[ https://issues.apache.org/jira/browse/BEAM-2953?focusedWorklogId=152498&page=com.atlassian.jira.plugin.system.issuetabpanels:worklog-tabpanel#worklog-152498 ]
ASF GitHub Bot logged work on BEAM-2953: ---------------------------------------- Author: ASF GitHub Bot Created on: 09/Oct/18 03:07 Start Date: 09/Oct/18 03:07 Worklog Time Spent: 10m Work Description: rezarokni commented on a change in pull request #6540: [BEAM-2953] Advanced Timeseries examples. URL: https://github.com/apache/beam/pull/6540#discussion_r223549405 ########## File path: examples/java/src/main/java/org/apache/beam/examples/timeseries/TimeSeriesExampleToFile.java ########## @@ -0,0 +1,153 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one + * or more contributor license agreements. See the NOTICE file + * distributed with this work for additional information + * regarding copyright ownership. The ASF licenses this file + * to you under the Apache License, Version 2.0 (the + * "License"); you may not use this file except in compliance + * with the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.beam.examples.timeseries; + +import com.google.protobuf.util.Timestamps; +import java.util.ArrayList; +import java.util.List; +import org.apache.beam.examples.timeseries.configuration.TSConfiguration; +import org.apache.beam.examples.timeseries.io.tf.TFSequenceExampleToBytes; +import org.apache.beam.examples.timeseries.io.tf.TSAccumSequenceToTFSequencExample; +import org.apache.beam.examples.timeseries.protos.TimeSeriesData; +import org.apache.beam.examples.timeseries.transforms.DebugSortedResult; +import org.apache.beam.examples.timeseries.transforms.ExtractAggregates; +import org.apache.beam.examples.timeseries.transforms.OrderOutput; +import org.apache.beam.examples.timeseries.transforms.TSAccumToFixedWindowSeq; +import org.apache.beam.examples.timeseries.utils.TSMultiVariateDataPoints; +import org.apache.beam.sdk.Pipeline; +import org.apache.beam.sdk.annotations.Experimental; +import org.apache.beam.sdk.io.TFRecordIO; +import org.apache.beam.sdk.options.PipelineOptionsFactory; +import org.apache.beam.sdk.transforms.Create; +import org.apache.beam.sdk.transforms.ParDo; +import org.apache.beam.sdk.values.KV; +import org.apache.beam.sdk.values.PCollection; +import org.joda.time.Duration; +import org.joda.time.Instant; + +/** + * This example pipeline is used to illustrate an advanced use of Keyed state and timers. The + * pipeline extracts interesting information from timeseries data. One of the key elements, is the + * transfer of data between fixed windows for a given key, as well as backfill when a key does not + * have any new data within a time boundary. This sample should not be used in production. + * + * <p>The output of this pipeline is to a File path. + */ +@Experimental +public class TimeSeriesExampleToFile { + + private static final String FILE_LOCATION = "/tmp/tf/"; + + public static void main(String[] args) { + + // Create pipeline + TimeSeriesOptions options = + PipelineOptionsFactory.fromArgs(args).withValidation().as(TimeSeriesOptions.class); + + TSConfiguration configuration = + TSConfiguration.builder() + .downSampleDuration(Duration.standardSeconds(1)) + .timeToLive(Duration.standardMinutes(1)) + .fillOption(TSConfiguration.BFillOptions.LAST_KNOWN_VALUE); + + Pipeline p = Pipeline.create(options); + + // ------------ READ DATA ------------ + + // Read some dummy timeseries data + PCollection<KV<TimeSeriesData.TSKey, TimeSeriesData.TSDataPoint>> readL1Data = + p.apply(Create.of(SinWaveSample.generateSinWave())) + .apply(ParDo.of(new TSMultiVariateDataPoints.ExtractTimeStamp())) + .apply(ParDo.of(new TSMultiVariateDataPoints.ConvertMultiToUniDataPoint())); + + // ------------ Create perfect rectangles of data-------- + + PCollection<KV<TimeSeriesData.TSKey, TimeSeriesData.TSAccum>> downSampled = + readL1Data.apply(new ExtractAggregates(configuration)); + + PCollection<KV<TimeSeriesData.TSKey, TimeSeriesData.TSAccum>> weHaveOrder = + downSampled.apply(new OrderOutput(configuration)); + + // ------------ OutPut Data as Logs and TFRecords-------- + + // This transform is purely to allow logged debug output, it will fail with OOM if large dataset is used. + weHaveOrder.apply(new DebugSortedResult()); + + // Create 3 different window lengths for the TFSequenceExample + weHaveOrder + .apply(new TSAccumToFixedWindowSeq(configuration, Duration.standardMinutes(1))) + .apply(ParDo.of(new TSAccumSequenceToTFSequencExample())) + .apply(ParDo.of(new TFSequenceExampleToBytes())) + .apply(TFRecordIO.write().to(FILE_LOCATION + "1min/tfSequenceExamplerecords")); + + weHaveOrder + .apply(new TSAccumToFixedWindowSeq(configuration, Duration.standardMinutes(5))) + .apply(ParDo.of(new TSAccumSequenceToTFSequencExample())) + .apply(ParDo.of(new TFSequenceExampleToBytes())) + .apply(TFRecordIO.write().to(FILE_LOCATION + "5min/tfSequenceExamplerecords")); + + weHaveOrder + .apply(new TSAccumToFixedWindowSeq(configuration, Duration.standardMinutes(10))) + .apply(ParDo.of(new TSAccumSequenceToTFSequencExample())) + .apply(ParDo.of(new TFSequenceExampleToBytes())) + .apply(TFRecordIO.write().to(FILE_LOCATION + "10min/tfSequenceExamplerecords")); + + p.run(); + } + + /** Simple data generator that creates some dummy test data for the timeseries examples. */ Review comment: Done. ---------------------------------------------------------------- This is an automated message from the Apache Git Service. To respond to the message, please log on GitHub and use the URL above to go to the specific comment. For queries about this service, please contact Infrastructure at: us...@infra.apache.org Issue Time Tracking ------------------- Worklog Id: (was: 152498) Time Spent: 3h (was: 2h 50m) > Create more advanced Timeseries processing examples using state API > ------------------------------------------------------------------- > > Key: BEAM-2953 > URL: https://issues.apache.org/jira/browse/BEAM-2953 > Project: Beam > Issue Type: Improvement > Components: examples-java > Affects Versions: 2.1.0 > Reporter: Reza ardeshir rokni > Assignee: Reuven Lax > Priority: Minor > Time Spent: 3h > Remaining Estimate: 0h > > As described in the phase 1 portion of this solution outline: > https://cloud.google.com/solutions/correlating-time-series-dataflow > BEAM can be used to build out some very interesting pre-processing stages for > time series data. Some examples that will be useful: > - Downsampling time series based on simple AVG, MIN, MAX > - Creating a value for each time window using generatesequence as a seed > - Loading the value of a downsample with the previous value (used in FX with > previous close being brought into current open value) > This will show some concrete examples of keyed state as well as the use of > combiners. > The samples can also be used to show how you can create a ordered list of > values per key from a unbounded topic which has multiple time series keys. -- This message was sent by Atlassian JIRA (v7.6.3#76005)