This is an automated email from the ASF dual-hosted git repository.

acosentino pushed a commit to branch 2721
in repository https://gitbox.apache.org/repos/asf/camel-kamelets.git

commit 4b856d7f11aea644e8b0d8e46923cf5897114a58
Author: Andrea Cosentino <[email protected]>
AuthorDate: Tue Feb 17 10:42:44 2026 +0100

    Create a Google Vertex AI Sink Kamelet
    
    Signed-off-by: Andrea Cosentino <[email protected]>
---
 .../partials/google-vertexai-sink-description.adoc | 26 ++++++++++++++++++++++
 1 file changed, 26 insertions(+)

diff --git a/docs/modules/ROOT/partials/google-vertexai-sink-description.adoc 
b/docs/modules/ROOT/partials/google-vertexai-sink-description.adoc
new file mode 100644
index 000000000..942bcb28e
--- /dev/null
+++ b/docs/modules/ROOT/partials/google-vertexai-sink-description.adoc
@@ -0,0 +1,26 @@
+== Google Vertex AI Sink Kamelet Description
+
+=== Authentication
+
+This Kamelet uses Google Cloud service account authentication. The service 
account key is optional - if not provided, the Kamelet will use Application 
Default Credentials (ADC).
+
+If you provide a service account key, it must be base64-encoded. Ensure that 
the service account has the `aiplatform.endpoints.predict` permission 
(typically granted through the `Vertex AI User` role).
+
+=== Required Configuration
+
+- **Project ID**: The Google Cloud Project ID
+- **Location**: The Google Cloud region where Vertex AI models are available 
(e.g., `us-central1`)
+- **Model ID**: The model identifier to use for predictions (e.g., 
`gemini-2.5-pro`)
+
+=== Optional Configuration
+
+- **Service Account Key**: Base64-encoded service account credentials
+- **Operation**: The operation to perform (default: `generateText`). Supported 
operations are `generateText`, `generateChat`, `generateImage`, 
`generateEmbeddings`, `generateCode`, `generateMultimodal`, and `rawPredict`
+- **Temperature**: Controls randomness in generation (0.0 to 1.0)
+- **Max Output Tokens**: Maximum number of tokens to generate in the response
+- **Top P**: Nucleus sampling parameter (0.0 to 1.0)
+- **Top K**: Only sample from the top K options for each subsequent token
+
+=== Content Generation
+
+The Kamelet sends the message body as a prompt to the specified Google Vertex 
AI model and returns the generated content. It supports Google native models 
(Gemini, Imagen) as well as partner models (Claude, Llama, Mistral) through the 
`rawPredict` operation.

Reply via email to