This is an automated email from the ASF dual-hosted git repository.

github-bot pushed a commit to branch asf-site
in repository https://gitbox.apache.org/repos/asf/arrow-site.git


The following commit(s) were added to refs/heads/asf-site by this push:
     new 64cac316197 Updating dev docs (build nightly-tests-2025-01-27-0)
64cac316197 is described below

commit 64cac3161971bb8ad8aeb78a5142a7341d2944d3
Author: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
AuthorDate: Tue Jan 28 00:29:02 2025 +0000

    Updating dev docs (build nightly-tests-2025-01-27-0)
---
 docs/dev/python/data.html             |  46 ++++++------
 docs/dev/python/dataset.html          | 136 +++++++++++++++++-----------------
 docs/dev/python/getstarted.html       |   2 +-
 docs/dev/python/memory.html           |   6 +-
 docs/dev/python/pandas.html           |   6 +-
 docs/dev/python/parquet.html          |  12 +--
 docs/dev/r/articles/data_objects.html |   6 +-
 docs/dev/r/pkgdown.yml                |   2 +-
 docs/dev/r/search.json                |   2 +-
 docs/dev/searchindex.js               |   2 +-
 10 files changed, 110 insertions(+), 110 deletions(-)

diff --git a/docs/dev/python/data.html b/docs/dev/python/data.html
index 168616f9204..e800f95379c 100644
--- a/docs/dev/python/data.html
+++ b/docs/dev/python/data.html
@@ -1730,7 +1730,7 @@ for you:</p>
 
 <span class="gp">In [26]: </span><span class="n">arr</span>
 <span class="gh">Out[26]: </span>
-<span class="go">&lt;pyarrow.lib.Int64Array object at 0x7fc450c39780&gt;</span>
+<span class="go">&lt;pyarrow.lib.Int64Array object at 0x7ffa1b733340&gt;</span>
 <span class="go">[</span>
 <span class="go">  1,</span>
 <span class="go">  2,</span>
@@ -1742,7 +1742,7 @@ for you:</p>
 <p>But you may also pass a specific data type to override type inference:</p>
 <div class="highlight-ipython notranslate"><div 
class="highlight"><pre><span></span><span class="gp">In [27]: </span><span 
class="n">pa</span><span class="o">.</span><span class="n">array</span><span 
class="p">([</span><span class="mi">1</span><span class="p">,</span> <span 
class="mi">2</span><span class="p">],</span> <span class="nb">type</span><span 
class="o">=</span><span class="n">pa</span><span class="o">.</span><span 
class="n">uint16</span><span class="p">())</span>
 <span class="gh">Out[27]: </span>
-<span class="go">&lt;pyarrow.lib.UInt16Array object at 
0x7fc450c39de0&gt;</span>
+<span class="go">&lt;pyarrow.lib.UInt16Array object at 
0x7ffa1b733b20&gt;</span>
 <span class="go">[</span>
 <span class="go">  1,</span>
 <span class="go">  2</span>
@@ -1777,7 +1777,7 @@ nulls:</p>
 <p>Arrays can be sliced without copying:</p>
 <div class="highlight-ipython notranslate"><div 
class="highlight"><pre><span></span><span class="gp">In [33]: </span><span 
class="n">arr</span><span class="p">[</span><span class="mi">1</span><span 
class="p">:</span><span class="mi">3</span><span class="p">]</span>
 <span class="gh">Out[33]: </span>
-<span class="go">&lt;pyarrow.lib.Int64Array object at 0x7fc450c3ace0&gt;</span>
+<span class="go">&lt;pyarrow.lib.Int64Array object at 0x7ffa1b778b80&gt;</span>
 <span class="go">[</span>
 <span class="go">  2,</span>
 <span class="go">  null</span>
@@ -1830,7 +1830,7 @@ This allows for ListView arrays to specify out-of-order 
offsets:</p>
 
 <span class="gp">In [42]: </span><span class="n">arr</span>
 <span class="gh">Out[42]: </span>
-<span class="go">&lt;pyarrow.lib.ListViewArray object at 
0x7fc450c3b400&gt;</span>
+<span class="go">&lt;pyarrow.lib.ListViewArray object at 
0x7ffa1b778be0&gt;</span>
 <span class="go">[</span>
 <span class="go">  [</span>
 <span class="go">    5,</span>
@@ -1855,7 +1855,7 @@ This allows for ListView arrays to specify out-of-order 
offsets:</p>
 dictionaries:</p>
 <div class="highlight-ipython notranslate"><div 
class="highlight"><pre><span></span><span class="gp">In [43]: </span><span 
class="n">pa</span><span class="o">.</span><span class="n">array</span><span 
class="p">([{</span><span class="s1">&#39;x&#39;</span><span class="p">:</span> 
<span class="mi">1</span><span class="p">,</span> <span 
class="s1">&#39;y&#39;</span><span class="p">:</span> <span 
class="kc">True</span><span class="p">},</span> <span class="p">{</span><span 
class="s1">&#39;z& [...]
 <span class="gh">Out[43]: </span>
-<span class="go">&lt;pyarrow.lib.StructArray object at 
0x7fc450c38f40&gt;</span>
+<span class="go">&lt;pyarrow.lib.StructArray object at 
0x7ffa1b7791e0&gt;</span>
 <span class="go">-- is_valid: all not null</span>
 <span class="go">-- child 0 type: int64</span>
 <span class="go">  [</span>
@@ -1882,7 +1882,7 @@ you must explicitly pass the type:</p>
 
 <span class="gp">In [45]: </span><span class="n">pa</span><span 
class="o">.</span><span class="n">array</span><span class="p">([{</span><span 
class="s1">&#39;x&#39;</span><span class="p">:</span> <span 
class="mi">1</span><span class="p">,</span> <span 
class="s1">&#39;y&#39;</span><span class="p">:</span> <span 
class="kc">True</span><span class="p">},</span> <span class="p">{</span><span 
class="s1">&#39;x&#39;</span><span class="p">:</span> <span 
class="mi">2</span><span class="p">,</span [...]
 <span class="gh">Out[45]: </span>
-<span class="go">&lt;pyarrow.lib.StructArray object at 
0x7fc450c3bfa0&gt;</span>
+<span class="go">&lt;pyarrow.lib.StructArray object at 
0x7ffa1b779960&gt;</span>
 <span class="go">-- is_valid: all not null</span>
 <span class="go">-- child 0 type: int8</span>
 <span class="go">  [</span>
@@ -1897,7 +1897,7 @@ you must explicitly pass the type:</p>
 
 <span class="gp">In [46]: </span><span class="n">pa</span><span 
class="o">.</span><span class="n">array</span><span class="p">([(</span><span 
class="mi">3</span><span class="p">,</span> <span class="kc">True</span><span 
class="p">),</span> <span class="p">(</span><span class="mi">4</span><span 
class="p">,</span> <span class="kc">False</span><span class="p">)],</span> 
<span class="nb">type</span><span class="o">=</span><span 
class="n">ty</span><span class="p">)</span>
 <span class="gh">Out[46]: </span>
-<span class="go">&lt;pyarrow.lib.StructArray object at 
0x7fc450c84040&gt;</span>
+<span class="go">&lt;pyarrow.lib.StructArray object at 
0x7ffa1b779a20&gt;</span>
 <span class="go">-- is_valid: all not null</span>
 <span class="go">-- child 0 type: int8</span>
 <span class="go">  [</span>
@@ -1916,7 +1916,7 @@ level and at the individual field level.  If initializing 
from a sequence
 of Python dicts, a missing dict key is handled as a null value:</p>
 <div class="highlight-ipython notranslate"><div 
class="highlight"><pre><span></span><span class="gp">In [47]: </span><span 
class="n">pa</span><span class="o">.</span><span class="n">array</span><span 
class="p">([{</span><span class="s1">&#39;x&#39;</span><span class="p">:</span> 
<span class="mi">1</span><span class="p">},</span> <span 
class="kc">None</span><span class="p">,</span> <span class="p">{</span><span 
class="s1">&#39;y&#39;</span><span class="p">:</span> <span class="kc">None</s 
[...]
 <span class="gh">Out[47]: </span>
-<span class="go">&lt;pyarrow.lib.StructArray object at 
0x7fc450c3bb80&gt;</span>
+<span class="go">&lt;pyarrow.lib.StructArray object at 
0x7ffa1b779b40&gt;</span>
 <span class="go">-- is_valid:</span>
 <span class="go">  [</span>
 <span class="go">    true,</span>
@@ -1951,7 +1951,7 @@ individual arrays, and no copy is involved:</p>
 
 <span class="gp">In [52]: </span><span class="n">arr</span>
 <span class="gh">Out[52]: </span>
-<span class="go">&lt;pyarrow.lib.StructArray object at 
0x7fc450c84be0&gt;</span>
+<span class="go">&lt;pyarrow.lib.StructArray object at 
0x7ffa604407c0&gt;</span>
 <span class="go">-- is_valid: all not null</span>
 <span class="go">-- child 0 type: int16</span>
 <span class="go">  [</span>
@@ -1978,7 +1978,7 @@ the type is explicitly passed into <a class="reference 
internal" href="generated
 
 <span class="gp">In [55]: </span><span class="n">pa</span><span 
class="o">.</span><span class="n">array</span><span class="p">(</span><span 
class="n">data</span><span class="p">,</span> <span class="nb">type</span><span 
class="o">=</span><span class="n">ty</span><span class="p">)</span>
 <span class="gh">Out[55]: </span>
-<span class="go">&lt;pyarrow.lib.MapArray object at 0x7fc450c85180&gt;</span>
+<span class="go">&lt;pyarrow.lib.MapArray object at 0x7ffa1b779120&gt;</span>
 <span class="go">[</span>
 <span class="go">  keys:</span>
 <span class="go">  [</span>
@@ -2012,7 +2012,7 @@ their row, use the <a class="reference internal" 
href="generated/pyarrow.ListArr
 
 <span class="gp">In [57]: </span><span class="n">arr</span><span 
class="o">.</span><span class="n">keys</span>
 <span class="gh">Out[57]: </span>
-<span class="go">&lt;pyarrow.lib.StringArray object at 
0x7fc450c85480&gt;</span>
+<span class="go">&lt;pyarrow.lib.StringArray object at 
0x7ffa1b77a8c0&gt;</span>
 <span class="go">[</span>
 <span class="go">  &quot;x&quot;,</span>
 <span class="go">  &quot;y&quot;,</span>
@@ -2021,7 +2021,7 @@ their row, use the <a class="reference internal" 
href="generated/pyarrow.ListArr
 
 <span class="gp">In [58]: </span><span class="n">arr</span><span 
class="o">.</span><span class="n">items</span>
 <span class="gh">Out[58]: </span>
-<span class="go">&lt;pyarrow.lib.Int64Array object at 0x7fc450c85540&gt;</span>
+<span class="go">&lt;pyarrow.lib.Int64Array object at 0x7ffa1b77ac20&gt;</span>
 <span class="go">[</span>
 <span class="go">  4,</span>
 <span class="go">  5,</span>
@@ -2030,7 +2030,7 @@ their row, use the <a class="reference internal" 
href="generated/pyarrow.ListArr
 
 <span class="gp">In [59]: </span><span class="n">pa</span><span 
class="o">.</span><span class="n">ListArray</span><span class="o">.</span><span 
class="n">from_arrays</span><span class="p">(</span><span 
class="n">arr</span><span class="o">.</span><span class="n">offsets</span><span 
class="p">,</span> <span class="n">arr</span><span class="o">.</span><span 
class="n">keys</span><span class="p">)</span>
 <span class="gh">Out[59]: </span>
-<span class="go">&lt;pyarrow.lib.ListArray object at 0x7fc450c85780&gt;</span>
+<span class="go">&lt;pyarrow.lib.ListArray object at 0x7ffa1b77ac80&gt;</span>
 <span class="go">[</span>
 <span class="go">  [</span>
 <span class="go">    &quot;x&quot;,</span>
@@ -2043,7 +2043,7 @@ their row, use the <a class="reference internal" 
href="generated/pyarrow.ListArr
 
 <span class="gp">In [60]: </span><span class="n">pa</span><span 
class="o">.</span><span class="n">ListArray</span><span class="o">.</span><span 
class="n">from_arrays</span><span class="p">(</span><span 
class="n">arr</span><span class="o">.</span><span class="n">offsets</span><span 
class="p">,</span> <span class="n">arr</span><span class="o">.</span><span 
class="n">items</span><span class="p">)</span>
 <span class="gh">Out[60]: </span>
-<span class="go">&lt;pyarrow.lib.ListArray object at 0x7fc450c85720&gt;</span>
+<span class="go">&lt;pyarrow.lib.ListArray object at 0x7ffa1b77b160&gt;</span>
 <span class="go">[</span>
 <span class="go">  [</span>
 <span class="go">    4,</span>
@@ -2078,7 +2078,7 @@ selected:</p>
 
 <span class="gp">In [66]: </span><span class="n">union_arr</span>
 <span class="gh">Out[66]: </span>
-<span class="go">&lt;pyarrow.lib.UnionArray object at 0x7fc450c85cc0&gt;</span>
+<span class="go">&lt;pyarrow.lib.UnionArray object at 0x7ffa1b77b2e0&gt;</span>
 <span class="go">-- is_valid: all not null</span>
 <span class="go">-- type_ids:   [</span>
 <span class="go">    0,</span>
@@ -2117,7 +2117,7 @@ each offset in the selected child array it can be 
found:</p>
 
 <span class="gp">In [73]: </span><span class="n">union_arr</span>
 <span class="gh">Out[73]: </span>
-<span class="go">&lt;pyarrow.lib.UnionArray object at 0x7fc450c86680&gt;</span>
+<span class="go">&lt;pyarrow.lib.UnionArray object at 0x7ffa1b77bb80&gt;</span>
 <span class="go">-- is_valid: all not null</span>
 <span class="go">-- type_ids:   [</span>
 <span class="go">    0,</span>
@@ -2166,7 +2166,7 @@ consider an example:</p>
 
 <span class="gp">In [77]: </span><span class="n">dict_array</span>
 <span class="gh">Out[77]: </span>
-<span class="go">&lt;pyarrow.lib.DictionaryArray object at 
0x7fc450c23a00&gt;</span>
+<span class="go">&lt;pyarrow.lib.DictionaryArray object at 
0x7ffa1b78f1b0&gt;</span>
 
 <span class="go">-- dictionary:</span>
 <span class="go">  [</span>
@@ -2193,7 +2193,7 @@ consider an example:</p>
 
 <span class="gp">In [79]: </span><span class="n">dict_array</span><span 
class="o">.</span><span class="n">indices</span>
 <span class="gh">Out[79]: </span>
-<span class="go">&lt;pyarrow.lib.Int64Array object at 0x7fc450c866e0&gt;</span>
+<span class="go">&lt;pyarrow.lib.Int64Array object at 0x7ffa1b7cc4c0&gt;</span>
 <span class="go">[</span>
 <span class="go">  0,</span>
 <span class="go">  1,</span>
@@ -2207,7 +2207,7 @@ consider an example:</p>
 
 <span class="gp">In [80]: </span><span class="n">dict_array</span><span 
class="o">.</span><span class="n">dictionary</span>
 <span class="gh">Out[80]: </span>
-<span class="go">&lt;pyarrow.lib.StringArray object at 
0x7fc450c86f20&gt;</span>
+<span class="go">&lt;pyarrow.lib.StringArray object at 
0x7ffa1b7cc7c0&gt;</span>
 <span class="go">[</span>
 <span class="go">  &quot;foo&quot;,</span>
 <span class="go">  &quot;bar&quot;,</span>
@@ -2263,7 +2263,7 @@ instances. Let’s consider a collection of arrays:</p>
 
 <span class="gp">In [87]: </span><span class="n">batch</span><span 
class="p">[</span><span class="mi">1</span><span class="p">]</span>
 <span class="gh">Out[87]: </span>
-<span class="go">&lt;pyarrow.lib.StringArray object at 
0x7fc450c87b80&gt;</span>
+<span class="go">&lt;pyarrow.lib.StringArray object at 
0x7ffa1b7cd480&gt;</span>
 <span class="go">[</span>
 <span class="go">  &quot;foo&quot;,</span>
 <span class="go">  &quot;bar&quot;,</span>
@@ -2277,7 +2277,7 @@ instances. Let’s consider a collection of arrays:</p>
 
 <span class="gp">In [89]: </span><span class="n">batch2</span><span 
class="p">[</span><span class="mi">1</span><span class="p">]</span>
 <span class="gh">Out[89]: </span>
-<span class="go">&lt;pyarrow.lib.StringArray object at 
0x7fc450c87d00&gt;</span>
+<span class="go">&lt;pyarrow.lib.StringArray object at 
0x7ffa1b7cda80&gt;</span>
 <span class="go">[</span>
 <span class="go">  &quot;bar&quot;,</span>
 <span class="go">  &quot;baz&quot;,</span>
@@ -2321,7 +2321,7 @@ container for one or more arrays of the same type.</p>
 
 <span class="gp">In [95]: </span><span class="n">c</span>
 <span class="gh">Out[95]: </span>
-<span class="go">&lt;pyarrow.lib.ChunkedArray object at 
0x7fc450cc07c0&gt;</span>
+<span class="go">&lt;pyarrow.lib.ChunkedArray object at 
0x7ffa1b731660&gt;</span>
 <span class="go">[</span>
 <span class="go">  [</span>
 <span class="go">    1,</span>
@@ -2355,7 +2355,7 @@ container for one or more arrays of the same type.</p>
 
 <span class="gp">In [97]: </span><span class="n">c</span><span 
class="o">.</span><span class="n">chunk</span><span class="p">(</span><span 
class="mi">0</span><span class="p">)</span>
 <span class="gh">Out[97]: </span>
-<span class="go">&lt;pyarrow.lib.Int64Array object at 0x7fc450c39e40&gt;</span>
+<span class="go">&lt;pyarrow.lib.Int64Array object at 0x7ffa1b731900&gt;</span>
 <span class="go">[</span>
 <span class="go">  1,</span>
 <span class="go">  2,</span>
diff --git a/docs/dev/python/dataset.html b/docs/dev/python/dataset.html
index 32a950cfecd..560efc5ff8d 100644
--- a/docs/dev/python/dataset.html
+++ b/docs/dev/python/dataset.html
@@ -1631,7 +1631,7 @@ can pass it the path to the directory containing the data 
files:</p>
 <span class="gp">In [12]: </span><span class="n">dataset</span> <span 
class="o">=</span> <span class="n">ds</span><span class="o">.</span><span 
class="n">dataset</span><span class="p">(</span><span class="n">base</span> 
<span class="o">/</span> <span 
class="s2">&quot;parquet_dataset&quot;</span><span class="p">,</span> <span 
class="nb">format</span><span class="o">=</span><span 
class="s2">&quot;parquet&quot;</span><span class="p">)</span>
 
 <span class="gp">In [13]: </span><span class="n">dataset</span>
-<span class="gh">Out[13]: </span><span 
class="go">&lt;pyarrow._dataset.FileSystemDataset at 0x7fc450b0a440&gt;</span>
+<span class="gh">Out[13]: </span><span 
class="go">&lt;pyarrow._dataset.FileSystemDataset at 0x7ffa1b66c100&gt;</span>
 </pre></div>
 </div>
 <p>In addition to searching a base directory, <a class="reference internal" 
href="generated/pyarrow.dataset.dataset.html#pyarrow.dataset.dataset" 
title="pyarrow.dataset.dataset"><code class="xref py py-func docutils literal 
notranslate"><span class="pre">dataset()</span></code></a> accepts a path to a
@@ -1640,8 +1640,8 @@ single file or a list of file paths.</p>
 needed, it only crawls the directory to find all the files:</p>
 <div class="highlight-ipython notranslate"><div 
class="highlight"><pre><span></span><span class="gp">In [14]: </span><span 
class="n">dataset</span><span class="o">.</span><span class="n">files</span>
 <span class="gh">Out[14]: </span>
-<span 
class="go">[&#39;/tmp/pyarrow-9lgb3ecj/parquet_dataset/data1.parquet&#39;,</span>
-<span class="go"> 
&#39;/tmp/pyarrow-9lgb3ecj/parquet_dataset/data2.parquet&#39;]</span>
+<span 
class="go">[&#39;/tmp/pyarrow-ah68mx_8/parquet_dataset/data1.parquet&#39;,</span>
+<span class="go"> 
&#39;/tmp/pyarrow-ah68mx_8/parquet_dataset/data2.parquet&#39;]</span>
 </pre></div>
 </div>
 <p>… and infers the dataset’s schema (by default from the first file):</p>
@@ -1662,23 +1662,23 @@ this can require a lot of memory, see below on 
filtering / iterative loading):</
 <span class="go">c: int64</span>
 <span class="gt">----</span>
 <span class="ne">a</span>: [[0,1,2,3,4],[5,6,7,8,9]]
-<span class="ne">b</span>: 
[[0.7798937433999215,0.10748196244708422,2.0491479837179254,1.059628667773938,-0.2737415991229755],[0.618044603869078,-0.7922468642242219,-0.2787568191658301,-0.4575148813664161,0.5611030917636973]]
+<span class="ne">b</span>: 
[[-0.8062771286554204,1.27750957526534,-0.04277612168491918,0.12657311614229563,-0.864659487422313],[-0.9970105194638866,2.647056153005174,0.294320396679335,-1.269754905996897,-0.624161862985764]]
 <span class="ne">c</span>: [[1,2,1,2,1],[2,1,2,1,2]]
 
 <span class="c1"># converting to pandas to see the contents of the scanned 
table</span>
 <span class="gp">In [17]: </span><span class="n">dataset</span><span 
class="o">.</span><span class="n">to_table</span><span class="p">()</span><span 
class="o">.</span><span class="n">to_pandas</span><span class="p">()</span>
 <span class="gh">Out[17]: </span>
 <span class="go">   a         b  c</span>
-<span class="go">0  0  0.779894  1</span>
-<span class="go">1  1  0.107482  2</span>
-<span class="go">2  2  2.049148  1</span>
-<span class="go">3  3  1.059629  2</span>
-<span class="go">4  4 -0.273742  1</span>
-<span class="go">5  5  0.618045  2</span>
-<span class="go">6  6 -0.792247  1</span>
-<span class="go">7  7 -0.278757  2</span>
-<span class="go">8  8 -0.457515  1</span>
-<span class="go">9  9  0.561103  2</span>
+<span class="go">0  0 -0.806277  1</span>
+<span class="go">1  1  1.277510  2</span>
+<span class="go">2  2 -0.042776  1</span>
+<span class="go">3  3  0.126573  2</span>
+<span class="go">4  4 -0.864659  1</span>
+<span class="go">5  5 -0.997011  2</span>
+<span class="go">6  6  2.647056  1</span>
+<span class="go">7  7  0.294320  2</span>
+<span class="go">8  8 -1.269755  1</span>
+<span class="go">9  9 -0.624162  2</span>
 </pre></div>
 </div>
 </section>
@@ -1701,11 +1701,11 @@ supported; more formats are planned in the future.</p>
 <span class="gp">In [21]: </span><span class="n">dataset</span><span 
class="o">.</span><span class="n">to_table</span><span class="p">()</span><span 
class="o">.</span><span class="n">to_pandas</span><span 
class="p">()</span><span class="o">.</span><span class="n">head</span><span 
class="p">()</span>
 <span class="gh">Out[21]: </span>
 <span class="go">   a         b  c</span>
-<span class="go">0  0  0.779894  1</span>
-<span class="go">1  1  0.107482  2</span>
-<span class="go">2  2  2.049148  1</span>
-<span class="go">3  3  1.059629  2</span>
-<span class="go">4  4 -0.273742  1</span>
+<span class="go">0  0 -0.806277  1</span>
+<span class="go">1  1  1.277510  2</span>
+<span class="go">2  2 -0.042776  1</span>
+<span class="go">3  3  0.126573  2</span>
+<span class="go">4  4 -0.864659  1</span>
 </pre></div>
 </div>
 </section>
@@ -1737,16 +1737,16 @@ supported; more formats are planned in the future.</p>
 <span class="gp">In [23]: </span><span class="n">dataset</span><span 
class="o">.</span><span class="n">to_table</span><span class="p">(</span><span 
class="n">columns</span><span class="o">=</span><span class="p">[</span><span 
class="s1">&#39;a&#39;</span><span class="p">,</span> <span 
class="s1">&#39;b&#39;</span><span class="p">])</span><span 
class="o">.</span><span class="n">to_pandas</span><span class="p">()</span>
 <span class="gh">Out[23]: </span>
 <span class="go">   a         b</span>
-<span class="go">0  0  0.779894</span>
-<span class="go">1  1  0.107482</span>
-<span class="go">2  2  2.049148</span>
-<span class="go">3  3  1.059629</span>
-<span class="go">4  4 -0.273742</span>
-<span class="go">5  5  0.618045</span>
-<span class="go">6  6 -0.792247</span>
-<span class="go">7  7 -0.278757</span>
-<span class="go">8  8 -0.457515</span>
-<span class="go">9  9  0.561103</span>
+<span class="go">0  0 -0.806277</span>
+<span class="go">1  1  1.277510</span>
+<span class="go">2  2 -0.042776</span>
+<span class="go">3  3  0.126573</span>
+<span class="go">4  4 -0.864659</span>
+<span class="go">5  5 -0.997011</span>
+<span class="go">6  6  2.647056</span>
+<span class="go">7  7  0.294320</span>
+<span class="go">8  8 -1.269755</span>
+<span class="go">9  9 -0.624162</span>
 </pre></div>
 </div>
 <p>With the <code class="docutils literal notranslate"><span 
class="pre">filter</span></code> keyword, rows which do not match the filter 
predicate will
@@ -1755,18 +1755,18 @@ not be included in the returned table. The keyword 
expects a boolean
 <div class="highlight-ipython notranslate"><div 
class="highlight"><pre><span></span><span class="gp">In [24]: </span><span 
class="n">dataset</span><span class="o">.</span><span 
class="n">to_table</span><span class="p">(</span><span 
class="nb">filter</span><span class="o">=</span><span class="n">ds</span><span 
class="o">.</span><span class="n">field</span><span class="p">(</span><span 
class="s1">&#39;a&#39;</span><span class="p">)</span> <span 
class="o">&gt;=</span> <span class="mi">7</sp [...]
 <span class="gh">Out[24]: </span>
 <span class="go">   a         b  c</span>
-<span class="go">0  7 -0.278757  2</span>
-<span class="go">1  8 -0.457515  1</span>
-<span class="go">2  9  0.561103  2</span>
+<span class="go">0  7  0.294320  2</span>
+<span class="go">1  8 -1.269755  1</span>
+<span class="go">2  9 -0.624162  2</span>
 
 <span class="gp">In [25]: </span><span class="n">dataset</span><span 
class="o">.</span><span class="n">to_table</span><span class="p">(</span><span 
class="nb">filter</span><span class="o">=</span><span class="n">ds</span><span 
class="o">.</span><span class="n">field</span><span class="p">(</span><span 
class="s1">&#39;c&#39;</span><span class="p">)</span> <span class="o">==</span> 
<span class="mi">2</span><span class="p">)</span><span class="o">.</span><span 
class="n">to_pandas</span><spa [...]
 <span class="gh">Out[25]: </span>
 <span class="go">   a         b  c</span>
-<span class="go">0  1  0.107482  2</span>
-<span class="go">1  3  1.059629  2</span>
-<span class="go">2  5  0.618045  2</span>
-<span class="go">3  7 -0.278757  2</span>
-<span class="go">4  9  0.561103  2</span>
+<span class="go">0  1  1.277510  2</span>
+<span class="go">1  3  0.126573  2</span>
+<span class="go">2  5 -0.997011  2</span>
+<span class="go">3  7  0.294320  2</span>
+<span class="go">4  9 -0.624162  2</span>
 </pre></div>
 </div>
 <p>The easiest way to construct those <a class="reference internal" 
href="generated/pyarrow.dataset.Expression.html#pyarrow.dataset.Expression" 
title="pyarrow.dataset.Expression"><code class="xref py py-class docutils 
literal notranslate"><span class="pre">Expression</span></code></a> objects is 
by using the
@@ -1811,11 +1811,11 @@ values:</p>
 <span class="gp">In [30]: </span><span class="n">dataset</span><span 
class="o">.</span><span class="n">to_table</span><span class="p">(</span><span 
class="n">columns</span><span class="o">=</span><span 
class="n">projection</span><span class="p">)</span><span 
class="o">.</span><span class="n">to_pandas</span><span 
class="p">()</span><span class="o">.</span><span class="n">head</span><span 
class="p">()</span>
 <span class="gh">Out[30]: </span>
 <span class="go">   a_renamed  b_as_float32    c_1</span>
-<span class="go">0          0      0.779894   True</span>
-<span class="go">1          1      0.107482  False</span>
-<span class="go">2          2      2.049148   True</span>
-<span class="go">3          3      1.059629  False</span>
-<span class="go">4          4     -0.273742   True</span>
+<span class="go">0          0     -0.806277   True</span>
+<span class="go">1          1      1.277510  False</span>
+<span class="go">2          2     -0.042776   True</span>
+<span class="go">3          3      0.126573  False</span>
+<span class="go">4          4     -0.864659   True</span>
 </pre></div>
 </div>
 <p>The dictionary also determines the column selection (only the keys in the
@@ -1829,11 +1829,11 @@ build up the dictionary from the dataset schema:</p>
 <span class="gp">In [33]: </span><span class="n">dataset</span><span 
class="o">.</span><span class="n">to_table</span><span class="p">(</span><span 
class="n">columns</span><span class="o">=</span><span 
class="n">projection</span><span class="p">)</span><span 
class="o">.</span><span class="n">to_pandas</span><span 
class="p">()</span><span class="o">.</span><span class="n">head</span><span 
class="p">()</span>
 <span class="gh">Out[33]: </span>
 <span class="go">   a         b  c  b_large</span>
-<span class="go">0  0  0.779894  1    False</span>
-<span class="go">1  1  0.107482  2    False</span>
-<span class="go">2  2  2.049148  1     True</span>
-<span class="go">3  3  1.059629  2     True</span>
-<span class="go">4  4 -0.273742  1    False</span>
+<span class="go">0  0 -0.806277  1    False</span>
+<span class="go">1  1  1.277510  2     True</span>
+<span class="go">2  2 -0.042776  1    False</span>
+<span class="go">3  3  0.126573  2    False</span>
+<span class="go">4  4 -0.864659  1    False</span>
 </pre></div>
 </div>
 </section>
@@ -1886,8 +1886,8 @@ should use a hive-like partitioning scheme with the <code 
class="docutils litera
 
 <span class="gp">In [37]: </span><span class="n">dataset</span><span 
class="o">.</span><span class="n">files</span>
 <span class="gh">Out[37]: </span>
-<span 
class="go">[&#39;parquet_dataset_partitioned/part=a/7d7484c32c54494d8336c0e56a92ebeb-0.parquet&#39;,</span>
-<span class="go"> 
&#39;parquet_dataset_partitioned/part=b/7d7484c32c54494d8336c0e56a92ebeb-0.parquet&#39;]</span>
+<span 
class="go">[&#39;parquet_dataset_partitioned/part=a/90d18cce830b4a408238dcc18b4702b4-0.parquet&#39;,</span>
+<span class="go"> 
&#39;parquet_dataset_partitioned/part=b/90d18cce830b4a408238dcc18b4702b4-0.parquet&#39;]</span>
 </pre></div>
 </div>
 <p>Although the partition fields are not included in the actual Parquet files,
@@ -1895,9 +1895,9 @@ they will be added back to the resulting table when 
scanning this dataset:</p>
 <div class="highlight-ipython notranslate"><div 
class="highlight"><pre><span></span><span class="gp">In [38]: </span><span 
class="n">dataset</span><span class="o">.</span><span 
class="n">to_table</span><span class="p">()</span><span class="o">.</span><span 
class="n">to_pandas</span><span class="p">()</span><span 
class="o">.</span><span class="n">head</span><span class="p">(</span><span 
class="mi">3</span><span class="p">)</span>
 <span class="gh">Out[38]: </span>
 <span class="go">   a         b  c part</span>
-<span class="go">0  0 -1.538497  1    a</span>
-<span class="go">1  1 -1.378057  2    a</span>
-<span class="go">2  2 -0.104371  1    a</span>
+<span class="go">0  0 -0.516109  1    a</span>
+<span class="go">1  1 -0.023655  2    a</span>
+<span class="go">2  2  0.408589  1    a</span>
 </pre></div>
 </div>
 <p>We can now filter on the partition keys, which avoids loading files
@@ -1905,11 +1905,11 @@ altogether if they do not match the filter:</p>
 <div class="highlight-ipython notranslate"><div 
class="highlight"><pre><span></span><span class="gp">In [39]: </span><span 
class="n">dataset</span><span class="o">.</span><span 
class="n">to_table</span><span class="p">(</span><span 
class="nb">filter</span><span class="o">=</span><span class="n">ds</span><span 
class="o">.</span><span class="n">field</span><span class="p">(</span><span 
class="s2">&quot;part&quot;</span><span class="p">)</span> <span 
class="o">==</span> <span class="s2">&qu [...]
 <span class="gh">Out[39]: </span>
 <span class="go">   a         b  c part</span>
-<span class="go">0  5 -0.512978  2    b</span>
-<span class="go">1  6 -1.401857  1    b</span>
-<span class="go">2  7 -0.761893  2    b</span>
-<span class="go">3  8 -1.601532  1    b</span>
-<span class="go">4  9  1.468955  2    b</span>
+<span class="go">0  5 -0.265055  2    b</span>
+<span class="go">1  6  0.021785  1    b</span>
+<span class="go">2  7  1.113184  2    b</span>
+<span class="go">3  8 -0.063891  1    b</span>
+<span class="go">4  9  0.910803  2    b</span>
 </pre></div>
 </div>
 <section id="different-partitioning-schemes">
@@ -2041,19 +2041,19 @@ is materialized as columns when reading the data and 
can be used for filtering:<
 <div class="highlight-ipython notranslate"><div 
class="highlight"><pre><span></span><span class="gp">In [47]: </span><span 
class="n">dataset</span><span class="o">.</span><span 
class="n">to_table</span><span class="p">()</span><span class="o">.</span><span 
class="n">to_pandas</span><span class="p">()</span>
 <span class="gh">Out[47]: </span>
 <span class="go">   year  col1      col2</span>
-<span class="go">0  2018     0  0.336085</span>
-<span class="go">1  2018     1 -0.659798</span>
-<span class="go">2  2018     2  1.422074</span>
-<span class="go">3  2019     0  0.336085</span>
-<span class="go">4  2019     1 -0.659798</span>
-<span class="go">5  2019     2  1.422074</span>
+<span class="go">0  2018     0 -0.569488</span>
+<span class="go">1  2018     1 -0.536003</span>
+<span class="go">2  2018     2  1.716515</span>
+<span class="go">3  2019     0 -0.569488</span>
+<span class="go">4  2019     1 -0.536003</span>
+<span class="go">5  2019     2  1.716515</span>
 
 <span class="gp">In [48]: </span><span class="n">dataset</span><span 
class="o">.</span><span class="n">to_table</span><span class="p">(</span><span 
class="nb">filter</span><span class="o">=</span><span class="n">ds</span><span 
class="o">.</span><span class="n">field</span><span class="p">(</span><span 
class="s1">&#39;year&#39;</span><span class="p">)</span> <span 
class="o">==</span> <span class="mi">2019</span><span class="p">)</span><span 
class="o">.</span><span class="n">to_pandas</spa [...]
 <span class="gh">Out[48]: </span>
 <span class="go">   year  col1      col2</span>
-<span class="go">0  2019     0  0.336085</span>
-<span class="go">1  2019     1 -0.659798</span>
-<span class="go">2  2019     2  1.422074</span>
+<span class="go">0  2019     0 -0.569488</span>
+<span class="go">1  2019     1 -0.536003</span>
+<span class="go">2  2019     2  1.716515</span>
 </pre></div>
 </div>
 <p>Another benefit of manually listing the files is that the order of the files
@@ -2305,7 +2305,7 @@ to supply a visitor that will be called as each file is 
created:</p>
 <span class="gp">   ....: </span>
 <span class="go">path=dataset_visited/c=1/part-0.parquet</span>
 <span class="go">size=816 bytes</span>
-<span class="go">metadata=&lt;pyarrow._parquet.FileMetaData object at 
0x7fc450c88a40&gt;</span>
+<span class="go">metadata=&lt;pyarrow._parquet.FileMetaData object at 
0x7ffa1b6ee2a0&gt;</span>
 <span class="go">  created_by: parquet-cpp-arrow version 20.0.0-SNAPSHOT</span>
 <span class="go">  num_columns: 2</span>
 <span class="go">  num_rows: 5</span>
@@ -2314,7 +2314,7 @@ to supply a visitor that will be called as each file is 
created:</p>
 <span class="go">  serialized_size: 0</span>
 <span class="go">path=dataset_visited/c=2/part-0.parquet</span>
 <span class="go">size=818 bytes</span>
-<span class="go">metadata=&lt;pyarrow._parquet.FileMetaData object at 
0x7fc450ed4db0&gt;</span>
+<span class="go">metadata=&lt;pyarrow._parquet.FileMetaData object at 
0x7ffa1b6d28e0&gt;</span>
 <span class="go">  created_by: parquet-cpp-arrow version 20.0.0-SNAPSHOT</span>
 <span class="go">  num_columns: 2</span>
 <span class="go">  num_rows: 5</span>
diff --git a/docs/dev/python/getstarted.html b/docs/dev/python/getstarted.html
index 2a4948d3009..f3ae593cfca 100644
--- a/docs/dev/python/getstarted.html
+++ b/docs/dev/python/getstarted.html
@@ -1656,7 +1656,7 @@ it’s possible to apply transformations to the data</p>
 
 <span class="gp">In [12]: </span><span class="n">pc</span><span 
class="o">.</span><span class="n">value_counts</span><span 
class="p">(</span><span class="n">birthdays_table</span><span 
class="p">[</span><span class="s2">&quot;years&quot;</span><span 
class="p">])</span>
 <span class="gh">Out[12]: </span>
-<span class="go">&lt;pyarrow.lib.StructArray object at 
0x7fc4219fafe0&gt;</span>
+<span class="go">&lt;pyarrow.lib.StructArray object at 
0x7ff9f0e31f60&gt;</span>
 <span class="go">-- is_valid: all not null</span>
 <span class="go">-- child 0 type: int16</span>
 <span class="go">  [</span>
diff --git a/docs/dev/python/memory.html b/docs/dev/python/memory.html
index 8b81f455eea..b62081aa901 100644
--- a/docs/dev/python/memory.html
+++ b/docs/dev/python/memory.html
@@ -1605,7 +1605,7 @@ a bytes object:</p>
 <span class="gp">In [3]: </span><span class="n">buf</span> <span 
class="o">=</span> <span class="n">pa</span><span class="o">.</span><span 
class="n">py_buffer</span><span class="p">(</span><span 
class="n">data</span><span class="p">)</span>
 
 <span class="gp">In [4]: </span><span class="n">buf</span>
-<span class="gh">Out[4]: </span><span class="go">&lt;pyarrow.Buffer 
address=0x7fc4204e8d10 size=26 is_cpu=True is_mutable=False&gt;</span>
+<span class="gh">Out[4]: </span><span class="go">&lt;pyarrow.Buffer 
address=0x7ff9f0d02d10 size=26 is_cpu=True is_mutable=False&gt;</span>
 
 <span class="gp">In [5]: </span><span class="n">buf</span><span 
class="o">.</span><span class="n">size</span>
 <span class="gh">Out[5]: </span><span class="go">26</span>
@@ -1618,7 +1618,7 @@ referenced using the <a class="reference internal" 
href="generated/pyarrow.forei
 <p>Buffers can be used in circumstances where a Python buffer or memoryview is
 required, and such conversions are zero-copy:</p>
 <div class="highlight-ipython notranslate"><div 
class="highlight"><pre><span></span><span class="gp">In [6]: </span><span 
class="nb">memoryview</span><span class="p">(</span><span 
class="n">buf</span><span class="p">)</span>
-<span class="gh">Out[6]: </span><span class="go">&lt;memory at 
0x7fc42181abc0&gt;</span>
+<span class="gh">Out[6]: </span><span class="go">&lt;memory at 
0x7ff9f0e92740&gt;</span>
 </pre></div>
 </div>
 <p>The Buffer’s <a class="reference internal" 
href="generated/pyarrow.Buffer.html#pyarrow.Buffer.to_pybytes" 
title="pyarrow.Buffer.to_pybytes"><code class="xref py py-meth docutils literal 
notranslate"><span class="pre">to_pybytes()</span></code></a> method converts 
the Buffer’s data to a
@@ -1817,7 +1817,7 @@ into Arrow Buffer objects, use <code class="docutils 
literal notranslate"><span
 <span class="gp">In [32]: </span><span class="n">buf</span> <span 
class="o">=</span> <span class="n">mmap</span><span class="o">.</span><span 
class="n">read_buffer</span><span class="p">(</span><span 
class="mi">4</span><span class="p">)</span>
 
 <span class="gp">In [33]: </span><span class="nb">print</span><span 
class="p">(</span><span class="n">buf</span><span class="p">)</span>
-<span class="go">&lt;pyarrow.Buffer address=0x7fc4b723f000 size=4 is_cpu=True 
is_mutable=False&gt;</span>
+<span class="go">&lt;pyarrow.Buffer address=0x7ffa81a20000 size=4 is_cpu=True 
is_mutable=False&gt;</span>
 
 <span class="gp">In [34]: </span><span class="n">buf</span><span 
class="o">.</span><span class="n">to_pybytes</span><span class="p">()</span>
 <span class="gh">Out[34]: </span><span class="go">b&#39;some&#39;</span>
diff --git a/docs/dev/python/pandas.html b/docs/dev/python/pandas.html
index e969c5a95ce..06fc01b78ad 100644
--- a/docs/dev/python/pandas.html
+++ b/docs/dev/python/pandas.html
@@ -1779,7 +1779,7 @@ same categories of the Pandas DataFrame.</p>
 
 <span class="gp">In [10]: </span><span class="n">chunk</span><span 
class="o">.</span><span class="n">dictionary</span>
 <span class="gh">Out[10]: </span>
-<span class="go">&lt;pyarrow.lib.StringArray object at 
0x7fc49bd349a0&gt;</span>
+<span class="go">&lt;pyarrow.lib.StringArray object at 
0x7ff9f243eec0&gt;</span>
 <span class="go">[</span>
 <span class="go">  &quot;a&quot;,</span>
 <span class="go">  &quot;b&quot;,</span>
@@ -1788,7 +1788,7 @@ same categories of the Pandas DataFrame.</p>
 
 <span class="gp">In [11]: </span><span class="n">chunk</span><span 
class="o">.</span><span class="n">indices</span>
 <span class="gh">Out[11]: </span>
-<span class="go">&lt;pyarrow.lib.Int8Array object at 0x7fc49bd348e0&gt;</span>
+<span class="go">&lt;pyarrow.lib.Int8Array object at 0x7ff9ee64ac20&gt;</span>
 <span class="go">[</span>
 <span class="go">  0,</span>
 <span class="go">  1,</span>
@@ -1914,7 +1914,7 @@ converted to an Arrow <code class="docutils literal 
notranslate"><span class="pr
 
 <span class="gp">In [33]: </span><span class="n">arr</span>
 <span class="gh">Out[33]: </span>
-<span class="go">&lt;pyarrow.lib.Time64Array object at 
0x7fc49bd36fe0&gt;</span>
+<span class="go">&lt;pyarrow.lib.Time64Array object at 
0x7ff9ee66fee0&gt;</span>
 <span class="go">[</span>
 <span class="go">  01:01:01.000000,</span>
 <span class="go">  02:02:02.000000</span>
diff --git a/docs/dev/python/parquet.html b/docs/dev/python/parquet.html
index 65b647b0658..4a2f0de87f3 100644
--- a/docs/dev/python/parquet.html
+++ b/docs/dev/python/parquet.html
@@ -1750,7 +1750,7 @@ you may choose to omit it by passing <code 
class="docutils literal notranslate">
 
 <span class="gp">In [20]: </span><span class="n">parquet_file</span><span 
class="o">.</span><span class="n">metadata</span>
 <span class="gh">Out[20]: </span>
-<span class="go">&lt;pyarrow._parquet.FileMetaData object at 
0x7fc4203b21b0&gt;</span>
+<span class="go">&lt;pyarrow._parquet.FileMetaData object at 
0x7ff9ee6a4d10&gt;</span>
 <span class="go">  created_by: parquet-cpp-arrow version 20.0.0-SNAPSHOT</span>
 <span class="go">  num_columns: 4</span>
 <span class="go">  num_rows: 3</span>
@@ -1760,7 +1760,7 @@ you may choose to omit it by passing <code 
class="docutils literal notranslate">
 
 <span class="gp">In [21]: </span><span class="n">parquet_file</span><span 
class="o">.</span><span class="n">schema</span>
 <span class="gh">Out[21]: </span>
-<span class="go">&lt;pyarrow._parquet.ParquetSchema object at 
0x7fc42038be40&gt;</span>
+<span class="go">&lt;pyarrow._parquet.ParquetSchema object at 
0x7ff9f120d640&gt;</span>
 <span class="go">required group field_id=-1 schema {</span>
 <span class="go">  optional double field_id=-1 one;</span>
 <span class="go">  optional binary field_id=-1 two (String);</span>
@@ -1818,7 +1818,7 @@ concatenate them into a single table. You can read 
individual row groups with
 
 <span class="gp">In [30]: </span><span class="n">metadata</span>
 <span class="gh">Out[30]: </span>
-<span class="go">&lt;pyarrow._parquet.FileMetaData object at 
0x7fc422cb9da0&gt;</span>
+<span class="go">&lt;pyarrow._parquet.FileMetaData object at 
0x7ff9ee6a5a80&gt;</span>
 <span class="go">  created_by: parquet-cpp-arrow version 20.0.0-SNAPSHOT</span>
 <span class="go">  num_columns: 4</span>
 <span class="go">  num_rows: 3</span>
@@ -1832,7 +1832,7 @@ concatenate them into a single table. You can read 
individual row groups with
 such as the row groups and column chunk metadata and statistics:</p>
 <div class="highlight-ipython notranslate"><div 
class="highlight"><pre><span></span><span class="gp">In [31]: </span><span 
class="n">metadata</span><span class="o">.</span><span 
class="n">row_group</span><span class="p">(</span><span 
class="mi">0</span><span class="p">)</span>
 <span class="gh">Out[31]: </span>
-<span class="go">&lt;pyarrow._parquet.RowGroupMetaData object at 
0x7fc4219d9e90&gt;</span>
+<span class="go">&lt;pyarrow._parquet.RowGroupMetaData object at 
0x7ff9f0f7f6f0&gt;</span>
 <span class="go">  num_columns: 4</span>
 <span class="go">  num_rows: 3</span>
 <span class="go">  total_byte_size: 282</span>
@@ -1840,7 +1840,7 @@ such as the row groups and column chunk metadata and 
statistics:</p>
 
 <span class="gp">In [32]: </span><span class="n">metadata</span><span 
class="o">.</span><span class="n">row_group</span><span class="p">(</span><span 
class="mi">0</span><span class="p">)</span><span class="o">.</span><span 
class="n">column</span><span class="p">(</span><span class="mi">0</span><span 
class="p">)</span>
 <span class="gh">Out[32]: </span>
-<span class="go">&lt;pyarrow._parquet.ColumnChunkMetaData object at 
0x7fc49bde3ab0&gt;</span>
+<span class="go">&lt;pyarrow._parquet.ColumnChunkMetaData object at 
0x7ff9f0f7df80&gt;</span>
 <span class="go">  file_offset: 0</span>
 <span class="go">  file_path: </span>
 <span class="go">  physical_type: DOUBLE</span>
@@ -1848,7 +1848,7 @@ such as the row groups and column chunk metadata and 
statistics:</p>
 <span class="go">  path_in_schema: one</span>
 <span class="go">  is_stats_set: True</span>
 <span class="go">  statistics:</span>
-<span class="go">    &lt;pyarrow._parquet.Statistics object at 
0x7fc49bde3b00&gt;</span>
+<span class="go">    &lt;pyarrow._parquet.Statistics object at 
0x7ff9f10cb1f0&gt;</span>
 <span class="go">      has_min_max: True</span>
 <span class="go">      min: -1.0</span>
 <span class="go">      max: 2.5</span>
diff --git a/docs/dev/r/articles/data_objects.html 
b/docs/dev/r/articles/data_objects.html
index 8f08b9f876e..ac80f8dd895 100644
--- a/docs/dev/r/articles/data_objects.html
+++ b/docs/dev/r/articles/data_objects.html
@@ -704,9 +704,9 @@ following dplyr expression:</p>
 <pre><code><span><span class="co">## <span style="color: #949494;"># A tibble: 
6 x 3</span></span></span>
 <span><span class="co">##      id subset new_value</span></span>
 <span><span class="co">##   <span style="color: #949494; font-style: 
italic;">&lt;int&gt;</span> <span style="color: #949494; font-style: 
italic;">&lt;chr&gt;</span>      <span style="color: #949494; font-style: 
italic;">&lt;dbl&gt;</span></span></span>
-<span><span class="co">## <span style="color: #BCBCBC;">1</span>     2 a       
      26</span></span>
-<span><span class="co">## <span style="color: #BCBCBC;">2</span>     5 a       
      62</span></span>
-<span><span class="co">## <span style="color: #BCBCBC;">3</span>     6 b       
     115</span></span>
+<span><span class="co">## <span style="color: #BCBCBC;">1</span>     6 b       
     115</span></span>
+<span><span class="co">## <span style="color: #BCBCBC;">2</span>     2 a       
      26</span></span>
+<span><span class="co">## <span style="color: #BCBCBC;">3</span>     5 a       
      62</span></span>
 <span><span class="co">## <span style="color: #BCBCBC;">4</span>    12 c       
      63</span></span>
 <span><span class="co">## <span style="color: #BCBCBC;">5</span>    13 c       
     207</span></span>
 <span><span class="co">## <span style="color: #BCBCBC;">6</span>    15 c       
      51</span></span></code></pre>
diff --git a/docs/dev/r/pkgdown.yml b/docs/dev/r/pkgdown.yml
index d0a157ea146..7425ea034a7 100644
--- a/docs/dev/r/pkgdown.yml
+++ b/docs/dev/r/pkgdown.yml
@@ -21,7 +21,7 @@ articles:
   read_write: read_write.html
   developers/setup: developers/setup.html
   developers/workflow: developers/workflow.html
-last_built: 2025-01-26T01:09Z
+last_built: 2025-01-27T01:07Z
 urls:
   reference: https://arrow.apache.org/docs/r/reference
   article: https://arrow.apache.org/docs/r/articles
diff --git a/docs/dev/r/search.json b/docs/dev/r/search.json
index 22c96bc231a..c1358469e8a 100644
--- a/docs/dev/r/search.json
+++ b/docs/dev/r/search.json
@@ -1 +1 @@
-[{"path":"https://arrow.apache.org/docs/r/PACKAGING.html","id":null,"dir":"","previous_headings":"","what":"Packaging
 checklist for CRAN release","title":"Packaging checklist for CRAN 
release","text":"high-level overview release process see Apache Arrow Release 
Management 
Guide.","code":""},{"path":"https://arrow.apache.org/docs/r/PACKAGING.html","id":"before-the-release-candidate-is-cut","dir":"","previous_headings":"","what":"Before
 the release candidate is cut","title":"Packaging chec [...]
+[{"path":"https://arrow.apache.org/docs/r/PACKAGING.html","id":null,"dir":"","previous_headings":"","what":"Packaging
 checklist for CRAN release","title":"Packaging checklist for CRAN 
release","text":"high-level overview release process see Apache Arrow Release 
Management 
Guide.","code":""},{"path":"https://arrow.apache.org/docs/r/PACKAGING.html","id":"before-the-release-candidate-is-cut","dir":"","previous_headings":"","what":"Before
 the release candidate is cut","title":"Packaging chec [...]
diff --git a/docs/dev/searchindex.js b/docs/dev/searchindex.js
index b94fd484bbe..63b6a05c74f 100644
--- a/docs/dev/searchindex.js
+++ b/docs/dev/searchindex.js
@@ -1 +1 @@
-Search.setIndex({"docnames": ["c_glib/arrow-cuda-glib/index", 
"c_glib/arrow-dataset-glib/index", "c_glib/arrow-flight-glib/index", 
"c_glib/arrow-flight-sql-glib/index", "c_glib/arrow-glib/index", 
"c_glib/gandiva-glib/index", "c_glib/index", "c_glib/parquet-glib/index", 
"cpp/acero/async", "cpp/acero/developer_guide", "cpp/acero/overview", 
"cpp/acero/substrait", "cpp/acero/user_guide", "cpp/api", "cpp/api/acero", 
"cpp/api/array", "cpp/api/async", "cpp/api/builder", "cpp/api/c_abi", "cpp/ap 
[...]
\ No newline at end of file
+Search.setIndex({"docnames": ["c_glib/arrow-cuda-glib/index", 
"c_glib/arrow-dataset-glib/index", "c_glib/arrow-flight-glib/index", 
"c_glib/arrow-flight-sql-glib/index", "c_glib/arrow-glib/index", 
"c_glib/gandiva-glib/index", "c_glib/index", "c_glib/parquet-glib/index", 
"cpp/acero/async", "cpp/acero/developer_guide", "cpp/acero/overview", 
"cpp/acero/substrait", "cpp/acero/user_guide", "cpp/api", "cpp/api/acero", 
"cpp/api/array", "cpp/api/async", "cpp/api/builder", "cpp/api/c_abi", "cpp/ap 
[...]
\ No newline at end of file


Reply via email to