http://git-wip-us.apache.org/repos/asf/arrow-site/blob/4d4a3202/docs/python/parquet.html
----------------------------------------------------------------------
diff --git a/docs/python/parquet.html b/docs/python/parquet.html
index d3a08ee..47fb4f3 100644
--- a/docs/python/parquet.html
+++ b/docs/python/parquet.html
@@ -73,7 +73,8 @@
 <li class="toctree-l1"><a class="reference internal" href="memory.html">Memory 
and IO Interfaces</a></li>
 <li class="toctree-l1"><a class="reference internal" 
href="data.html">In-Memory Data Model</a></li>
 <li class="toctree-l1"><a class="reference internal" href="ipc.html">IPC: Fast 
Streaming and Serialization</a></li>
-<li class="toctree-l1"><a class="reference internal" 
href="filesystems.html">Filesystem Interfaces</a></li>
+<li class="toctree-l1"><a class="reference internal" 
href="filesystems.html">File System Interfaces</a></li>
+<li class="toctree-l1"><a class="reference internal" href="plasma.html">The 
Plasma In-Memory Object Store</a></li>
 <li class="toctree-l1"><a class="reference internal" href="pandas.html">Using 
PyArrow with pandas</a></li>
 <li class="toctree-l1 current"><a class="current reference internal" 
href="#">Reading and Writing the Apache Parquet Format</a></li>
 <li class="toctree-l1"><a class="reference internal" href="api.html">API 
Reference</a></li>
@@ -217,7 +218,7 @@ the whole file (due to the columnar layout):</p>
 <span class="go">one: double</span>
 <span class="go">three: bool</span>
 <span class="go">-- metadata --</span>
-<span class="go">pandas: {&quot;pandas_version&quot;: &quot;0.19.2&quot;, 
&quot;index_columns&quot;: [&quot;__index_level_0__&quot;], 
&quot;columns&quot;: [{&quot;metadata&quot;: null, &quot;numpy_type&quot;: 
&quot;float64&quot;, &quot;pandas_type&quot;: &quot;float64&quot;, 
&quot;name&quot;: &quot;one&quot;}, {&quot;metadata&quot;: null, 
&quot;numpy_type&quot;: &quot;bool&quot;, &quot;pandas_type&quot;: 
&quot;bool&quot;, &quot;name&quot;: &quot;three&quot;}, {&quot;metadata&quot;: 
null, &quot;numpy_type&quot;: &quot;object&quot;, &quot;pandas_type&quot;: 
&quot;unicode&quot;, &quot;name&quot;: &quot;two&quot;}, {&quot;metadata&quot;: 
null, &quot;numpy_type&quot;: &quot;int64&quot;, &quot;pandas_type&quot;: 
&quot;int64&quot;, &quot;name&quot;: &quot;__index_level_0__&quot;}]}</span>
+<span class="go">pandas: {&quot;columns&quot;: [{&quot;name&quot;: 
&quot;one&quot;, &quot;pandas_type&quot;: &quot;float64&quot;, 
&quot;metadata&quot;: null, &quot;numpy_type&quot;: &quot;float64&quot;}, 
{&quot;name&quot;: &quot;three&quot;, &quot;pandas_type&quot;: 
&quot;bool&quot;, &quot;metadata&quot;: null, &quot;numpy_type&quot;: 
&quot;bool&quot;}, {&quot;name&quot;: &quot;two&quot;, &quot;pandas_type&quot;: 
&quot;unicode&quot;, &quot;metadata&quot;: null, &quot;numpy_type&quot;: 
&quot;object&quot;}], &quot;pandas_version&quot;: &quot;0.20.3&quot;, 
&quot;index_columns&quot;: [&quot;__index_level_0__&quot;]}</span>
 </pre></div>
 </div>
 <p>We need not use a string to specify the origin of the file. It can be any 
of:</p>
@@ -237,17 +238,17 @@ maps) will perform the best.</p>
 
 <span class="gp">In [13]: </span><span class="n">parquet_file</span><span 
class="o">.</span><span class="n">metadata</span>
 <span class="gh">Out[13]: </span><span class="go"></span>
-<span class="go">&lt;pyarrow._parquet.FileMetaData object at 
0x2b9643b72cc8&gt;</span>
-<span class="go">  created_by: parquet-cpp version 1.1.1-SNAPSHOT</span>
+<span class="go">&lt;pyarrow._parquet.FileMetaData object at 
0x7fdbd8c8ecc8&gt;</span>
+<span class="go">  created_by: parquet-cpp version 1.2.1-SNAPSHOT</span>
 <span class="go">  num_columns: 4</span>
 <span class="go">  num_rows: 3</span>
 <span class="go">  num_row_groups: 1</span>
 <span class="go">  format_version: 1.0</span>
-<span class="go">  serialized_size: 804</span>
+<span class="go">  serialized_size: 708</span>
 
 <span class="gp">In [14]: </span><span class="n">parquet_file</span><span 
class="o">.</span><span class="n">schema</span>
 <span 
class="go">Out[14]:
 </span>
-<span class="go">&lt;pyarrow._parquet.ParquetSchema object at 
0x2b9642aecfc8&gt;</span>
+<span class="go">&lt;pyarrow._parquet.ParquetSchema object at 
0x7fdbd8c9f4c8&gt;</span>
 <span class="go">one: DOUBLE</span>
 <span class="go">three: BOOLEAN</span>
 <span class="go">two: BYTE_ARRAY UTF8</span>
@@ -269,7 +270,7 @@ concatenate them into a single table. You can read 
individual row groups with
 <span class="go">two: string</span>
 <span class="go">__index_level_0__: int64</span>
 <span class="go">-- metadata --</span>
-<span class="go">pandas: {&quot;pandas_version&quot;: &quot;0.19.2&quot;, 
&quot;index_columns&quot;: [&quot;__index_level_0__&quot;], 
&quot;columns&quot;: [{&quot;metadata&quot;: null, &quot;numpy_type&quot;: 
&quot;float64&quot;, &quot;pandas_type&quot;: &quot;float64&quot;, 
&quot;name&quot;: &quot;one&quot;}, {&quot;metadata&quot;: null, 
&quot;numpy_type&quot;: &quot;bool&quot;, &quot;pandas_type&quot;: 
&quot;bool&quot;, &quot;name&quot;: &quot;three&quot;}, {&quot;metadata&quot;: 
null, &quot;numpy_type&quot;: &quot;object&quot;, &quot;pandas_type&quot;: 
&quot;unicode&quot;, &quot;name&quot;: &quot;two&quot;}, {&quot;metadata&quot;: 
null, &quot;numpy_type&quot;: &quot;int64&quot;, &quot;pandas_type&quot;: 
&quot;int64&quot;, &quot;name&quot;: &quot;__index_level_0__&quot;}]}</span>
+<span class="go">pandas: {&quot;columns&quot;: [{&quot;name&quot;: 
&quot;one&quot;, &quot;pandas_type&quot;: &quot;float64&quot;, 
&quot;metadata&quot;: null, &quot;numpy_type&quot;: &quot;float64&quot;}, 
{&quot;name&quot;: &quot;three&quot;, &quot;pandas_type&quot;: 
&quot;bool&quot;, &quot;metadata&quot;: null, &quot;numpy_type&quot;: 
&quot;bool&quot;}, {&quot;name&quot;: &quot;two&quot;, &quot;pandas_type&quot;: 
&quot;unicode&quot;, &quot;metadata&quot;: null, &quot;numpy_type&quot;: 
&quot;object&quot;}], &quot;pandas_version&quot;: &quot;0.20.3&quot;, 
&quot;index_columns&quot;: [&quot;__index_level_0__&quot;]}</span>
 </pre></div>
 </div>
 <p>We can similarly write a Parquet file with multiple row groups by using
@@ -310,7 +311,7 @@ compression by default, but Brotli, Gzip, and uncompressed 
are also supported:</
 <p>Snappy generally results in better performance, while Gzip may yield smaller
 files.</p>
 <p>These settings can also be set on a per-column basis:</p>
-<div class="highlight-python"><div class="highlight"><pre><span></span><span 
class="n">pa</span><span class="o">.</span><span 
class="n">write_table</span><span class="p">(</span><span 
class="n">table</span><span class="p">,</span> <span 
class="n">where</span><span class="p">,</span> <span 
class="n">compression</span><span class="o">=</span><span 
class="p">{</span><span class="s1">&#39;foo&#39;</span><span class="p">:</span> 
<span class="s1">&#39;snappy&#39;</span><span class="p">,</span> <span 
class="s1">&#39;bar&#39;</span><span class="p">:</span> <span 
class="s1">&#39;gzip&#39;</span><span class="p">},</span>
+<div class="highlight-python"><div class="highlight"><pre><span></span><span 
class="n">pq</span><span class="o">.</span><span 
class="n">write_table</span><span class="p">(</span><span 
class="n">table</span><span class="p">,</span> <span 
class="n">where</span><span class="p">,</span> <span 
class="n">compression</span><span class="o">=</span><span 
class="p">{</span><span class="s1">&#39;foo&#39;</span><span class="p">:</span> 
<span class="s1">&#39;snappy&#39;</span><span class="p">,</span> <span 
class="s1">&#39;bar&#39;</span><span class="p">:</span> <span 
class="s1">&#39;gzip&#39;</span><span class="p">},</span>
                <span class="n">use_dictionary</span><span 
class="o">=</span><span class="p">[</span><span 
class="s1">&#39;foo&#39;</span><span class="p">,</span> <span 
class="s1">&#39;bar&#39;</span><span class="p">])</span>
 </pre></div>
 </div>

http://git-wip-us.apache.org/repos/asf/arrow-site/blob/4d4a3202/docs/python/plasma.html
----------------------------------------------------------------------
diff --git a/docs/python/plasma.html b/docs/python/plasma.html
new file mode 100644
index 0000000..9c86359
--- /dev/null
+++ b/docs/python/plasma.html
@@ -0,0 +1,461 @@
+<!DOCTYPE html>
+
+
+<html xmlns="http://www.w3.org/1999/xhtml";>
+  <head>
+    <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
+    
+    <title>The Plasma In-Memory Object Store &#8212; pyarrow  
documentation</title>
+    
+    <link rel="stylesheet" href="_static/bootstrap-sphinx.css" type="text/css" 
/>
+    <link rel="stylesheet" href="_static/pygments.css" type="text/css" />
+    
+    <script type="text/javascript">
+      var DOCUMENTATION_OPTIONS = {
+        URL_ROOT:    './',
+        VERSION:     '',
+        COLLAPSE_INDEX: false,
+        FILE_SUFFIX: '.html',
+        HAS_SOURCE:  true,
+        SOURCELINK_SUFFIX: '.txt'
+      };
+    </script>
+    <script type="text/javascript" src="_static/jquery.js"></script>
+    <script type="text/javascript" src="_static/underscore.js"></script>
+    <script type="text/javascript" src="_static/doctools.js"></script>
+    <script type="text/javascript" 
src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML";></script>
+    <script type="text/javascript" 
src="_static/js/jquery-1.11.0.min.js"></script>
+    <script type="text/javascript" src="_static/js/jquery-fix.js"></script>
+    <script type="text/javascript" 
src="_static/bootstrap-3.3.6/js/bootstrap.min.js"></script>
+    <script type="text/javascript" src="_static/bootstrap-sphinx.js"></script>
+    <link rel="index" title="Index" href="genindex.html" />
+    <link rel="search" title="Search" href="search.html" />
+    <link rel="next" title="Using PyArrow with pandas" href="pandas.html" />
+    <link rel="prev" title="pyarrow.HdfsFile" 
href="generated/pyarrow.HdfsFile.html" />
+<meta charset='utf-8'>
+<meta http-equiv='X-UA-Compatible' content='IE=edge,chrome=1'>
+<meta name='viewport' content='width=device-width, initial-scale=1.0, 
maximum-scale=1'>
+<meta name="apple-mobile-web-app-capable" content="yes">
+
+  </head>
+  <body role="document">
+
+  <div id="navbar" class="navbar navbar-default navbar-fixed-top">
+    <div class="container">
+      <div class="navbar-header">
+        <!-- .btn-navbar is used as the toggle for collapsed navbar content -->
+        <button type="button" class="navbar-toggle" data-toggle="collapse" 
data-target=".nav-collapse">
+          <span class="icon-bar"></span>
+          <span class="icon-bar"></span>
+          <span class="icon-bar"></span>
+        </button>
+        <a class="navbar-brand" href="index.html">
+          pyarrow</a>
+        <span class="navbar-text navbar-version pull-left"><b></b></span>
+      </div>
+
+        <div class="collapse navbar-collapse nav-collapse">
+          <ul class="nav navbar-nav">
+            
+            
+              <li class="dropdown globaltoc-container">
+  <a role="button"
+     id="dLabelGlobalToc"
+     data-toggle="dropdown"
+     data-target="#"
+     href="index.html">Site <b class="caret"></b></a>
+  <ul class="dropdown-menu globaltoc"
+      role="menu"
+      aria-labelledby="dLabelGlobalToc"><p class="caption"><span 
class="caption-text">Getting Started</span></p>
+<ul class="current">
+<li class="toctree-l1"><a class="reference internal" 
href="install.html">Install PyArrow</a></li>
+<li class="toctree-l1"><a class="reference internal" 
href="development.html">Development</a></li>
+<li class="toctree-l1"><a class="reference internal" href="memory.html">Memory 
and IO Interfaces</a></li>
+<li class="toctree-l1"><a class="reference internal" 
href="data.html">In-Memory Data Model</a></li>
+<li class="toctree-l1"><a class="reference internal" href="ipc.html">IPC: Fast 
Streaming and Serialization</a></li>
+<li class="toctree-l1"><a class="reference internal" 
href="filesystems.html">File System Interfaces</a></li>
+<li class="toctree-l1 current"><a class="current reference internal" 
href="#">The Plasma In-Memory Object Store</a></li>
+<li class="toctree-l1"><a class="reference internal" href="pandas.html">Using 
PyArrow with pandas</a></li>
+<li class="toctree-l1"><a class="reference internal" 
href="parquet.html">Reading and Writing the Apache Parquet Format</a></li>
+<li class="toctree-l1"><a class="reference internal" href="api.html">API 
Reference</a></li>
+<li class="toctree-l1"><a class="reference internal" 
href="getting_involved.html">Getting Involved</a></li>
+</ul>
+</ul>
+</li>
+              
+                <li class="dropdown">
+  <a role="button"
+     id="dLabelLocalToc"
+     data-toggle="dropdown"
+     data-target="#"
+     href="#">Page <b class="caret"></b></a>
+  <ul class="dropdown-menu localtoc"
+      role="menu"
+      aria-labelledby="dLabelLocalToc"><ul>
+<li><a class="reference internal" href="#">The Plasma In-Memory Object 
Store</a><ul>
+<li><a class="reference internal" href="#the-plasma-api">The Plasma API</a><ul>
+<li><a class="reference internal" href="#starting-the-plasma-store">Starting 
the Plasma store</a></li>
+<li><a class="reference internal" href="#creating-a-plasma-client">Creating a 
Plasma client</a></li>
+<li><a class="reference internal" href="#object-ids">Object IDs</a></li>
+<li><a class="reference internal" href="#creating-an-object">Creating an 
Object</a></li>
+<li><a class="reference internal" href="#getting-an-object">Getting an 
Object</a></li>
+</ul>
+</li>
+<li><a class="reference internal" 
href="#using-arrow-and-pandas-with-plasma">Using Arrow and Pandas with 
Plasma</a><ul>
+<li><a class="reference internal" 
href="#storing-arrow-objects-in-plasma">Storing Arrow Objects in Plasma</a></li>
+<li><a class="reference internal" 
href="#getting-arrow-objects-from-plasma">Getting Arrow Objects from 
Plasma</a></li>
+<li><a class="reference internal" 
href="#storing-pandas-dataframes-in-plasma">Storing Pandas DataFrames in 
Plasma</a></li>
+<li><a class="reference internal" 
href="#getting-pandas-dataframes-from-plasma">Getting Pandas DataFrames from 
Plasma</a></li>
+</ul>
+</li>
+</ul>
+</li>
+</ul>
+</ul>
+</li>
+              
+            
+            
+              
+                
+  <li>
+    <a href="generated/pyarrow.HdfsFile.html" title="Previous Chapter: 
pyarrow.HdfsFile"><span class="glyphicon glyphicon-chevron-left 
visible-sm"></span><span class="hidden-sm hidden-tablet">&laquo; 
pyarrow.HdfsFile</span>
+    </a>
+  </li>
+  <li>
+    <a href="pandas.html" title="Next Chapter: Using PyArrow with 
pandas"><span class="glyphicon glyphicon-chevron-right visible-sm"></span><span 
class="hidden-sm hidden-tablet">Using PyArrow... &raquo;</span>
+    </a>
+  </li>
+              
+            
+            
+            
+            
+              <li class="hidden-sm">
+<div id="sourcelink">
+  <a href="_sources/plasma.rst.txt"
+     rel="nofollow">Source</a>
+</div></li>
+            
+          </ul>
+
+          
+            
+<form class="navbar-form navbar-right" action="search.html" method="get">
+ <div class="form-group">
+  <input type="text" name="q" class="form-control" placeholder="Search" />
+ </div>
+  <input type="hidden" name="check_keywords" value="yes" />
+  <input type="hidden" name="area" value="default" />
+</form>
+          
+        </div>
+    </div>
+  </div>
+
+<div class="container">
+  <div class="row">
+    <div class="col-md-12 content">
+      
+  <div class="section" id="the-plasma-in-memory-object-store">
+<span id="plasma"></span><h1><a class="toc-backref" href="#id1">The Plasma 
In-Memory Object Store</a><a class="headerlink" 
href="#the-plasma-in-memory-object-store" title="Permalink to this 
headline">¶</a></h1>
+<div class="contents topic" id="contents">
+<p class="topic-title first">Contents</p>
+<ul class="simple">
+<li><a class="reference internal" href="#the-plasma-in-memory-object-store" 
id="id1">The Plasma In-Memory Object Store</a><ul>
+<li><a class="reference internal" href="#the-plasma-api" id="id2">The Plasma 
API</a><ul>
+<li><a class="reference internal" href="#starting-the-plasma-store" 
id="id3">Starting the Plasma store</a></li>
+<li><a class="reference internal" href="#creating-a-plasma-client" 
id="id4">Creating a Plasma client</a></li>
+<li><a class="reference internal" href="#object-ids" id="id5">Object 
IDs</a></li>
+<li><a class="reference internal" href="#creating-an-object" id="id6">Creating 
an Object</a></li>
+<li><a class="reference internal" href="#getting-an-object" id="id7">Getting 
an Object</a></li>
+</ul>
+</li>
+<li><a class="reference internal" href="#using-arrow-and-pandas-with-plasma" 
id="id8">Using Arrow and Pandas with Plasma</a><ul>
+<li><a class="reference internal" href="#storing-arrow-objects-in-plasma" 
id="id9">Storing Arrow Objects in Plasma</a></li>
+<li><a class="reference internal" href="#getting-arrow-objects-from-plasma" 
id="id10">Getting Arrow Objects from Plasma</a></li>
+<li><a class="reference internal" href="#storing-pandas-dataframes-in-plasma" 
id="id11">Storing Pandas DataFrames in Plasma</a></li>
+<li><a class="reference internal" 
href="#getting-pandas-dataframes-from-plasma" id="id12">Getting Pandas 
DataFrames from Plasma</a></li>
+</ul>
+</li>
+</ul>
+</li>
+</ul>
+</div>
+<div class="section" id="the-plasma-api">
+<h2><a class="toc-backref" href="#id2">The Plasma API</a><a class="headerlink" 
href="#the-plasma-api" title="Permalink to this headline">¶</a></h2>
+<div class="section" id="starting-the-plasma-store">
+<h3><a class="toc-backref" href="#id3">Starting the Plasma store</a><a 
class="headerlink" href="#starting-the-plasma-store" title="Permalink to this 
headline">¶</a></h3>
+<p>You can start the Plasma store by issuing a terminal command similar to the
+following:</p>
+<div class="highlight-bash"><div 
class="highlight"><pre><span></span>plasma_store -m <span 
class="m">1000000000</span> -s /tmp/plasma
+</pre></div>
+</div>
+<p>The <code class="docutils literal"><span class="pre">-m</span></code> flag 
specifies the size of the store in bytes, and the <code class="docutils 
literal"><span class="pre">-s</span></code> flag
+specifies the socket that the store will listen at. Thus, the above command
+allows the Plasma store to use up to 1GB of memory, and sets the socket to
+<code class="docutils literal"><span class="pre">/tmp/plasma</span></code>.</p>
+<p>Leaving the current terminal window open as long as Plasma store should keep
+running. Messages, concerning such as disconnecting clients, may occasionally 
be
+printed to the screen. To stop running the Plasma store, you can press
+<code class="docutils literal"><span class="pre">Ctrl-C</span></code> in the 
terminal.</p>
+</div>
+<div class="section" id="creating-a-plasma-client">
+<h3><a class="toc-backref" href="#id4">Creating a Plasma client</a><a 
class="headerlink" href="#creating-a-plasma-client" title="Permalink to this 
headline">¶</a></h3>
+<p>To start a Plasma client from Python, call <code class="docutils 
literal"><span class="pre">plasma.connect</span></code> using the same
+socket name:</p>
+<div class="highlight-python"><div class="highlight"><pre><span></span><span 
class="kn">import</span> <span class="nn">pyarrow.plasma</span> <span 
class="kn">as</span> <span class="nn">plasma</span>
+<span class="n">client</span> <span class="o">=</span> <span 
class="n">plasma</span><span class="o">.</span><span 
class="n">connect</span><span class="p">(</span><span 
class="s2">&quot;/tmp/plasma&quot;</span><span class="p">,</span> <span 
class="s2">&quot;&quot;</span><span class="p">,</span> <span 
class="mi">0</span><span class="p">)</span>
+</pre></div>
+</div>
+<p>If the following error occurs from running the above Python code, that
+means that either the socket given is incorrect, or the <code class="docutils 
literal"><span class="pre">./plasma_store</span></code> is
+not currently running. Check to see if the Plasma store is still running.</p>
+<div class="highlight-shell"><div 
class="highlight"><pre><span></span>&gt;&gt;&gt; <span class="nv">client</span> 
<span class="o">=</span> plasma.connect<span class="o">(</span><span 
class="s2">&quot;/tmp/plasma&quot;</span>, <span 
class="s2">&quot;&quot;</span>, <span class="m">0</span><span class="o">)</span>
+Connection to socket failed <span class="k">for</span> pathname /tmp/plasma
+Could not connect to socket /tmp/plasma
+</pre></div>
+</div>
+</div>
+<div class="section" id="object-ids">
+<h3><a class="toc-backref" href="#id5">Object IDs</a><a class="headerlink" 
href="#object-ids" title="Permalink to this headline">¶</a></h3>
+<p>Each object in the Plasma store should be associated with a unique ID. The
+Object ID then serves as a key that any client can use to retrieve that object
+from the Plasma store. You can form an <code class="docutils literal"><span 
class="pre">ObjectID</span></code> object from a byte string of
+length 20.</p>
+<div class="highlight-shell"><div class="highlight"><pre><span></span><span 
class="c1"># Create an ObjectID.</span>
+&gt;&gt;&gt; <span class="nv">id</span> <span class="o">=</span> 
plasma.ObjectID<span class="o">(</span><span class="m">20</span> * b<span 
class="s2">&quot;a&quot;</span><span class="o">)</span>
+
+<span class="c1"># The character &quot;a&quot; is encoded as 61 in hex.</span>
+&gt;&gt;&gt; id
+ObjectID<span class="o">(</span><span 
class="m">6161616161616161616161616161616161616161</span><span 
class="o">)</span>
+</pre></div>
+</div>
+<p>The random generation of Object IDs is often good enough to ensure unique 
IDs.
+You can easily create a helper function that randomly generates object IDs as
+follows:</p>
+<div class="highlight-python"><div class="highlight"><pre><span></span><span 
class="kn">import</span> <span class="nn">numpy</span> <span 
class="kn">as</span> <span class="nn">np</span>
+
+<span class="k">def</span> <span class="nf">random_object_id</span><span 
class="p">():</span>
+  <span class="k">return</span> <span class="n">plasma</span><span 
class="o">.</span><span class="n">ObjectID</span><span class="p">(</span><span 
class="n">np</span><span class="o">.</span><span class="n">random</span><span 
class="o">.</span><span class="n">bytes</span><span class="p">(</span><span 
class="mi">20</span><span class="p">))</span>
+</pre></div>
+</div>
+</div>
+<div class="section" id="creating-an-object">
+<h3><a class="toc-backref" href="#id6">Creating an Object</a><a 
class="headerlink" href="#creating-an-object" title="Permalink to this 
headline">¶</a></h3>
+<p>Objects are created in Plasma in two stages. First, they are 
<strong>created</strong>, which
+allocates a buffer for the object. At this point, the client can write to the
+buffer and construct the object within the allocated buffer.</p>
+<p>To create an object for Plasma, you need to create an object ID, as well as
+give the object&#8217;s maximum size in bytes.</p>
+<div class="highlight-python"><div class="highlight"><pre><span></span><span 
class="c1"># Create an object.</span>
+<span class="n">object_id</span> <span class="o">=</span> <span 
class="n">plasma</span><span class="o">.</span><span 
class="n">ObjectID</span><span class="p">(</span><span class="mi">20</span> 
<span class="o">*</span> <span class="sa">b</span><span 
class="s2">&quot;a&quot;</span><span class="p">)</span>
+<span class="n">object_size</span> <span class="o">=</span> <span 
class="mi">1000</span>
+<span class="nb">buffer</span> <span class="o">=</span> <span 
class="n">memoryview</span><span class="p">(</span><span 
class="n">client</span><span class="o">.</span><span 
class="n">create</span><span class="p">(</span><span 
class="n">object_id</span><span class="p">,</span> <span 
class="n">object_size</span><span class="p">))</span>
+
+<span class="c1"># Write to the buffer.</span>
+<span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> 
<span class="nb">range</span><span class="p">(</span><span 
class="mi">1000</span><span class="p">):</span>
+  <span class="nb">buffer</span><span class="p">[</span><span 
class="n">i</span><span class="p">]</span> <span class="o">=</span> <span 
class="n">i</span> <span class="o">%</span> <span class="mi">128</span>
+</pre></div>
+</div>
+<p>When the client is done, the client <strong>seals</strong> the buffer, 
making the object
+immutable, and making it available to other Plasma clients.</p>
+<div class="highlight-python"><div class="highlight"><pre><span></span><span 
class="c1"># Seal the object. This makes the object immutable and available to 
other clients.</span>
+<span class="n">client</span><span class="o">.</span><span 
class="n">seal</span><span class="p">(</span><span 
class="n">object_id</span><span class="p">)</span>
+</pre></div>
+</div>
+</div>
+<div class="section" id="getting-an-object">
+<h3><a class="toc-backref" href="#id7">Getting an Object</a><a 
class="headerlink" href="#getting-an-object" title="Permalink to this 
headline">¶</a></h3>
+<p>After an object has been sealed, any client who knows the object ID can get
+the object.</p>
+<div class="highlight-python"><div class="highlight"><pre><span></span><span 
class="c1"># Create a different client. Note that this second client could 
be</span>
+<span class="c1"># created in the same or in a separate, concurrent Python 
session.</span>
+<span class="n">client2</span> <span class="o">=</span> <span 
class="n">plasma</span><span class="o">.</span><span 
class="n">connect</span><span class="p">(</span><span 
class="s2">&quot;/tmp/plasma&quot;</span><span class="p">,</span> <span 
class="s2">&quot;&quot;</span><span class="p">,</span> <span 
class="mi">0</span><span class="p">)</span>
+
+<span class="c1"># Get the object in the second client. This blocks until the 
object has been sealed.</span>
+<span class="n">object_id2</span> <span class="o">=</span> <span 
class="n">plasma</span><span class="o">.</span><span 
class="n">ObjectID</span><span class="p">(</span><span class="mi">20</span> 
<span class="o">*</span> <span class="sa">b</span><span 
class="s2">&quot;a&quot;</span><span class="p">)</span>
+<span class="p">[</span><span class="n">buffer2</span><span class="p">]</span> 
<span class="o">=</span> <span class="n">client2</span><span 
class="o">.</span><span class="n">get</span><span class="p">([</span><span 
class="n">object_id</span><span class="p">])</span>
+</pre></div>
+</div>
+<p>If the object has not been sealed yet, then the call to client.get will 
block
+until the object has been sealed by the client constructing the object. Using
+the <code class="docutils literal"><span class="pre">timeout_ms</span></code> 
argument to get, you can specify a timeout for this (in
+milliseconds). After the timeout, the interpreter will yield control back.</p>
+<div class="highlight-shell"><div 
class="highlight"><pre><span></span>&gt;&gt;&gt; buffer
+&lt;memory at 0x7fdbdc96e708&gt;
+&gt;&gt;&gt; buffer<span class="o">[</span><span class="m">1</span><span 
class="o">]</span>
+<span class="m">1</span>
+&gt;&gt;&gt; buffer2
+&lt;plasma.plasma.PlasmaBuffer object at 0x7fdbf2770e88&gt;
+&gt;&gt;&gt; <span class="nv">view2</span> <span class="o">=</span> 
memoryview<span class="o">(</span>buffer2<span class="o">)</span>
+&gt;&gt;&gt; view2<span class="o">[</span><span class="m">1</span><span 
class="o">]</span>
+<span class="m">1</span>
+&gt;&gt;&gt; view2<span class="o">[</span><span class="m">129</span><span 
class="o">]</span>
+<span class="m">1</span>
+&gt;&gt;&gt; bytes<span class="o">(</span>buffer<span class="o">[</span><span 
class="m">1</span>:4<span class="o">])</span>
+b<span class="s1">&#39;\x01\x02\x03&#39;</span>
+&gt;&gt;&gt; bytes<span class="o">(</span>view2<span class="o">[</span><span 
class="m">1</span>:4<span class="o">])</span>
+b<span class="s1">&#39;\x01\x02\x03&#39;</span>
+</pre></div>
+</div>
+</div>
+</div>
+<div class="section" id="using-arrow-and-pandas-with-plasma">
+<h2><a class="toc-backref" href="#id8">Using Arrow and Pandas with 
Plasma</a><a class="headerlink" href="#using-arrow-and-pandas-with-plasma" 
title="Permalink to this headline">¶</a></h2>
+<div class="section" id="storing-arrow-objects-in-plasma">
+<h3><a class="toc-backref" href="#id9">Storing Arrow Objects in Plasma</a><a 
class="headerlink" href="#storing-arrow-objects-in-plasma" title="Permalink to 
this headline">¶</a></h3>
+<p>To store an Arrow object in Plasma, we must first <strong>create</strong> 
the object and then
+<strong>seal</strong> it. However, Arrow objects such as <code class="docutils 
literal"><span class="pre">Tensors</span></code> may be more complicated
+to write than simple binary data.</p>
+<p>To create the object in Plasma, you still need an <code class="docutils 
literal"><span class="pre">ObjectID</span></code> and a size to
+pass in. To find out the size of your Arrow object, you can use pyarrow
+API such as <code class="docutils literal"><span 
class="pre">pyarrow.get_tensor_size</span></code>.</p>
+<div class="highlight-python"><div class="highlight"><pre><span></span><span 
class="kn">import</span> <span class="nn">numpy</span> <span 
class="kn">as</span> <span class="nn">np</span>
+<span class="kn">import</span> <span class="nn">pyarrow</span> <span 
class="kn">as</span> <span class="nn">pa</span>
+
+<span class="c1"># Create a pyarrow.Tensor object from a numpy random 
2-dimensional array</span>
+<span class="n">data</span> <span class="o">=</span> <span 
class="n">np</span><span class="o">.</span><span class="n">random</span><span 
class="o">.</span><span class="n">randn</span><span class="p">(</span><span 
class="mi">10</span><span class="p">,</span> <span class="mi">4</span><span 
class="p">)</span>
+<span class="n">tensor</span> <span class="o">=</span> <span 
class="n">pa</span><span class="o">.</span><span class="n">Tensor</span><span 
class="o">.</span><span class="n">from_numpy</span><span 
class="p">(</span><span class="n">data</span><span class="p">)</span>
+
+<span class="c1"># Create the object in Plasma</span>
+<span class="n">object_id</span> <span class="o">=</span> <span 
class="n">plasma</span><span class="o">.</span><span 
class="n">ObjectID</span><span class="p">(</span><span class="n">np</span><span 
class="o">.</span><span class="n">random</span><span class="o">.</span><span 
class="n">bytes</span><span class="p">(</span><span class="mi">20</span><span 
class="p">))</span>
+<span class="n">data_size</span> <span class="o">=</span> <span 
class="n">pa</span><span class="o">.</span><span 
class="n">get_tensor_size</span><span class="p">(</span><span 
class="n">tensor</span><span class="p">)</span>
+<span class="n">buf</span> <span class="o">=</span> <span 
class="n">client</span><span class="o">.</span><span 
class="n">create</span><span class="p">(</span><span 
class="n">object_id</span><span class="p">,</span> <span 
class="n">data_size</span><span class="p">)</span>
+</pre></div>
+</div>
+<p>To write the Arrow <code class="docutils literal"><span 
class="pre">Tensor</span></code> object into the buffer, you can use Plasma to
+convert the <code class="docutils literal"><span 
class="pre">memoryview</span></code> buffer into a <code class="docutils 
literal"><span class="pre">pyarrow.FixedSizeBufferOutputStream</span></code>
+object. A <code class="docutils literal"><span 
class="pre">pyarrow.FixedSizeBufferOutputStream</span></code> is a format 
suitable for Arrow&#8217;s
+<code class="docutils literal"><span 
class="pre">pyarrow.write_tensor</span></code>:</p>
+<div class="highlight-python"><div class="highlight"><pre><span></span><span 
class="c1"># Write the tensor into the Plasma-allocated buffer</span>
+<span class="n">stream</span> <span class="o">=</span> <span 
class="n">pa</span><span class="o">.</span><span 
class="n">FixedSizeBufferOutputStream</span><span class="p">(</span><span 
class="n">buf</span><span class="p">)</span>
+<span class="n">pa</span><span class="o">.</span><span 
class="n">write_tensor</span><span class="p">(</span><span 
class="n">tensor</span><span class="p">,</span> <span 
class="n">stream</span><span class="p">)</span>  <span class="c1"># Writes 
tensor&#39;s 552 bytes to Plasma stream</span>
+</pre></div>
+</div>
+<p>To finish storing the Arrow object in Plasma, call <code class="docutils 
literal"><span class="pre">seal</span></code>:</p>
+<div class="highlight-python"><div class="highlight"><pre><span></span><span 
class="c1"># Seal the Plasma object</span>
+<span class="n">client</span><span class="o">.</span><span 
class="n">seal</span><span class="p">(</span><span 
class="n">object_id</span><span class="p">)</span>
+</pre></div>
+</div>
+</div>
+<div class="section" id="getting-arrow-objects-from-plasma">
+<h3><a class="toc-backref" href="#id10">Getting Arrow Objects from 
Plasma</a><a class="headerlink" href="#getting-arrow-objects-from-plasma" 
title="Permalink to this headline">¶</a></h3>
+<p>To read the object, first retrieve it as a <code class="docutils 
literal"><span class="pre">PlasmaBuffer</span></code> using its object ID.</p>
+<div class="highlight-python"><div class="highlight"><pre><span></span><span 
class="c1"># Get the arrow object by ObjectID.</span>
+<span class="p">[</span><span class="n">buf2</span><span class="p">]</span> 
<span class="o">=</span> <span class="n">client</span><span 
class="o">.</span><span class="n">get</span><span class="p">([</span><span 
class="n">object_id</span><span class="p">])</span>
+</pre></div>
+</div>
+<p>To convert the <code class="docutils literal"><span 
class="pre">PlasmaBuffer</span></code> back into an Arrow <code class="docutils 
literal"><span class="pre">Tensor</span></code>, first create a
+pyarrow <code class="docutils literal"><span 
class="pre">BufferReader</span></code> object from it. You can then pass the 
<code class="docutils literal"><span class="pre">BufferReader</span></code>
+into <code class="docutils literal"><span 
class="pre">pyarrow.read_tensor</span></code> to reconstruct the Arrow <code 
class="docutils literal"><span class="pre">Tensor</span></code> object:</p>
+<div class="highlight-python"><div class="highlight"><pre><span></span><span 
class="c1"># Reconstruct the Arrow tensor object.</span>
+<span class="n">reader</span> <span class="o">=</span> <span 
class="n">pa</span><span class="o">.</span><span 
class="n">BufferReader</span><span class="p">(</span><span 
class="n">buf2</span><span class="p">)</span>
+<span class="n">tensor2</span> <span class="o">=</span> <span 
class="n">pa</span><span class="o">.</span><span 
class="n">read_tensor</span><span class="p">(</span><span 
class="n">reader</span><span class="p">)</span>
+</pre></div>
+</div>
+<p>Finally, you can use <code class="docutils literal"><span 
class="pre">pyarrow.read_tensor</span></code> to convert the Arrow object
+back into numpy data:</p>
+<div class="highlight-python"><div class="highlight"><pre><span></span><span 
class="c1"># Convert back to numpy</span>
+<span class="n">array</span> <span class="o">=</span> <span 
class="n">tensor2</span><span class="o">.</span><span 
class="n">to_numpy</span><span class="p">()</span>
+</pre></div>
+</div>
+</div>
+<div class="section" id="storing-pandas-dataframes-in-plasma">
+<h3><a class="toc-backref" href="#id11">Storing Pandas DataFrames in 
Plasma</a><a class="headerlink" href="#storing-pandas-dataframes-in-plasma" 
title="Permalink to this headline">¶</a></h3>
+<p>Storing a Pandas <code class="docutils literal"><span 
class="pre">DataFrame</span></code> still follows the <strong>create</strong> 
then <strong>seal</strong>
+process of storing an object in the Plasma store, however one cannot directly
+write the <code class="docutils literal"><span 
class="pre">DataFrame</span></code> to Plasma with Pandas alone. Plasma also 
needs to know
+the size of the <code class="docutils literal"><span 
class="pre">DataFrame</span></code> to allocate a buffer for.</p>
+<p>See <a class="reference internal" href="pandas.html#pandas"><span 
class="std std-ref">Using PyArrow with pandas</span></a> for more information 
on using Arrow with Pandas.</p>
+<p>You can create the pyarrow equivalent of a Pandas <code class="docutils 
literal"><span class="pre">DataFrame</span></code> by using
+<code class="docutils literal"><span 
class="pre">pyarrow.from_pandas</span></code> to convert it to a <code 
class="docutils literal"><span class="pre">RecordBatch</span></code>.</p>
+<div class="highlight-python"><div class="highlight"><pre><span></span><span 
class="kn">import</span> <span class="nn">pyarrow</span> <span 
class="kn">as</span> <span class="nn">pa</span>
+<span class="kn">import</span> <span class="nn">pandas</span> <span 
class="kn">as</span> <span class="nn">pd</span>
+
+<span class="c1"># Create a Pandas DataFrame</span>
+<span class="n">d</span> <span class="o">=</span> <span 
class="p">{</span><span class="s1">&#39;one&#39;</span> <span 
class="p">:</span> <span class="n">pd</span><span class="o">.</span><span 
class="n">Series</span><span class="p">([</span><span class="mf">1.</span><span 
class="p">,</span> <span class="mf">2.</span><span class="p">,</span> <span 
class="mf">3.</span><span class="p">],</span> <span class="n">index</span><span 
class="o">=</span><span class="p">[</span><span 
class="s1">&#39;a&#39;</span><span class="p">,</span> <span 
class="s1">&#39;b&#39;</span><span class="p">,</span> <span 
class="s1">&#39;c&#39;</span><span class="p">]),</span>
+     <span class="s1">&#39;two&#39;</span> <span class="p">:</span> <span 
class="n">pd</span><span class="o">.</span><span class="n">Series</span><span 
class="p">([</span><span class="mf">1.</span><span class="p">,</span> <span 
class="mf">2.</span><span class="p">,</span> <span class="mf">3.</span><span 
class="p">,</span> <span class="mf">4.</span><span class="p">],</span> <span 
class="n">index</span><span class="o">=</span><span class="p">[</span><span 
class="s1">&#39;a&#39;</span><span class="p">,</span> <span 
class="s1">&#39;b&#39;</span><span class="p">,</span> <span 
class="s1">&#39;c&#39;</span><span class="p">,</span> <span 
class="s1">&#39;d&#39;</span><span class="p">])}</span>
+<span class="n">df</span> <span class="o">=</span> <span 
class="n">pd</span><span class="o">.</span><span 
class="n">DataFrame</span><span class="p">(</span><span class="n">d</span><span 
class="p">)</span>
+
+<span class="c1"># Convert the Pandas DataFrame into a PyArrow 
RecordBatch</span>
+<span class="n">record_batch</span> <span class="o">=</span> <span 
class="n">pa</span><span class="o">.</span><span 
class="n">RecordBatch</span><span class="o">.</span><span 
class="n">from_pandas</span><span class="p">(</span><span 
class="n">df</span><span class="p">)</span>
+</pre></div>
+</div>
+<p>Creating the Plasma object requires an <code class="docutils literal"><span 
class="pre">ObjectID</span></code> and the size of the
+data. Now that we have converted the Pandas <code class="docutils 
literal"><span class="pre">DataFrame</span></code> into a PyArrow
+<code class="docutils literal"><span class="pre">RecordBatch</span></code>, 
use the <code class="docutils literal"><span 
class="pre">MockOutputStream</span></code> to determine the
+size of the Plasma object.</p>
+<div class="highlight-python"><div class="highlight"><pre><span></span><span 
class="c1"># Create the Plasma object from the PyArrow RecordBatch. Most of the 
work here</span>
+<span class="c1"># is done to determine the size of buffer to request from the 
object store.</span>
+<span class="n">object_id</span> <span class="o">=</span> <span 
class="n">plasma</span><span class="o">.</span><span 
class="n">ObjectID</span><span class="p">(</span><span class="n">np</span><span 
class="o">.</span><span class="n">random</span><span class="o">.</span><span 
class="n">bytes</span><span class="p">(</span><span class="mi">20</span><span 
class="p">))</span>
+<span class="n">mock_sink</span> <span class="o">=</span> <span 
class="n">pa</span><span class="o">.</span><span 
class="n">MockOutputStream</span><span class="p">()</span>
+<span class="n">stream_writer</span> <span class="o">=</span> <span 
class="n">pa</span><span class="o">.</span><span 
class="n">RecordBatchStreamWriter</span><span class="p">(</span><span 
class="n">mock_sink</span><span class="p">,</span> <span 
class="n">record_batch</span><span class="o">.</span><span 
class="n">schema</span><span class="p">)</span>
+<span class="n">stream_writer</span><span class="o">.</span><span 
class="n">write_batch</span><span class="p">(</span><span 
class="n">record_batch</span><span class="p">)</span>
+<span class="n">stream_writer</span><span class="o">.</span><span 
class="n">close</span><span class="p">()</span>
+<span class="n">data_size</span> <span class="o">=</span> <span 
class="n">mock_sink</span><span class="o">.</span><span 
class="n">size</span><span class="p">()</span>
+<span class="n">buf</span> <span class="o">=</span> <span 
class="n">client</span><span class="o">.</span><span 
class="n">create</span><span class="p">(</span><span 
class="n">object_id</span><span class="p">,</span> <span 
class="n">data_size</span><span class="p">)</span>
+</pre></div>
+</div>
+<p>The DataFrame can now be written to the buffer as follows.</p>
+<div class="highlight-python"><div class="highlight"><pre><span></span><span 
class="c1"># Write the PyArrow RecordBatch to Plasma</span>
+<span class="n">stream</span> <span class="o">=</span> <span 
class="n">pa</span><span class="o">.</span><span 
class="n">FixedSizeBufferOutputStream</span><span class="p">(</span><span 
class="n">buf</span><span class="p">)</span>
+<span class="n">stream_writer</span> <span class="o">=</span> <span 
class="n">pa</span><span class="o">.</span><span 
class="n">RecordBatchStreamWriter</span><span class="p">(</span><span 
class="n">stream</span><span class="p">,</span> <span 
class="n">record_batch</span><span class="o">.</span><span 
class="n">schema</span><span class="p">)</span>
+<span class="n">stream_writer</span><span class="o">.</span><span 
class="n">write_batch</span><span class="p">(</span><span 
class="n">record_batch</span><span class="p">)</span>
+<span class="n">stream_writer</span><span class="o">.</span><span 
class="n">close</span><span class="p">()</span>
+</pre></div>
+</div>
+<p>Finally, seal the finished object for use by all clients:</p>
+<div class="highlight-python"><div class="highlight"><pre><span></span><span 
class="c1"># Seal the Plasma object</span>
+<span class="n">client</span><span class="o">.</span><span 
class="n">seal</span><span class="p">(</span><span 
class="n">object_id</span><span class="p">)</span>
+</pre></div>
+</div>
+</div>
+<div class="section" id="getting-pandas-dataframes-from-plasma">
+<h3><a class="toc-backref" href="#id12">Getting Pandas DataFrames from 
Plasma</a><a class="headerlink" href="#getting-pandas-dataframes-from-plasma" 
title="Permalink to this headline">¶</a></h3>
+<p>Since we store the Pandas DataFrame as a PyArrow <code class="docutils 
literal"><span class="pre">RecordBatch</span></code> object,
+to get the object back from the Plasma store, we follow similar steps
+to those specified in <a class="reference internal" 
href="#getting-arrow-objects-from-plasma">Getting Arrow Objects from 
Plasma</a>.</p>
+<p>We first have to convert the <code class="docutils literal"><span 
class="pre">PlasmaBuffer</span></code> returned from <code class="docutils 
literal"><span class="pre">client.get</span></code>
+into an Arrow <code class="docutils literal"><span 
class="pre">BufferReader</span></code> object.</p>
+<div class="highlight-python"><div class="highlight"><pre><span></span><span 
class="c1"># Fetch the Plasma object</span>
+<span class="p">[</span><span class="n">data</span><span class="p">]</span> 
<span class="o">=</span> <span class="n">client</span><span 
class="o">.</span><span class="n">get</span><span class="p">([</span><span 
class="n">object_id</span><span class="p">])</span>  <span class="c1"># Get 
PlasmaBuffer from ObjectID</span>
+<span class="nb">buffer</span> <span class="o">=</span> <span 
class="n">pa</span><span class="o">.</span><span 
class="n">BufferReader</span><span class="p">(</span><span 
class="n">data</span><span class="p">)</span>
+</pre></div>
+</div>
+<p>From the <code class="docutils literal"><span 
class="pre">BufferReader</span></code>, we can create a specific <code 
class="docutils literal"><span class="pre">RecordBatchStreamReader</span></code>
+in Arrow to reconstruct the stored PyArrow <code class="docutils 
literal"><span class="pre">RecordBatch</span></code> object.</p>
+<div class="highlight-python"><div class="highlight"><pre><span></span><span 
class="c1"># Convert object back into an Arrow RecordBatch</span>
+<span class="n">reader</span> <span class="o">=</span> <span 
class="n">pa</span><span class="o">.</span><span 
class="n">RecordBatchStreamReader</span><span class="p">(</span><span 
class="nb">buffer</span><span class="p">)</span>
+<span class="n">record_batch</span> <span class="o">=</span> <span 
class="n">reader</span><span class="o">.</span><span 
class="n">read_next_batch</span><span class="p">()</span>
+</pre></div>
+</div>
+<p>The last step is to convert the PyArrow <code class="docutils 
literal"><span class="pre">RecordBatch</span></code> object back into
+the original Pandas <code class="docutils literal"><span 
class="pre">DataFrame</span></code> structure.</p>
+<div class="highlight-python"><div class="highlight"><pre><span></span><span 
class="c1"># Convert back into Pandas</span>
+<span class="n">result</span> <span class="o">=</span> <span 
class="n">record_batch</span><span class="o">.</span><span 
class="n">to_pandas</span><span class="p">()</span>
+</pre></div>
+</div>
+</div>
+</div>
+</div>
+
+
+    </div>
+      
+  </div>
+</div>
+<footer class="footer">
+  <div class="container">
+    <p class="pull-right">
+      <a href="#">Back to top</a>
+      
+    </p>
+    <p>
+        &copy; Copyright 2016-2017 Apache Software Foundation.<br/>
+      Created using <a href="http://sphinx-doc.org/";>Sphinx</a> 1.5.5.<br/>
+    </p>
+  </div>
+</footer>
+  </body>
+</html>
\ No newline at end of file

http://git-wip-us.apache.org/repos/asf/arrow-site/blob/4d4a3202/docs/python/search.html
----------------------------------------------------------------------
diff --git a/docs/python/search.html b/docs/python/search.html
index cc410d7..bc8a5f8 100644
--- a/docs/python/search.html
+++ b/docs/python/search.html
@@ -79,7 +79,8 @@
 <li class="toctree-l1"><a class="reference internal" href="memory.html">Memory 
and IO Interfaces</a></li>
 <li class="toctree-l1"><a class="reference internal" 
href="data.html">In-Memory Data Model</a></li>
 <li class="toctree-l1"><a class="reference internal" href="ipc.html">IPC: Fast 
Streaming and Serialization</a></li>
-<li class="toctree-l1"><a class="reference internal" 
href="filesystems.html">Filesystem Interfaces</a></li>
+<li class="toctree-l1"><a class="reference internal" 
href="filesystems.html">File System Interfaces</a></li>
+<li class="toctree-l1"><a class="reference internal" href="plasma.html">The 
Plasma In-Memory Object Store</a></li>
 <li class="toctree-l1"><a class="reference internal" href="pandas.html">Using 
PyArrow with pandas</a></li>
 <li class="toctree-l1"><a class="reference internal" 
href="parquet.html">Reading and Writing the Apache Parquet Format</a></li>
 <li class="toctree-l1"><a class="reference internal" href="api.html">API 
Reference</a></li>

Reply via email to