,6 @@
 <div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a 
href="chap0.html">Top</a>  <a href="chap1.html">1</a>  <a 
href="chap2.html">2</a>  <a href="chap3.html">3</a>  <a href="chap4.html">4</a> 
 <a href="chap5.html">5</a>  <a href="chap6.html">6</a>  <a 
href="chap7.html">7</a>  <a href="chap8.html">8</a>  <a href="chap9.html">9</a> 
 <a href="chapBib.html">Bib</a>  <a href="chapInd.html">Ind</a>  </div>
 
 <hr />
-<p class="foot">generated by <a 
href="http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc";>GAPDoc2HTML</a></p>
+<p class="foot">generated by <a 
href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc";>GAPDoc2HTML</a></p>
 </body>
 </html>
diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' 
'--exclude=.svnignore' old/wedderga-4.10.5/doc/chap8_mj.html 
new/wedderga-4.11.0/doc/chap8_mj.html
--- old/wedderga-4.10.5/doc/chap8_mj.html       2024-02-19 15:58:14.000000000 
+0100
+++ new/wedderga-4.11.0/doc/chap8_mj.html       2025-06-16 12:47:59.000000000 
+0200
@@ -6,7 +6,7 @@
 <html xmlns="http://www.w3.org/1999/xhtml"; xml:lang="en">
 <head>
 <script type="text/javascript"
-  
src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML";>
+  
src="https://cdn.jsdelivr.net/npm/mathjax@2/MathJax.js?config=TeX-AMS-MML_HTMLorMML";>
 </script>
 <title>GAP (Wedderga) - Chapter 8: Applications of the Wedderga package</title>
 <meta http-equiv="content-type" content="text/html; charset=UTF-8" />
@@ -120,6 +120,6 @@
 <div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a 
href="chap0_mj.html">Top</a>  <a href="chap1_mj.html">1</a>  <a 
href="chap2_mj.html">2</a>  <a href="chap3_mj.html">3</a>  <a 
href="chap4_mj.html">4</a>  <a href="chap5_mj.html">5</a>  <a 
href="chap6_mj.html">6</a>  <a href="chap7_mj.html">7</a>  <a 
href="chap8_mj.html">8</a>  <a href="chap9_mj.html">9</a>  <a 
href="chapBib_mj.html">Bib</a>  <a href="chapInd_mj.html">Ind</a>  </div>
 
 <hr />
-<p class="foot">generated by <a 
href="http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc";>GAPDoc2HTML</a></p>
+<p class="foot">generated by <a 
href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc";>GAPDoc2HTML</a></p>
 </body>
 </html>
diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' 
'--exclude=.svnignore' old/wedderga-4.10.5/doc/chap9.html 
new/wedderga-4.11.0/doc/chap9.html
--- old/wedderga-4.10.5/doc/chap9.html  2024-02-19 15:58:14.000000000 +0100
+++ new/wedderga-4.11.0/doc/chap9.html  2025-06-16 12:47:58.000000000 +0200
@@ -594,7 +594,7 @@
 
 <h4>9.21 <span class="Heading"> Obtaining Algebras with structure constants as 
terms of the Wedderburn decomposition </span></h4>
 
-<p>Some users may find it desirable to have an alternative description for the 
components of the Wedderburn decomposition of a group ring as algebras with 
structure constants, because the operations for algebras in <strong 
class="pkg">GAP</strong> are designed for algebras with structure constants. We 
have provided such an algorithm that converts the output of <code 
class="func">WedderburnDecompositionInfo</code> (<a 
href="chap2.html#X8710F98A85F0DD29"><span class="RefLink">2.1-2</span></a>) 
into algebras with structure constants. Matrix rings over fields are converted 
directly. For components that are cyclotomic algebras, it calculates their 
defining group and defining character using those <strong 
class="pkg">Wedderga</strong> operations, then uses <code 
class="func">IrreducibleRepresentationsDixon</code> (<a 
href="../../../doc/ref/chap71_mj.html#X8493ED7A86FFCB8A"><span 
class="RefLink">Reference: IrreducibleRepresentationsDixon</span></a>) to 
obtain matrix generators of an algebr
 a isomorphic to the simple component corresponding to the character over a 
suitable field. An algebra with structure constants version of this is finally 
obtained by applying <code class="func">IsomorphismSCAlgebra</code> (<a 
href="../../../doc/ref/chap62_mj.html#X7F8D3DF2863EC50D"><span 
class="RefLink">Reference: IsomorphismSCAlgebra w.r.t. a given 
basis</span></a>) to this algebra.</p>
+<p>Some users may find it desirable to have an alternative description for the 
components of the Wedderburn decomposition of a group ring as algebras with 
structure constants, because the operations for algebras in <strong 
class="pkg">GAP</strong> are designed for algebras with structure constants. We 
have provided such an algorithm that converts the output of <code 
class="func">WedderburnDecompositionInfo</code> (<a 
href="chap2.html#X8710F98A85F0DD29"><span class="RefLink">2.1-2</span></a>) 
into algebras with structure constants. Matrix rings over fields are converted 
directly. For components that are cyclotomic algebras, it calculates their 
defining group and defining character using those <strong 
class="pkg">Wedderga</strong> operations, then uses <code 
class="func">IrreducibleRepresentationsDixon</code> (<a 
href="../../../doc/ref/chap71.html#X8493ED7A86FFCB8A"><span 
class="RefLink">Reference: IrreducibleRepresentationsDixon</span></a>) to 
obtain matrix generators of an algebra i
 somorphic to the simple component corresponding to the character over a 
suitable field. An algebra with structure constants version of this is finally 
obtained by applying <code class="func">IsomorphismSCAlgebra</code> (<a 
href="../../../doc/ref/chap62.html#X7F8D3DF2863EC50D"><span 
class="RefLink">Reference: IsomorphismSCAlgebra w.r.t. a given 
basis</span></a>) to this algebra.</p>
 
 <p><a id="X8472ACCF802EC188" name="X8472ACCF802EC188"></a></p>
 
@@ -671,7 +671,7 @@
 \{x\widehat{T_1}\varepsilon x^{-1} \mid x\in T_2\langle{x_e}\rangle\}
 </p>
 
-<p>is a complete set of orthogonal primitive idempotents of <span 
class="SimpleMath">F G e</span> where <span 
class="SimpleMath">x_e=ψ^-1(PAP^-1)</span>, <span class="SimpleMath">T_1</span> 
is a transversal of <span class="SimpleMath">H</span> in <span 
class="SimpleMath">E</span> and <span class="SimpleMath">T_2</span> is a right 
transversal of <span class="SimpleMath">E</span> in <span 
class="SimpleMath">G</span> (<a href="chapBib.html#biBOV2">[OVGnt]</a>). By 
<span class="SimpleMath">widehatT_1</span> we denote the element <span 
class="SimpleMath">frac1|T_1|∑_t∈ T_1t</span> in <span class="SimpleMath">F 
G</span>.</p>
+<p>is a complete set of orthogonal primitive idempotents of <span 
class="SimpleMath">F G e</span> where <span 
class="SimpleMath">x_e=ψ^-1(PAP^-1)</span>, <span class="SimpleMath">T_1</span> 
is a transversal of <span class="SimpleMath">H</span> in <span 
class="SimpleMath">E</span> and <span class="SimpleMath">T_2</span> is a right 
transversal of <span class="SimpleMath">E</span> in <span 
class="SimpleMath">G</span> (<a href="chapBib.html#biBOV2">[OVG15]</a>). By 
<span class="SimpleMath">widehatT_1</span> we denote the element <span 
class="SimpleMath">frac1|T_1|∑_t∈ T_1t</span> in <span class="SimpleMath">F 
G</span>.</p>
 
 <p><a id="X856D7975810BF987" name="X856D7975810BF987"></a></p>
 
@@ -692,6 +692,6 @@
 <div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a 
href="chap0.html">Top</a>  <a href="chap1.html">1</a>  <a 
href="chap2.html">2</a>  <a href="chap3.html">3</a>  <a href="chap4.html">4</a> 
 <a href="chap5.html">5</a>  <a href="chap6.html">6</a>  <a 
href="chap7.html">7</a>  <a href="chap8.html">8</a>  <a href="chap9.html">9</a> 
 <a href="chapBib.html">Bib</a>  <a href="chapInd.html">Ind</a>  </div>
 
 <hr />
-<p class="foot">generated by <a 
href="http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc";>GAPDoc2HTML</a></p>
+<p class="foot">generated by <a 
href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc";>GAPDoc2HTML</a></p>
 </body>
 </html>
diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' 
'--exclude=.svnignore' old/wedderga-4.10.5/doc/chap9.txt 
new/wedderga-4.11.0/doc/chap9.txt
--- old/wedderga-4.10.5/doc/chap9.txt   2024-02-19 15:58:08.000000000 +0100
+++ new/wedderga-4.11.0/doc/chap9.txt   2025-06-16 12:47:53.000000000 +0200
@@ -955,7 +955,7 @@
   
   is  a  complete  set  of  orthogonal  primitive  idempotents  of 
F G e where
   x_e=ψ^-1(PAP^-1),  T_1  is  a  transversal  of  
H  in  E  and T_2 is a right
-  transversal  of  E  in  G  ([OVGnt]).  By  
widehatT_1  we denote the element
+  transversal  of  E  in  G  ([OVG15]).  By  
widehatT_1  we denote the element
   frac1|T_1|∑_t∈ T_1t in F G.
   
   
diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' 
'--exclude=.svnignore' old/wedderga-4.10.5/doc/chap9_mj.html 
new/wedderga-4.11.0/doc/chap9_mj.html
--- old/wedderga-4.10.5/doc/chap9_mj.html       2024-02-19 15:58:14.000000000 
+0100
+++ new/wedderga-4.11.0/doc/chap9_mj.html       2025-06-16 12:47:59.000000000 
+0200
@@ -6,7 +6,7 @@
 <html xmlns="http://www.w3.org/1999/xhtml"; xml:lang="en">
 <head>
 <script type="text/javascript"
-  
src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML";>
+  
src="https://cdn.jsdelivr.net/npm/mathjax@2/MathJax.js?config=TeX-AMS-MML_HTMLorMML";>
 </script>
 <title>GAP (Wedderga) - Chapter 9: The basic theory behind Wedderga</title>
 <meta http-equiv="content-type" content="text/html; charset=UTF-8" />
@@ -674,7 +674,7 @@
 \{x\widehat{T_1}\varepsilon x^{-1} \mid x\in T_2\langle{x_e}\rangle\}
 \]</p>
 
-<p>is a complete set of orthogonal primitive idempotents of <span 
class="SimpleMath">\(\mathbb F G e\)</span> where <span 
class="SimpleMath">\(x_e=\psi^{-1}(PAP^{-1})\)</span>, <span 
class="SimpleMath">\(T_1\)</span> is a transversal of <span 
class="SimpleMath">\(H\)</span> in <span class="SimpleMath">\(E\)</span> and 
<span class="SimpleMath">\(T_2\)</span> is a right transversal of <span 
class="SimpleMath">\(E\)</span> in <span class="SimpleMath">\(G\)</span> (<a 
href="chapBib_mj.html#biBOV2">[OVGnt]</a>). By <span 
class="SimpleMath">\(\widehat{T_1}\)</span> we denote the element <span 
class="SimpleMath">\(\frac{1}{|T_1|}\sum_{t\in T_1}{t}\)</span> in <span 
class="SimpleMath">\(\mathbb F G\)</span>.</p>
+<p>is a complete set of orthogonal primitive idempotents of <span 
class="SimpleMath">\(\mathbb F G e\)</span> where <span 
class="SimpleMath">\(x_e=\psi^{-1}(PAP^{-1})\)</span>, <span 
class="SimpleMath">\(T_1\)</span> is a transversal of <span 
class="SimpleMath">\(H\)</span> in <span class="SimpleMath">\(E\)</span> and 
<span class="SimpleMath">\(T_2\)</span> is a right transversal of <span 
class="SimpleMath">\(E\)</span> in <span class="SimpleMath">\(G\)</span> (<a 
href="chapBib_mj.html#biBOV2">[OVG15]</a>). By <span 
class="SimpleMath">\(\widehat{T_1}\)</span> we denote the element <span 
class="SimpleMath">\(\frac{1}{|T_1|}\sum_{t\in T_1}{t}\)</span> in <span 
class="SimpleMath">\(\mathbb F G\)</span>.</p>
 
 <p><a id="X856D7975810BF987" name="X856D7975810BF987"></a></p>
 
@@ -695,6 +695,6 @@
 <div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a 
href="chap0_mj.html">Top</a>  <a href="chap1_mj.html">1</a>  <a 
href="chap2_mj.html">2</a>  <a href="chap3_mj.html">3</a>  <a 
href="chap4_mj.html">4</a>  <a href="chap5_mj.html">5</a>  <a 
href="chap6_mj.html">6</a>  <a href="chap7_mj.html">7</a>  <a 
href="chap8_mj.html">8</a>  <a href="chap9_mj.html">9</a>  <a 
href="chapBib_mj.html">Bib</a>  <a href="chapInd_mj.html">Ind</a>  </div>
 
 <hr />
-<p class="foot">generated by <a 
href="http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc";>GAPDoc2HTML</a></p>
+<p class="foot">generated by <a 
href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc";>GAPDoc2HTML</a></p>
 </body>
 </html>
diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' 
'--exclude=.svnignore' old/wedderga-4.10.5/doc/chapBib.html 
new/wedderga-4.11.0/doc/chapBib.html
--- old/wedderga-4.10.5/doc/chapBib.html        2024-02-19 15:58:14.000000000 
+0100
+++ new/wedderga-4.11.0/doc/chapBib.html        2025-06-16 12:47:58.000000000 
+0200
@@ -27,7 +27,7 @@
 
 <p><a id="biBBR" name="biBBR"></a></p>
 <p class='BibEntry'>
-[<span class='BibKeyLink'><a 
href="http://www.ams.org/mathscinet-getitem?mr=MR2284667";>BdR07</a></span>]   
<b class='BibAuthor'>Broche, O. and del Río, Á.</b>,
+[<span class='BibKeyLink'><a 
href="https://www.ams.org/mathscinet-getitem?mr=MR2284667";>BdR07</a></span>]   
<b class='BibAuthor'>Broche, O. and del Río, Á.</b>,
  <i class='BibTitle'>Wedderburn decomposition of finite group algebras</i>,
  <span class='BibJournal'>Finite Fields Appl.</span>,
  <em class='BibVolume'>13</em> (<span class='BibNumber'>1</span>)
@@ -38,7 +38,7 @@
 
 <p><a id="biBB" name="biBB"></a></p>
 <p class='BibEntry'>
-[<span class='BibKeyLink'><a 
href="http://www.ams.org/mathscinet-getitem?mr=MR0412265";>Ben76</a></span>]   
<b class='BibAuthor'>Benard, M.</b>,
+[<span class='BibKeyLink'><a 
href="https://www.ams.org/mathscinet-getitem?mr=MR0412265";>Ben76</a></span>]   
<b class='BibAuthor'>Benard, M.</b>,
  <i class='BibTitle'>Schur indices and cyclic defect groups</i>,
  <span class='BibJournal'>Ann. of Math. (2) </span>,
  <em class='BibVolume'>103</em> (<span class='BibNumber'>2</span>)
@@ -49,7 +49,7 @@
 
 <p><a id="biBBM14" name="biBBM14"></a></p>
 <p class='BibEntry'>
-[<span class='BibKeyLink'><a 
href="http://www.ams.org/mathscinet-getitem?mr=MR3188857";>BM14</a></span>]   <b 
class='BibAuthor'>Bakshi, G. K. and Maheshwary, S.</b>,
+[<span class='BibKeyLink'><a 
href="https://www.ams.org/mathscinet-getitem?mr=MR3188857";>BM14</a></span>]   
<b class='BibAuthor'>Bakshi, G. K. and Maheshwary, S.</b>,
  <i class='BibTitle'>The rational group algebra of a normally monomial 
group</i>,
  <span class='BibJournal'>J. Pure Appl. Algebra</span>,
  <em class='BibVolume'>218</em> (<span class='BibNumber'>9</span>)
@@ -60,7 +60,7 @@
 
 <p><a id="biBBM16" name="biBBM16"></a></p>
 <p class='BibEntry'>
-[<span class='BibKeyLink'><a 
href="http://www.ams.org/mathscinet-getitem?mr=3461261";>BM16</a></span>]   <b 
class='BibAuthor'>Bakshi, G. K. and Maheshwary, S.</b>,
+[<span class='BibKeyLink'><a 
href="https://www.ams.org/mathscinet-getitem?mr=3461261";>BM16</a></span>]   <b 
class='BibAuthor'>Bakshi, G. K. and Maheshwary, S.</b>,
  <i class='BibTitle'>Extremely strong Shoda pairs with GAP</i>,
  <span class='BibJournal'>J. Symbolic Comput.</span>,
  <em class='BibVolume'>76</em> (<span class='BibNumber'>9</span>)
@@ -71,7 +71,7 @@
 
 <p><a id="biBBS" name="biBBS"></a></p>
 <p class='BibEntry'>
-[<span class='BibKeyLink'><a 
href="http://www.ams.org/mathscinet-getitem?mr=MR0302747";>BS72</a></span>]   <b 
class='BibAuthor'>Benard, M. and Schacher, M.</b>,
+[<span class='BibKeyLink'><a 
href="https://www.ams.org/mathscinet-getitem?mr=MR0302747";>BS72</a></span>]   
<b class='BibAuthor'>Benard, M. and Schacher, M.</b>,
  <i class='BibTitle'>The Schur subgroup. II.</i>,
  <span class='BibJournal'>J. Algebra</span>,
  <em class='BibVolume'>22</em> (<span class='BibNumber'>1</span>)
@@ -82,7 +82,7 @@
 
 <p><a id="biBJ" name="biBJ"></a></p>
 <p class='BibEntry'>
-[<span class='BibKeyLink'><a 
href="http://www.ams.org/mathscinet-getitem?mr=MR0389849";>Jan75</a></span>]   
<b class='BibAuthor'>Janusz, G.</b>,
+[<span class='BibKeyLink'><a 
href="https://www.ams.org/mathscinet-getitem?mr=MR0389849";>Jan75</a></span>]   
<b class='BibAuthor'>Janusz, G.</b>,
  <i class='BibTitle'>Generators for the Schur group of local and global number 
fields</i>,
  <span class='BibJournal'>Pacific J. Math.</span>,
  <em class='BibVolume'>56</em> (<span class='BibNumber'>2</span>)
@@ -93,7 +93,7 @@
 
 <p><a id="biBN" name="biBN"></a></p>
 <p class='BibEntry'>
-[<span class='BibKeyLink'><a 
href="http://www.ams.org/mathscinet-getitem?mr=MR1632299";>Nav98</a></span>]   
<b class='BibAuthor'>Navarro, G.</b>,
+[<span class='BibKeyLink'><a 
href="https://www.ams.org/mathscinet-getitem?mr=MR1632299";>Nav98</a></span>]   
<b class='BibAuthor'>Navarro, G.</b>,
  <i class='BibTitle'>Characters and Blocks of Finite Groups</i>,
  <span class='BibPublisher'>London Mathematical Society</span>,
  <span class='BibSeries'>Lecture Note Series</span>,
@@ -106,7 +106,7 @@
 
 <p><a id="biBOR" name="biBOR"></a></p>
 <p class='BibEntry'>
-[<span class='BibKeyLink'><a 
href="http://www.ams.org/mathscinet-getitem?mr=MR1981041";>OdR03</a></span>]   
<b class='BibAuthor'>Olivieri, A. and del Río, Á.</b>,
+[<span class='BibKeyLink'><a 
href="https://www.ams.org/mathscinet-getitem?mr=MR1981041";>OdR03</a></span>]   
<b class='BibAuthor'>Olivieri, A. and del Río, Á.</b>,
  <i class='BibTitle'>An algorithm to compute the primitive central idempotents 
and
   the Wedderburn decomposition of a rational group algebra</i>,
  <span class='BibJournal'>J. Symbolic Comput.</span>,
@@ -118,7 +118,7 @@
 
 <p><a id="biBORS" name="biBORS"></a></p>
 <p class='BibEntry'>
-[<span class='BibKeyLink'><a 
href="http://www.ams.org/mathscinet-getitem?mr=MR2100373";>OdRS04</a></span>]   
<b class='BibAuthor'>Olivieri, A., del Río, Á. and Simón, J. J.</b>,
+[<span class='BibKeyLink'><a 
href="https://www.ams.org/mathscinet-getitem?mr=MR2100373";>OdRS04</a></span>]   
<b class='BibAuthor'>Olivieri, A., del Río, Á. and Simón, J. J.</b>,
  <i class='BibTitle'>On monomial characters and central idempotents of rational
               group algebras</i>,
  <span class='BibJournal'>Comm. Algebra</span>,
@@ -130,7 +130,7 @@
 
 <p><a id="biBO" name="biBO"></a></p>
 <p class='BibEntry'>
-[<span class='BibKeyLink'><a 
href="http://www.ams.org/mathscinet-getitem?mr=MR2291851";>Olt07</a></span>]   
<b class='BibAuthor'>Olteanu, G.</b>,
+[<span class='BibKeyLink'><a 
href="https://www.ams.org/mathscinet-getitem?mr=MR2291851";>Olt07</a></span>]   
<b class='BibAuthor'>Olteanu, G.</b>,
  <i class='BibTitle'>Computing the Wedderburn decomposition of group algebras 
by
               the Brauer-Witt theorem</i>,
  <span class='BibJournal'>Math. Comp.</span>,
@@ -153,15 +153,18 @@
 
 <p><a id="biBOV2" name="biBOV2"></a></p>
 <p class='BibEntry'>
-[<span class='BibKey'>OVGnt</span>]   <b class='BibAuthor'>Olteanu, G. and Van 
Gelder, I.</b>,
- <i class='BibTitle'>Construction of minimal non-abelian left group codes</i>
- (<span class='BibYear'>preprint</span>).
+[<span class='BibKey'>OVG15</span>]   <b class='BibAuthor'>Olteanu, G. and Van 
Gelder, I.</b>,
+ <i class='BibTitle'>Construction of minimal non-abelian left group codes</i>,
+ <span class='BibJournal'>Des. Codes Cryptography</span>,
+ <em class='BibVolume'>75</em> (<span class='BibNumber'>3</span>)
+ (<span class='BibYear'>2015</span>),
+ <span class='BibPages'>359–373</span>.
 </p>
 
 
 <p><a id="biBP" name="biBP"></a></p>
 <p class='BibEntry'>
-[<span class='BibKeyLink'><a 
href="http://www.ams.org/mathscinet-getitem?mr=MR979094";>Pas89</a></span>]   <b 
class='BibAuthor'>Passman, D. S.</b>,
+[<span class='BibKeyLink'><a 
href="https://www.ams.org/mathscinet-getitem?mr=MR979094";>Pas89</a></span>]   
<b class='BibAuthor'>Passman, D. S.</b>,
  <i class='BibTitle'>Infinite crossed products</i>,
  <span class='BibPublisher'>Academic Press Inc.</span>,
  <span class='BibSeries'>Pure and Applied Mathematics</span>,
@@ -174,7 +177,7 @@
 
 <p><a id="biBPi" name="biBPi"></a></p>
 <p class='BibEntry'>
-[<span class='BibKeyLink'><a 
href="http://www.ams.org/mathscinet-getitem?mr=MR0674652";>Pie82</a></span>]   
<b class='BibAuthor'>Pierce, R. S.</b>,
+[<span class='BibKeyLink'><a 
href="https://www.ams.org/mathscinet-getitem?mr=MR0674652";>Pie82</a></span>]   
<b class='BibAuthor'>Pierce, R. S.</b>,
  <i class='BibTitle'>Associative Algebras</i>,
  <span class='BibPublisher'>Springer Verlag</span>,
  <span class='BibSeries'>Graduate Texts in Mathematics</span>,
@@ -187,7 +190,7 @@
 
 <p><a id="biBR" name="biBR"></a></p>
 <p class='BibEntry'>
-[<span class='BibKeyLink'><a 
href="http://www.ams.org/mathscinet-getitem?mr=MR1972204";>Rei03</a></span>]   
<b class='BibAuthor'>Reiner, I.</b>,
+[<span class='BibKeyLink'><a 
href="https://www.ams.org/mathscinet-getitem?mr=MR1972204";>Rei03</a></span>]   
<b class='BibAuthor'>Reiner, I.</b>,
  <i class='BibTitle'>Maximal orders</i>,
  <span class='BibPublisher'>The Clarendon Press Oxford University Press</span>,
  <span class='BibSeries'>London Mathematical Society Monographs. New 
Series</span>,
@@ -202,7 +205,7 @@
 
 <p><a id="biBRSch" name="biBRSch"></a></p>
 <p class='BibEntry'>
-[<span class='BibKeyLink'><a 
href="http://www.ams.org/mathscinet-getitem?mr=MR1388863";>RS96</a></span>]   <b 
class='BibAuthor'>Riese, U. and Schmid, P.</b>,
+[<span class='BibKeyLink'><a 
href="https://www.ams.org/mathscinet-getitem?mr=MR1388863";>RS96</a></span>]   
<b class='BibAuthor'>Riese, U. and Schmid, P.</b>,
  <i class='BibTitle'>Schur indices and Schur groups, II </i>,
  <span class='BibJournal'>J. Algebra</span>,
  <em class='BibVolume'>182</em> (<span class='BibNumber'>1</span>)
@@ -213,7 +216,7 @@
 
 <p><a id="biBSch" name="biBSch"></a></p>
 <p class='BibEntry'>
-[<span class='BibKeyLink'><a 
href="http://www.ams.org/mathscinet-getitem?mr=MR1296591";>Sch94</a></span>]   
<b class='BibAuthor'>Schmid, P.</b>,
+[<span class='BibKeyLink'><a 
href="https://www.ams.org/mathscinet-getitem?mr=MR1296591";>Sch94</a></span>]   
<b class='BibAuthor'>Schmid, P.</b>,
  <i class='BibTitle'>Schur indices and Schur groups </i>,
  <span class='BibJournal'>J. Algebra</span>,
  <em class='BibVolume'>169</em> (<span class='BibNumber'>15</span>)
@@ -235,7 +238,7 @@
 
 <p><a id="biBY" name="biBY"></a></p>
 <p class='BibEntry'>
-[<span class='BibKeyLink'><a 
href="http://www.ams.org/mathscinet-getitem?mr=MR0347957";>Yam74</a></span>]   
<b class='BibAuthor'>Yamada, T.</b>,
+[<span class='BibKeyLink'><a 
href="https://www.ams.org/mathscinet-getitem?mr=MR0347957";>Yam74</a></span>]   
<b class='BibAuthor'>Yamada, T.</b>,
  <i class='BibTitle'>The Schur subgroup of the Brauer group</i>,
  <span class='BibPublisher'>Springer-Verlag</span>,
  <span class='BibAddress'>Berlin</span>
@@ -253,6 +256,6 @@
 <div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a 
href="chap0.html">Top</a>  <a href="chap1.html">1</a>  <a 
href="chap2.html">2</a>  <a href="chap3.html">3</a>  <a href="chap4.html">4</a> 
 <a href="chap5.html">5</a>  <a href="chap6.html">6</a>  <a 
href="chap7.html">7</a>  <a href="chap8.html">8</a>  <a href="chap9.html">9</a> 
 <a href="chapBib.html">Bib</a>  <a href="chapInd.html">Ind</a>  </div>
 
 <hr />
-<p class="foot">generated by <a 
href="http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc";>GAPDoc2HTML</a></p>
+<p class="foot">generated by <a 
href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc";>GAPDoc2HTML</a></p>
 </body>
 </html>
diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' 
'--exclude=.svnignore' old/wedderga-4.10.5/doc/chapBib.txt 
new/wedderga-4.11.0/doc/chapBib.txt
--- old/wedderga-4.10.5/doc/chapBib.txt 2024-02-19 15:58:08.000000000 +0100
+++ new/wedderga-4.11.0/doc/chapBib.txt 2025-06-16 12:47:53.000000000 +0200
@@ -40,8 +40,8 @@
   groups:  A  complete  set of orthogonal primitive idempotents, 
Finite Fields
   Appl., 17, 2 (2011), 157–165.
   
-  [OVGnt]  Olteanu, G. and Van Gelder, I., 
Construction of minimal non-abelian
-  left group codes (preprint).
+  [OVG15]  Olteanu, G. and Van Gelder, I., 
Construction of minimal non-abelian
+  left group codes, Des. Codes Cryptography, 75, 3 
(2015), 359–373.
   
   [Pas89] Passman, D. S., Infinite crossed 
products, Academic Press Inc., Pure
   and Applied Mathematics, 135, Boston, MA (1989), xii+468 pages.
diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' 
'--exclude=.svnignore' old/wedderga-4.10.5/doc/chapBib_mj.html 
new/wedderga-4.11.0/doc/chapBib_mj.html
--- old/wedderga-4.10.5/doc/chapBib_mj.html     2024-02-19 15:58:14.000000000 
+0100
+++ new/wedderga-4.11.0/doc/chapBib_mj.html     2025-06-16 12:47:59.000000000 
+0200
@@ -6,7 +6,7 @@
 <html xmlns="http://www.w3.org/1999/xhtml"; xml:lang="en">
 <head>
 <script type="text/javascript"
-  
src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML";>
+  
src="https://cdn.jsdelivr.net/npm/mathjax@2/MathJax.js?config=TeX-AMS-MML_HTMLorMML";>
 </script>
 <title>GAP (Wedderga) - References</title>
 <meta http-equiv="content-type" content="text/html; charset=UTF-8" />
@@ -30,7 +30,7 @@
 
 <p><a id="biBBR" name="biBBR"></a></p>
 <p class='BibEntry'>
-[<span class='BibKeyLink'><a 
href="http://www.ams.org/mathscinet-getitem?mr=MR2284667";>BdR07</a></span>]   
<b class='BibAuthor'>Broche, O. and del Río, Á.</b>,
+[<span class='BibKeyLink'><a 
href="https://www.ams.org/mathscinet-getitem?mr=MR2284667";>BdR07</a></span>]   
<b class='BibAuthor'>Broche, O. and del Río, Á.</b>,
  <i class='BibTitle'>Wedderburn decomposition of finite group algebras</i>,
  <span class='BibJournal'>Finite Fields Appl.</span>,
  <em class='BibVolume'>13</em> (<span class='BibNumber'>1</span>)
@@ -41,7 +41,7 @@
 
 <p><a id="biBB" name="biBB"></a></p>
 <p class='BibEntry'>
-[<span class='BibKeyLink'><a 
href="http://www.ams.org/mathscinet-getitem?mr=MR0412265";>Ben76</a></span>]   
<b class='BibAuthor'>Benard, M.</b>,
+[<span class='BibKeyLink'><a 
href="https://www.ams.org/mathscinet-getitem?mr=MR0412265";>Ben76</a></span>]   
<b class='BibAuthor'>Benard, M.</b>,
  <i class='BibTitle'>Schur indices and cyclic defect groups</i>,
  <span class='BibJournal'>Ann. of Math. (2) </span>,
  <em class='BibVolume'>103</em> (<span class='BibNumber'>2</span>)
@@ -52,7 +52,7 @@
 
 <p><a id="biBBM14" name="biBBM14"></a></p>
 <p class='BibEntry'>
-[<span class='BibKeyLink'><a 
href="http://www.ams.org/mathscinet-getitem?mr=MR3188857";>BM14</a></span>]   <b 
class='BibAuthor'>Bakshi, G. K. and Maheshwary, S.</b>,
+[<span class='BibKeyLink'><a 
href="https://www.ams.org/mathscinet-getitem?mr=MR3188857";>BM14</a></span>]   
<b class='BibAuthor'>Bakshi, G. K. and Maheshwary, S.</b>,
  <i class='BibTitle'>The rational group algebra of a normally monomial 
group</i>,
  <span class='BibJournal'>J. Pure Appl. Algebra</span>,
  <em class='BibVolume'>218</em> (<span class='BibNumber'>9</span>)
@@ -63,7 +63,7 @@
 
 <p><a id="biBBM16" name="biBBM16"></a></p>
 <p class='BibEntry'>
-[<span class='BibKeyLink'><a 
href="http://www.ams.org/mathscinet-getitem?mr=3461261";>BM16</a></span>]   <b 
class='BibAuthor'>Bakshi, G. K. and Maheshwary, S.</b>,
+[<span class='BibKeyLink'><a 
href="https://www.ams.org/mathscinet-getitem?mr=3461261";>BM16</a></span>]   <b 
class='BibAuthor'>Bakshi, G. K. and Maheshwary, S.</b>,
  <i class='BibTitle'>Extremely strong Shoda pairs with GAP</i>,
  <span class='BibJournal'>J. Symbolic Comput.</span>,
  <em class='BibVolume'>76</em> (<span class='BibNumber'>9</span>)
@@ -74,7 +74,7 @@
 
 <p><a id="biBBS" name="biBBS"></a></p>
 <p class='BibEntry'>
-[<span class='BibKeyLink'><a 
href="http://www.ams.org/mathscinet-getitem?mr=MR0302747";>BS72</a></span>]   <b 
class='BibAuthor'>Benard, M. and Schacher, M.</b>,
+[<span class='BibKeyLink'><a 
href="https://www.ams.org/mathscinet-getitem?mr=MR0302747";>BS72</a></span>]   
<b class='BibAuthor'>Benard, M. and Schacher, M.</b>,
  <i class='BibTitle'>The Schur subgroup. II.</i>,
  <span class='BibJournal'>J. Algebra</span>,
  <em class='BibVolume'>22</em> (<span class='BibNumber'>1</span>)
@@ -85,7 +85,7 @@
 
 <p><a id="biBJ" name="biBJ"></a></p>
 <p class='BibEntry'>
-[<span class='BibKeyLink'><a 
href="http://www.ams.org/mathscinet-getitem?mr=MR0389849";>Jan75</a></span>]   
<b class='BibAuthor'>Janusz, G.</b>,
+[<span class='BibKeyLink'><a 
href="https://www.ams.org/mathscinet-getitem?mr=MR0389849";>Jan75</a></span>]   
<b class='BibAuthor'>Janusz, G.</b>,
  <i class='BibTitle'>Generators for the Schur group of local and global number 
fields</i>,
  <span class='BibJournal'>Pacific J. Math.</span>,
  <em class='BibVolume'>56</em> (<span class='BibNumber'>2</span>)
@@ -96,7 +96,7 @@
 
 <p><a id="biBN" name="biBN"></a></p>
 <p class='BibEntry'>
-[<span class='BibKeyLink'><a 
href="http://www.ams.org/mathscinet-getitem?mr=MR1632299";>Nav98</a></span>]   
<b class='BibAuthor'>Navarro, G.</b>,
+[<span class='BibKeyLink'><a 
href="https://www.ams.org/mathscinet-getitem?mr=MR1632299";>Nav98</a></span>]   
<b class='BibAuthor'>Navarro, G.</b>,
  <i class='BibTitle'>Characters and Blocks of Finite Groups</i>,
  <span class='BibPublisher'>London Mathematical Society</span>,
  <span class='BibSeries'>Lecture Note Series</span>,
@@ -109,7 +109,7 @@
 
 <p><a id="biBOR" name="biBOR"></a></p>
 <p class='BibEntry'>
-[<span class='BibKeyLink'><a 
href="http://www.ams.org/mathscinet-getitem?mr=MR1981041";>OdR03</a></span>]   
<b class='BibAuthor'>Olivieri, A. and del Río, Á.</b>,
+[<span class='BibKeyLink'><a 
href="https://www.ams.org/mathscinet-getitem?mr=MR1981041";>OdR03</a></span>]   
<b class='BibAuthor'>Olivieri, A. and del Río, Á.</b>,
  <i class='BibTitle'>An algorithm to compute the primitive central idempotents 
and
   the Wedderburn decomposition of a rational group algebra</i>,
  <span class='BibJournal'>J. Symbolic Comput.</span>,
@@ -121,7 +121,7 @@
 
 <p><a id="biBORS" name="biBORS"></a></p>
 <p class='BibEntry'>
-[<span class='BibKeyLink'><a 
href="http://www.ams.org/mathscinet-getitem?mr=MR2100373";>OdRS04</a></span>]   
<b class='BibAuthor'>Olivieri, A., del Río, Á. and Simón, J. J.</b>,
+[<span class='BibKeyLink'><a 
href="https://www.ams.org/mathscinet-getitem?mr=MR2100373";>OdRS04</a></span>]   
<b class='BibAuthor'>Olivieri, A., del Río, Á. and Simón, J. J.</b>,
  <i class='BibTitle'>On monomial characters and central idempotents of rational
               group algebras</i>,
  <span class='BibJournal'>Comm. Algebra</span>,
@@ -133,7 +133,7 @@
 
 <p><a id="biBO" name="biBO"></a></p>
 <p class='BibEntry'>
-[<span class='BibKeyLink'><a 
href="http://www.ams.org/mathscinet-getitem?mr=MR2291851";>Olt07</a></span>]   
<b class='BibAuthor'>Olteanu, G.</b>,
+[<span class='BibKeyLink'><a 
href="https://www.ams.org/mathscinet-getitem?mr=MR2291851";>Olt07</a></span>]   
<b class='BibAuthor'>Olteanu, G.</b>,
  <i class='BibTitle'>Computing the Wedderburn decomposition of group algebras 
by
               the Brauer-Witt theorem</i>,
  <span class='BibJournal'>Math. Comp.</span>,
@@ -156,15 +156,18 @@
 
 <p><a id="biBOV2" name="biBOV2"></a></p>
 <p class='BibEntry'>
-[<span class='BibKey'>OVGnt</span>]   <b class='BibAuthor'>Olteanu, G. and Van 
Gelder, I.</b>,
- <i class='BibTitle'>Construction of minimal non-abelian left group codes</i>
- (<span class='BibYear'>preprint</span>).
+[<span class='BibKey'>OVG15</span>]   <b class='BibAuthor'>Olteanu, G. and Van 
Gelder, I.</b>,
+ <i class='BibTitle'>Construction of minimal non-abelian left group codes</i>,
+ <span class='BibJournal'>Des. Codes Cryptography</span>,
+ <em class='BibVolume'>75</em> (<span class='BibNumber'>3</span>)
+ (<span class='BibYear'>2015</span>),
+ <span class='BibPages'>359–373</span>.
 </p>
 
 
 <p><a id="biBP" name="biBP"></a></p>
 <p class='BibEntry'>
-[<span class='BibKeyLink'><a 
href="http://www.ams.org/mathscinet-getitem?mr=MR979094";>Pas89</a></span>]   <b 
class='BibAuthor'>Passman, D. S.</b>,
+[<span class='BibKeyLink'><a 
href="https://www.ams.org/mathscinet-getitem?mr=MR979094";>Pas89</a></span>]   
<b class='BibAuthor'>Passman, D. S.</b>,
  <i class='BibTitle'>Infinite crossed products</i>,
  <span class='BibPublisher'>Academic Press Inc.</span>,
  <span class='BibSeries'>Pure and Applied Mathematics</span>,
@@ -177,7 +180,7 @@
 
 <p><a id="biBPi" name="biBPi"></a></p>
 <p class='BibEntry'>
-[<span class='BibKeyLink'><a 
href="http://www.ams.org/mathscinet-getitem?mr=MR0674652";>Pie82</a></span>]   
<b class='BibAuthor'>Pierce, R. S.</b>,
+[<span class='BibKeyLink'><a 
href="https://www.ams.org/mathscinet-getitem?mr=MR0674652";>Pie82</a></span>]   
<b class='BibAuthor'>Pierce, R. S.</b>,
  <i class='BibTitle'>Associative Algebras</i>,
  <span class='BibPublisher'>Springer Verlag</span>,
  <span class='BibSeries'>Graduate Texts in Mathematics</span>,
@@ -190,7 +193,7 @@
 
 <p><a id="biBR" name="biBR"></a></p>
 <p class='BibEntry'>
-[<span class='BibKeyLink'><a 
href="http://www.ams.org/mathscinet-getitem?mr=MR1972204";>Rei03</a></span>]   
<b class='BibAuthor'>Reiner, I.</b>,
+[<span class='BibKeyLink'><a 
href="https://www.ams.org/mathscinet-getitem?mr=MR1972204";>Rei03</a></span>]   
<b class='BibAuthor'>Reiner, I.</b>,
  <i class='BibTitle'>Maximal orders</i>,
  <span class='BibPublisher'>The Clarendon Press Oxford University Press</span>,
  <span class='BibSeries'>London Mathematical Society Monographs. New 
Series</span>,
@@ -205,7 +208,7 @@
 
 <p><a id="biBRSch" name="biBRSch"></a></p>
 <p class='BibEntry'>
-[<span class='BibKeyLink'><a 
href="http://www.ams.org/mathscinet-getitem?mr=MR1388863";>RS96</a></span>]   <b 
class='BibAuthor'>Riese, U. and Schmid, P.</b>,
+[<span class='BibKeyLink'><a 
href="https://www.ams.org/mathscinet-getitem?mr=MR1388863";>RS96</a></span>]   
<b class='BibAuthor'>Riese, U. and Schmid, P.</b>,
  <i class='BibTitle'>Schur indices and Schur groups, II </i>,
  <span class='BibJournal'>J. Algebra</span>,
  <em class='BibVolume'>182</em> (<span class='BibNumber'>1</span>)
@@ -216,7 +219,7 @@
 
 <p><a id="biBSch" name="biBSch"></a></p>
 <p class='BibEntry'>
-[<span class='BibKeyLink'><a 
href="http://www.ams.org/mathscinet-getitem?mr=MR1296591";>Sch94</a></span>]   
<b class='BibAuthor'>Schmid, P.</b>,
+[<span class='BibKeyLink'><a 
href="https://www.ams.org/mathscinet-getitem?mr=MR1296591";>Sch94</a></span>]   
<b class='BibAuthor'>Schmid, P.</b>,
  <i class='BibTitle'>Schur indices and Schur groups </i>,
  <span class='BibJournal'>J. Algebra</span>,
  <em class='BibVolume'>169</em> (<span class='BibNumber'>15</span>)
@@ -238,7 +241,7 @@
 
 <p><a id="biBY" name="biBY"></a></p>
 <p class='BibEntry'>
-[<span class='BibKeyLink'><a 
href="http://www.ams.org/mathscinet-getitem?mr=MR0347957";>Yam74</a></span>]   
<b class='BibAuthor'>Yamada, T.</b>,
+[<span class='BibKeyLink'><a 
href="https://www.ams.org/mathscinet-getitem?mr=MR0347957";>Yam74</a></span>]   
<b class='BibAuthor'>Yamada, T.</b>,
  <i class='BibTitle'>The Schur subgroup of the Brauer group</i>,
  <span class='BibPublisher'>Springer-Verlag</span>,
  <span class='BibAddress'>Berlin</span>
@@ -256,6 +259,6 @@
 <div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a 
href="chap0_mj.html">Top</a>  <a href="chap1_mj.html">1</a>  <a 
href="chap2_mj.html">2</a>  <a href="chap3_mj.html">3</a>  <a 
href="chap4_mj.html">4</a>  <a href="chap5_mj.html">5</a>  <a 
href="chap6_mj.html">6</a>  <a href="chap7_mj.html">7</a>  <a 
href="chap8_mj.html">8</a>  <a href="chap9_mj.html">9</a>  <a 
href="chapBib_mj.html">Bib</a>  <a href="chapInd_mj.html">Ind</a>  </div>
 
 <hr />
-<p class="foot">generated by <a 
href="http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc";>GAPDoc2HTML</a></p>
+<p class="foot">generated by <a 
href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc";>GAPDoc2HTML</a></p>
 </body>
 </html>
diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' 
'--exclude=.svnignore' old/wedderga-4.10.5/doc/chapInd.html 
new/wedderga-4.11.0/doc/chapInd.html
--- old/wedderga-4.10.5/doc/chapInd.html        2024-02-19 15:58:14.000000000 
+0100
+++ new/wedderga-4.11.0/doc/chapInd.html        2025-06-16 12:47:58.000000000 
+0200
@@ -176,6 +176,6 @@
 <div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a 
href="chap0.html">Top</a>  <a href="chap1.html">1</a>  <a 
href="chap2.html">2</a>  <a href="chap3.html">3</a>  <a href="chap4.html">4</a> 
 <a href="chap5.html">5</a>  <a href="chap6.html">6</a>  <a 
href="chap7.html">7</a>  <a href="chap8.html">8</a>  <a href="chap9.html">9</a> 
 <a href="chapBib.html">Bib</a>  <a href="chapInd.html">Ind</a>  </div>
 
 <hr />
-<p class="foot">generated by <a 
href="http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc";>GAPDoc2HTML</a></p>
+<p class="foot">generated by <a 
href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc";>GAPDoc2HTML</a></p>
 </body>
 </html>
diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' 
'--exclude=.svnignore' old/wedderga-4.10.5/doc/chapInd.txt 
new/wedderga-4.11.0/doc/chapInd.txt
--- old/wedderga-4.10.5/doc/chapInd.txt 2024-02-19 15:58:08.000000000 +0100
+++ new/wedderga-4.11.0/doc/chapInd.txt 2025-06-16 12:47:53.000000000 +0200
@@ -141,7 +141,7 @@
   WedderburnDecompositionByCharacterDescent 7.3-4 
   WedderburnDecompositionInfo 2.1-2 
   WedderburnDecompositionWithDivAlgParts 7.1-1 
-  Wedderga package .-1 
+  Wedderga package 0.0-1 
   ZeroCoefficient 5.2-1 
   ε(K,H) 9.13 
   
diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' 
'--exclude=.svnignore' old/wedderga-4.10.5/doc/chapInd_mj.html 
new/wedderga-4.11.0/doc/chapInd_mj.html
--- old/wedderga-4.10.5/doc/chapInd_mj.html     2024-02-19 15:58:14.000000000 
+0100
+++ new/wedderga-4.11.0/doc/chapInd_mj.html     2025-06-16 12:47:59.000000000 
+0200
@@ -6,7 +6,7 @@
 <html xmlns="http://www.w3.org/1999/xhtml"; xml:lang="en">
 <head>
 <script type="text/javascript"
-  
src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML";>
+  
src="https://cdn.jsdelivr.net/npm/mathjax@2/MathJax.js?config=TeX-AMS-MML_HTMLorMML";>
 </script>
 <title>GAP (Wedderga) - Index</title>
 <meta http-equiv="content-type" content="text/html; charset=UTF-8" />
@@ -179,6 +179,6 @@
 <div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a 
href="chap0_mj.html">Top</a>  <a href="chap1_mj.html">1</a>  <a 
href="chap2_mj.html">2</a>  <a href="chap3_mj.html">3</a>  <a 
href="chap4_mj.html">4</a>  <a href="chap5_mj.html">5</a>  <a 
href="chap6_mj.html">6</a>  <a href="chap7_mj.html">7</a>  <a 
href="chap8_mj.html">8</a>  <a href="chap9_mj.html">9</a>  <a 
href="chapBib_mj.html">Bib</a>  <a href="chapInd_mj.html">Ind</a>  </div>
 
 <hr />
-<p class="foot">generated by <a 
href="http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc";>GAPDoc2HTML</a></p>
+<p class="foot">generated by <a 
href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc";>GAPDoc2HTML</a></p>
 </body>
 </html>
Binary files old/wedderga-4.10.5/doc/manual.pdf and 
new/wedderga-4.11.0/doc/manual.pdf differ
diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' 
'--exclude=.svnignore' old/wedderga-4.10.5/doc/manual.six 
new/wedderga-4.11.0/doc/manual.six
--- old/wedderga-4.10.5/doc/manual.six  2024-02-19 15:58:14.000000000 +0100
+++ new/wedderga-4.11.0/doc/manual.six  2025-06-16 12:47:58.000000000 +0200
@@ -3,12 +3,15 @@
 encoding := "UTF-8",
 bookname := "Wedderga",
 entries :=
-[ [ "Title page", ".", [ 0, 0, 0 ], 1, 1, "title page", "X7D2C85EC87DD46E5" ],
-  [ "Abstract", ".-1", [ 0, 0, 1 ], 105, 2, "abstract", "X7AA6C5737B711C89" ],
-  [ "Copyright", ".-2", [ 0, 0, 2 ], 118, 2, "copyright", "X81488B807F2A1CF1" 
-     ], [ "Acknowledgements", ".-3", [ 0, 0, 3 ], 140, 2, "acknowledgements", 
+[ [ "Title page", "0.0", [ 0, 0, 0 ], 1, 1, "title page", "X7D2C85EC87DD46E5" 
+     ], 
+  [ "Abstract", "0.0-1", [ 0, 0, 1 ], 105, 2, "abstract", "X7AA6C5737B711C89" 
+     ], 
+  [ "Copyright", "0.0-2", [ 0, 0, 2 ], 118, 2, "copyright", 
+      "X81488B807F2A1CF1" ], 
+  [ "Acknowledgements", "0.0-3", [ 0, 0, 3 ], 140, 2, "acknowledgements", 
       "X82A988D47DFAFCFA" ], 
-  [ "Table of Contents", ".-4", [ 0, 0, 4 ], 171, 4, "table of contents", 
+  [ "Table of Contents", "0.0-4", [ 0, 0, 4 ], 171, 4, "table of contents", 
       "X8537FEB07AF2BEC8" ], 
   [ "\033[1X\033[33X\033[0;-2YIntroduction\033[133X\033[101X", "1", 
       [ 1, 0, 0 ], 1, 6, "introduction", "X7DFB63A97E67C0A1" ], 
@@ -178,7 +181,7 @@
 133X\033[101X", "9.12", [ 9, 12, 0 ], 391, 65, 
       "numerical description of cyclotomic algebras", "X84A142407B7565E0" ], 
   [ "\033[1X\033[33X\033[0;-2YIdempotents given by subgroups\033[133X\033[101X\
-", "9.13", [ 9, 13, 0 ], 462, 65, "idempotents given by subgroups", 
+", "9.13", [ 9, 13, 0 ], 462, 66, "idempotents given by subgroups", 
       "X8310E96086509397" ], 
   [ "\033[1X\033[33X\033[0;-2YShoda pairs of a group\033[133X\033[101X", 
       "9.14", [ 9, 14, 0 ], 502, 66, "shoda pairs of a group", 
@@ -192,7 +195,7 @@
       "extremely strong shoda pairs of a group", "X81B5CE0378DC4913" ], 
   [ 
       "\033[1X\033[33X\033[0;-2YStrongly monomial characters and strongly 
monomia\
-l groups\033[133X\033[101X", "9.17", [ 9, 17, 0 ], 622, 67, 
+l groups\033[133X\033[101X", "9.17", [ 9, 17, 0 ], 622, 68, 
       "strongly monomial characters and strongly monomial groups", 
       "X84C694978557EFE5" ], 
   [ 
@@ -228,7 +231,7 @@
   [ "References", "bib", [ "Bib", 0, 0 ], 1, 74, "references", 
       "X7A6F98FD85F02BFE" ], 
   [ "Index", "ind", [ "Ind", 0, 0 ], 1, 76, "index", "X83A0356F839C696F" ], 
-  [ "\033[5XWedderga\033[105X package", ".-1", [ 0, 0, 1 ], 105, 2, 
+  [ "\033[5XWedderga\033[105X package", "0.0-1", [ 0, 0, 1 ], 105, 2, 
       "wedderga package", "X7AA6C5737B711C89" ], 
   [ "\033[2XWedderburnDecomposition\033[102X", "2.1-1", [ 2, 1, 1 ], 7, 9, 
       "wedderburndecomposition", "X7F1779ED8777F3E7" ], 
@@ -519,11 +522,11 @@
       "X84C98BB8859BBEE2" ], 
   [ "Cyclotomic algebra", "9.11", [ 9, 11, 0 ], 380, 65, "cyclotomic algebra",
       "X8099A8C784255672" ], 
-  [ "\033[22X\316\265(K,H)\033[122X", "9.13", [ 9, 13, 0 ], 462, 65, 
+  [ "\033[22X\316\265(K,H)\033[122X", "9.13", [ 9, 13, 0 ], 462, 66, 
       "i\265 k h", "X8310E96086509397" ], 
-  [ "\033[22Xe(G,K,H)\033[122X", "9.13", [ 9, 13, 0 ], 462, 65, "e g k h", 
+  [ "\033[22Xe(G,K,H)\033[122X", "9.13", [ 9, 13, 0 ], 462, 66, "e g k h", 
       "X8310E96086509397" ], 
-  [ "\033[22Xe_C(G,K,H)\033[122X", "9.13", [ 9, 13, 0 ], 462, 65, 
+  [ "\033[22Xe_C(G,K,H)\033[122X", "9.13", [ 9, 13, 0 ], 462, 66, 
       "e_c g k h", "X8310E96086509397" ], 
   [ "Shoda pair", "9.14", [ 9, 14, 0 ], 502, 66, "shoda pair", 
       "X7D518BAB80EDE190" ], 
@@ -539,9 +542,9 @@
       "extremely strong shoda pair", "X81B5CE0378DC4913" ], 
   [ "equivalent extremely strong Shoda pairs", "9.16", [ 9, 16, 0 ], 595, 67, 
       "equivalent extremely strong shoda pairs", "X81B5CE0378DC4913" ], 
-  [ "strongly monomial character", "9.17", [ 9, 17, 0 ], 622, 67, 
+  [ "strongly monomial character", "9.17", [ 9, 17, 0 ], 622, 68, 
       "strongly monomial character", "X84C694978557EFE5" ], 
-  [ "strongly monomial group", "9.17", [ 9, 17, 0 ], 622, 67, 
+  [ "strongly monomial group", "9.17", [ 9, 17, 0 ], 622, 68, 
       "strongly monomial group", "X84C694978557EFE5" ], 
   [ "normally monomial character", "9.18", [ 9, 18, 0 ], 643, 68, 
       "normally monomial character", "X7C8D47C180E0ACAD" ], 
diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' 
'--exclude=.svnignore' old/wedderga-4.10.5/doc/manualbib.xml 
new/wedderga-4.11.0/doc/manualbib.xml
--- old/wedderga-4.10.5/doc/manualbib.xml       2024-02-19 15:57:47.000000000 
+0100
+++ new/wedderga-4.11.0/doc/manualbib.xml       2025-06-16 12:47:37.000000000 
+0200
@@ -205,7 +205,11 @@
     <name><first>Inneke</first><last>Van Gelder</last></name>
   </author>  
   <title>Construction of minimal non-abelian left group codes</title>
-  <year>preprint</year>
+  <journal>Des. Codes Cryptography</journal>
+  <year>2015</year>
+  <volume>75</volume>
+  <number>3</number>
+  <pages>359&ndash;373</pages>
 </article></entry>
 
 <entry id="P"><book>
diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' 
'--exclude=.svnignore' old/wedderga-4.10.5/doc/manualbib.xml.bib 
new/wedderga-4.11.0/doc/manualbib.xml.bib
--- old/wedderga-4.10.5/doc/manualbib.xml.bib   2024-02-19 15:58:08.000000000 
+0100
+++ new/wedderga-4.11.0/doc/manualbib.xml.bib   2025-06-16 12:47:53.000000000 
+0200
@@ -11,7 +11,7 @@
   year =             {1976},
   pages =            {283{\textendash}304},
   fjournal =         {Annals of Mathematics. Second series.},
-  issn =             {0003-486X},
+  issn =             {0003\texttt{\symbol{45}}486X},
   mrclass =          {20C20},
   mrnumber =         {MR0412265 (54 \#391)},
   mrreviewer =       {W. Feit},
@@ -26,7 +26,7 @@
   year =             {1972},
   pages =            {378{\textendash}385},
   fjournal =         {Journal of Algebra},
-  issn =             {0021-8693},
+  issn =             {0021\texttt{\symbol{45}}8693},
   mrclass =          {20C05 (16A26)},
   mrnumber =         {MR0302747 (46 \#1890)},
   mrreviewer =       {T.V. Fossum},
@@ -41,7 +41,7 @@
   year =             {2007},
   pages =            {71{\textendash}79},
   fjournal =         {Finite Fields and their Applications},
-  issn =             {1071-5797},
+  issn =             {1071\texttt{\symbol{45}}5797},
   mrclass =          {16S34},
   mrnumber =         {MR2284667 (2007m:16027)},
   mrreviewer =       {E. Jespers},
@@ -57,7 +57,7 @@
   year =             {1975},
   pages =            {525{\textendash}546},
   fjournal =         {Pacific Journal of Mathematics},
-  issn =             {0030-8730},
+  issn =             {0030\texttt{\symbol{45}}8730},
   mrclass =          {12A60 (12A65 20C05)},
   mrnumber =         {MR0389849 (52 \#10679)},
   mrreviewer =       {M. Benard},
@@ -72,8 +72,8 @@
   address =          {Cambridge, UK},
   year =             {1998},
   pages =            {x+287},
-  isbn =             {0-521-59513-4},
-  mrclass =          {20C20 (20-02 20C15)},
+  isbn =             
{0\texttt{\symbol{45}}521\texttt{\symbol{45}}59513\texttt{\symbol{45}}4},
+  mrclass =          {20C20 (20\texttt{\symbol{45}}02 20C15)},
   mrnumber =         {MR1632299 (2000a:20018)},
   mrreviewer =       {Wolfgang Willems},
   printedkey =       {Nav98}
@@ -88,7 +88,7 @@
   year =             {2014},
   pages =            {1583{\textendash}1593},
   fjournal =         {Journal of Pure and Applied Algebra},
-  issn =             {0022-4049},
+  issn =             {0022\texttt{\symbol{45}}4049},
   mrclass =          {16S34 (20C05)},
   mrnumber =         {MR3188857},
   mrreviewer =       {Adalbert Bovdi},
@@ -103,7 +103,7 @@
   year =             {2016},
   pages =            {97{\textendash}106},
   fjournal =         {Journal of Symbolic Computation},
-  issn =             {0747-7171},
+  issn =             {0747\texttt{\symbol{45}}7171},
   mrclass =          {20C05 (68W30)},
   mrnumber =         {3461261},
   mrreviewer =       {Kaoru Motose},
@@ -120,7 +120,7 @@
   year =             {2003},
   pages =            {673{\textendash}687},
   fjournal =         {Journal of Symbolic Computation},
-  issn =             {0747-7171},
+  issn =             {0747\texttt{\symbol{45}}7171},
   mrclass =          {16S34 (68W30)},
   mrnumber =         {MR1981041 (2004k:16073)},
   mrreviewer =       {E. Jespers},
@@ -138,7 +138,7 @@
   pages =            {1531{\textendash}1550},
   coden =            {COALDM},
   fjournal =         {Communications in Algebra},
-  issn =             {0092-7872},
+  issn =             {0092\texttt{\symbol{45}}7872},
   mrclass =          {16S34 (16U99 20C05)},
   mrnumber =         {MR2100373 (2005i:16054)},
   mrreviewer =       {E. Jespers},
@@ -147,7 +147,8 @@
 @article{ O,
   author =           {Olteanu, G.},
   title =            {Computing  the  {W}edderburn  decomposition  of  group
-                      algebras by the {B}rauer-{W}itt theorem},
+                      algebras   by  the  {B}rauer\texttt{\symbol{45}}{W}itt
+                      theorem},
   journal =          {Math. Comp.},
   volume =           {76},
   number =           {258},
@@ -155,7 +156,7 @@
   pages =            {1073{\textendash}1087 (electronic)},
   coden =            {MCMPAF},
   fjournal =         {Mathematics of Computation},
-  issn =             {0025-5718},
+  issn =             {0025\texttt{\symbol{45}}5718},
   mrclass =          {16S34 (20C15)},
   mrnumber =         {MR2291851},
   mrreviewer =       {E. Jespers},
@@ -174,9 +175,14 @@
 }
 @article{ OV2,
   author =           {Olteanu, G. and Van Gelder, I.},
-  title =            {Construction of minimal non-abelian left group codes},
-  year =             {preprint},
-  printedkey =       {OGnt}
+  title =            {Construction of minimal non\texttt{\symbol{45}}abelian
+                      left group codes},
+  journal =          {Des. Codes Cryptography},
+  volume =           {75},
+  number =           {3},
+  year =             {2015},
+  pages =            {359{\textendash}373},
+  printedkey =       {OG15}
 }
 @book{ P,
   author =           {Passman, D. S.},
@@ -187,8 +193,8 @@
   address =          {Boston, MA},
   year =             {1989},
   pages =            {xii+468},
-  isbn =             {0-12-546390-1},
-  mrclass =          {16-02 (16A03 16A27 20C07)},
+  isbn =             
{0\texttt{\symbol{45}}12\texttt{\symbol{45}}546390\texttt{\symbol{45}}1},
+  mrclass =          {16\texttt{\symbol{45}}02 (16A03 16A27 20C07)},
   mrnumber =         {MR979094 (90g:16002)},
   mrreviewer =       {Martin Lorenz},
   printedkey =       {Pas89}
@@ -199,11 +205,11 @@
   publisher =        {Springer Verlag},
   series =           {Graduate Texts in Mathematics},
   volume =           {88},
-  address =          {New York - Berlin},
+  address =          {New York \texttt{\symbol{45}} Berlin},
   year =             {1982},
   pages =            {xii+436},
-  isbn =             {0-387-90693-2},
-  mrclass =          {16-01 (12-01)},
+  isbn =             
{0\texttt{\symbol{45}}387\texttt{\symbol{45}}90693\texttt{\symbol{45}}2},
+  mrclass =          {16\texttt{\symbol{45}}01 (12\texttt{\symbol{45}}01)},
   mrnumber =         {MR0674652 (84c:16001)},
   mrreviewer =       {S.S. Page},
   printedkey =       {Pie82}
@@ -219,7 +225,7 @@
   pages =            {xiv+395},
   note =             {Corrected   reprint  of  the  1975  original,  With  a
                       foreword by M. J. Taylor},
-  isbn =             {0-19-852673-3},
+  isbn =             
{0\texttt{\symbol{45}}19\texttt{\symbol{45}}852673\texttt{\symbol{45}}3},
   mrclass =          {16H05 (11R54 16K20)},
   mrnumber =         {MR1972204 (2004c:16026)},
   printedkey =       {Rei03}
@@ -233,7 +239,7 @@
   year =             {1996},
   pages =            {183{\textendash}200},
   fjournal =         {Journal of Algebra},
-  issn =             {0021-8693},
+  issn =             {0021\texttt{\symbol{45}}8693},
   mrclass =          {20C15 (20C11)},
   mrnumber =         {MR1388863 (97e:20009)},
   mrreviewer =       {Alexandre Turull},
@@ -248,7 +254,7 @@
   year =             {1994},
   pages =            {226{\textendash}247},
   fjournal =         {Journal of Algebra},
-  issn =             {0021-8693},
+  issn =             {0021\texttt{\symbol{45}}8693},
   mrclass =          {20C15},
   mrnumber =         {MR1296591 (95i:20012)},
   mrreviewer =       {W. Feit},
@@ -258,7 +264,7 @@
   author =           {Shoda, K.},
   title =            {{\"U}ber    die   monomialen   {D}arstellungen   einer
                       endlichen {G}ruppe},
-  journal =          {Proc. Phys.-Math. Soc. Japan},
+  journal =          {Proc. Phys.\texttt{\symbol{45}}Math. Soc. Japan},
   volume =           {III},
   number =           {15},
   year =             {1933},
@@ -268,7 +274,7 @@
 @book{ Y,
   author =           {Yamada, T.},
   title =            {The {S}chur subgroup of the {B}rauer group},
-  publisher =        {Springer-Verlag},
+  publisher =        {Springer\texttt{\symbol{45}}Verlag},
   address =          {Berlin},
   year =             {1974},
   pages =            {v+159},
diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' 
'--exclude=.svnignore' old/wedderga-4.10.5/lib/crossed.gi 
new/wedderga-4.11.0/lib/crossed.gi
--- old/wedderga-4.10.5/lib/crossed.gi  2024-02-19 15:57:47.000000000 +0100
+++ new/wedderga-4.11.0/lib/crossed.gi  2025-06-16 12:47:37.000000000 +0200
@@ -600,11 +600,6 @@
       SetIsFiniteDimensional( RG, IsFinite( G ) );
     fi;
     
-    # What about IsCommutative ? In MagmaRings it is as below:   
-    # if HasIsCommutative( R ) and HasIsCommutative( G ) then
-    #   SetIsCommutative( RG, IsCommutative( R ) and IsCommutative( G ) );
-    # fi;
-    
     if HasIsWholeFamily( R ) and HasIsWholeFamily( G ) then
       SetIsWholeFamily( RG, IsWholeFamily( R ) and IsWholeFamily( G ) );
     fi;
@@ -754,6 +749,17 @@
 
 #############################################################################
 ##
+#M  IsCommutative( <RG> )  . . . . . . . . . . . . . .  for a crossed product
+##
+InstallMethod( IsCommutative,
+    "for a crossed product",
+    [ IsCrossedProduct ],
+    100,
+    RG -> Error("no method found to check commutativity of a crossed product") 
);
+
+
+#############################################################################
+##
 #M  Representative( <RG> )  . . . . . . . . . . . . . . for a crossed product
 ##
 ##  this is a quick-hack solution, should be replaced
@@ -998,4 +1004,4 @@
 #############################################################################
 ##
 #E
-##
\ No newline at end of file
+##
diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' 
'--exclude=.svnignore' old/wedderga-4.10.5/lib/div-alg.gi 
new/wedderga-4.11.0/lib/div-alg.gi
--- old/wedderga-4.10.5/lib/div-alg.gi  2024-02-19 15:57:47.000000000 +0100
+++ new/wedderga-4.11.0/lib/div-alg.gi  2025-06-16 12:47:37.000000000 +0200
@@ -740,38 +740,78 @@
 
 ##########################################
 InstallGlobalFunction( IsDyadicSchurGroup, function(G)
-local d,j,P,P1,V0,c,g,g1,z,V1,v1,V2,q,s,n1,r,i,y,p1,x,U,V,P2,L;
+local t,d,P,l,P1,l1,p1,i,Y,q,U,V,V1,L,P2,l2;
 
 d:=false;
-j:=0;
 P:=SylowSubgroup(G,2);
-q:=Size(G)/Size(P);
-if IsPrimeInt(q) then
-U:=SylowSubgroup(G,q);
-V:=Centralizer(P,U);
-
-# First look for G of type (Q_8,q)
-if IdSmallGroup(V)=[8,4] then
- V1:=Centralizer(P,V);
- L:=UnionSet(Elements(V),Elements(V1));
- P2:=GroupByGenerators(L);
- if P=P2 then
-  d:=true;
-  j:=1;
- fi;
-else
-# Checks if P is of type (QD,q)
-P1:=DerivedSubgroup(P);
- s:=LogInt(Size(P)/Size(P1),2)-1;
- if s=LogInt(PPartOfN(OrderMod(2,q),2),2) then
- if not(IsAbelian(V)) then
- if Size(P)/Size(V)=2^s then
- d:=true;
- fi;
- fi;
- fi;
+
+#### Check that G = Q8 ######
+if G=P then
+  if IdSmallGroup(G)=[8,4] then
+    d:=true;
+  fi;
 fi;
 
+#### Check G is semidirect product of C_q by P, q odd prime ####
+if d=false then
+  q:=Size(G)/Size(P);
+  if IsPrimeInt(q) then
+    U:=SylowSubgroup(G,q);
+    V:=Centralizer(P,U);
+    if not(V=P) then
+
+      ### Check if G is of type (Q8,q) ####
+      if IdSmallGroup(V)=[8,4] then
+        V1:=Centralizer(P,V);
+        L:=UnionSet(Elements(V),Elements(V1));
+        P2:=GroupByGenerators(L);
+        if P=P2 then
+          if PPartOfN(OrderMod(2,q),2)=Size(P/V) then
+            d:=true;
+          fi;
+        fi;
+      fi;
+
+      #### Check that P is a dyadic 2-group #####
+      if d=false then
+        t:=false;
+        l:=Size(P);
+        P1:=DerivedSubgroup(P);
+        l1:=Size(P1);
+        if l>l1 and IsInt(l1/4) and IsCyclic(P1) then
+          p1:=GeneratorsOfGroup(P1);
+          for i in [1..Length(p1)] do
+            if Order(p1[i])=l1 then
+              break;
+            fi;
+          od;
+          Y:=Centralizer(P,p1[i]^(l1/4));
+          if IsCyclic(Y/P1) then
+            t:=true;
+          fi;
+          if IdSmallGroup(V)=[8,4] then
+            if not(PPartOfN(OrderMod(2,q),2)>Size(P/V)) then
+              t:=false;
+            fi;
+          fi;
+
+          #### Check if G is of type (QD,q) ###
+          if t=true then
+            if not(IsAbelian(V)) then
+              l2:=Size(V);
+              if l2/l1=2 then
+                if not(PPartOfN(OrderMod(2,q),2)<Size(P/V)) then
+                  d:=true;
+                fi;
+              fi;
+            fi;
+          fi;
+          ####
+        fi;
+      fi;
+    fi;
+    ####
+  fi;
 fi;
 
 return d;
@@ -1105,36 +1145,40 @@
 B:=SimpleComponentOfGroupRingByCharacter(F,G,n);
 
 if Length(B)=2 then
-m2:=1;
+  m2:=1;
 fi;
 if Length(B)=4 then
-m2:=LocalIndexAtTwo(B);
+  m2:=LocalIndexAtTwo(B);
 fi;
 
 if Length(B)=5 then
   K:=PSplitSubextension(F,B[3],2);
   B1:=SimpleComponentOfGroupRingByCharacter(K,G,n);
-  g:=DefiningGroupAndCharacterOfCyclotAlg(B1);
-  if g=fail then
-    m2:=1;
+  if Length(B1)<5 then
+    if Length(B1)=2 then m2:=1; fi;
+    if Length(B1)=4 then m2:=LocalIndexAtTwo(B1); fi;
   else
-    m2:=LocalIndexAtPByBrauerCharacter(K,g[1],g[2],2);
-  fi;
-  if not(m2 in Integers) then
-    m:=1;
-    if IsDyadicSchurGroup(g[1]) then
-    m:=2;
-    V:=ValuesOfClassFunction(chi);
-    F0:=FieldByGenerators(V);
-    F1:=B1[2];
-      if not(F0=F1) then
-        if E(4) in F1 then
-          m:=1;
-        else
-          n0:=Conductor(F0);
-          n02:=PPartOfN(n0,2);
-          n1:=Conductor(F1);
-          n12:=PPartOfN(n1,2);
+    g:=DefiningGroupAndCharacterOfCyclotAlg(B1);
+    if g=fail then
+      m2:=1;
+    else
+      m2:=LocalIndexAtPByBrauerCharacter(K,g[1],g[2],2);
+    fi;
+    if not(m2 in Integers) then
+      m:=1;
+      if IsDyadicSchurGroup(g[1]) then
+        m:=2;
+        V:=ValuesOfClassFunction(chi);
+        F0:=FieldByGenerators(V);
+        F1:=B1[2];
+        if not(F0=F1) then
+          if E(4) in F1 then
+            m:=1;
+          else
+            n0:=Conductor(F0);
+            n02:=PPartOfN(n0,2);
+            n1:=Conductor(F1);
+            n12:=PPartOfN(n1,2);
             if not(n02=n12) then
               m:=1;
             else
@@ -1143,11 +1187,12 @@
               n01:=PDashPartOfN(n0,2);
               f0:=OrderMod(2,n0);
               f:=f1/f0;
-                if IsPosInt(f/2) then
-                  m:=1;
-                fi;
+              if IsPosInt(f/2) then
+                m:=1;
+              fi;
             fi;
-         fi;
+          fi;
+        fi;
       fi;
     fi;
   fi;
diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' 
'--exclude=.svnignore' old/wedderga-4.10.5/tst/bugfix.tst 
new/wedderga-4.11.0/tst/bugfix.tst
--- old/wedderga-4.10.5/tst/bugfix.tst  2024-02-19 15:57:47.000000000 +0100
+++ new/wedderga-4.11.0/tst/bugfix.tst  2025-06-16 12:47:37.000000000 +0200
@@ -81,7 +81,7 @@
       rec( Center := NF(27,[ 1, 26 ]), DivAlg := true, 
           LocalIndices := [ [ infinity, 2 ] ], SchurIndex := 2 ) ] ]
 
-# Fix for a bug reported by �ngel del Rio on 14/11/2014
+# Fix for a bug reported by Ángel del Río on 14/11/2014
 gap> G:=SmallGroup(16,7);;
 gap> QG:=GroupRing(Rationals,G);;
 gap> pci := PrimitiveCentralIdempotentsByCharacterTable(QG);;
@@ -104,3 +104,7 @@
 gap> CyclotomicAlgebraWithDivAlgPart(A);
 [ 1, rec( Center := CF(7), DivAlg := true, LocalIndices := [ [ 2, 2 ] ],
       SchurIndex := 2 ) ]
+
+# Fix returning wrong result determining commutativity of a crossed product 
(issue #96)
+gap> IsCommutative(WedderburnDecomposition(GroupRing(Rationals, 
QuaternionGroup(8)))[5]);
+Error, no method found to check commutativity of a crossed product
diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' 
'--exclude=.svnignore' old/wedderga-4.10.5/tst/div-alg.tst 
new/wedderga-4.11.0/tst/div-alg.tst
--- old/wedderga-4.10.5/tst/div-alg.tst 2024-02-19 15:57:47.000000000 +0100
+++ new/wedderga-4.11.0/tst/div-alg.tst 2025-06-16 12:47:37.000000000 +0200
@@ -87,5 +87,13 @@
 gap> List([-2..3],a->LocalIndicesOfRationalSymbolAlgebra(a,11));
 [ fail, [ [ 2, 2 ], [ 11, 2 ] ], fail, fail, [ [ 2, 2 ], [ 11, 2 ] ], [ [ 2, 2 
], [ 3, 2 ] ] ]
 
+# IsDyadicSchurGroup (PR #104)
+gap> IsDyadicSchurGroup(SmallGroup(8,4));
+true
+gap> IsDyadicSchurGroup(SmallGroup(160,208));
+true
+gap> IsDyadicSchurGroup(SmallGroup(160,84));
+false
+
 #
 gap> STOP_TEST( "div-alg.tst", 1 );

Reply via email to