Modified: cassandra/site/publish/doc/cql3/CQL-2.2.html
URL: 
http://svn.apache.org/viewvc/cassandra/site/publish/doc/cql3/CQL-2.2.html?rev=1721342&r1=1721341&r2=1721342&view=diff
==============================================================================
--- cassandra/site/publish/doc/cql3/CQL-2.2.html (original)
+++ cassandra/site/publish/doc/cql3/CQL-2.2.html Tue Dec 22 10:57:15 2015
@@ -1,4 +1,4 @@
-<?xml version='1.0' encoding='utf-8' ?><!DOCTYPE html PUBLIC "-//W3C//DTD 
XHTML 1.0 Transitional//EN" 
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd";><html 
xmlns="http://www.w3.org/1999/xhtml";><head><meta http-equiv="Content-Type" 
content="text/html; charset=utf-8"/><title>CQL-2.2</title></head><body><p><link 
rel="StyleSheet" href="CQL.css" type="text/css" media="screen"></p><h1 
id="CassandraQueryLanguageCQLv3.3.0">Cassandra Query Language (CQL) 
v3.3.0</h1><span id="tableOfContents"><ol style="list-style: none;"><li><a 
href="CQL-2.2.html#CassandraQueryLanguageCQLv3.3.0">Cassandra Query Language 
(CQL) v3.3.0</a><ol style="list-style: none;"><li><a 
href="CQL-2.2.html#CQLSyntax">CQL Syntax</a><ol style="list-style: 
none;"><li><a href="CQL-2.2.html#Preamble">Preamble</a></li><li><a 
href="CQL-2.2.html#Conventions">Conventions</a></li><li><a 
href="CQL-2.2.html#identifiers">Identifiers and keywords</a></li><li><a 
href="CQL-2.2.html#constants">Constants</a></li><li><a href="CQL-2.
 2.html#Comments">Comments</a></li><li><a 
href="CQL-2.2.html#statements">Statements</a></li><li><a 
href="CQL-2.2.html#preparedStatement">Prepared 
Statement</a></li></ol></li><li><a href="CQL-2.2.html#dataDefinition">Data 
Definition</a><ol style="list-style: none;"><li><a 
href="CQL-2.2.html#createKeyspaceStmt">CREATE KEYSPACE</a></li><li><a 
href="CQL-2.2.html#useStmt">USE</a></li><li><a 
href="CQL-2.2.html#alterKeyspaceStmt">ALTER KEYSPACE</a></li><li><a 
href="CQL-2.2.html#dropKeyspaceStmt">DROP KEYSPACE</a></li><li><a 
href="CQL-2.2.html#createTableStmt">CREATE TABLE</a></li><li><a 
href="CQL-2.2.html#alterTableStmt">ALTER TABLE</a></li><li><a 
href="CQL-2.2.html#dropTableStmt">DROP TABLE</a></li><li><a 
href="CQL-2.2.html#truncateStmt">TRUNCATE</a></li><li><a 
href="CQL-2.2.html#createIndexStmt">CREATE INDEX</a></li><li><a 
href="CQL-2.2.html#dropIndexStmt">DROP INDEX</a></li><li><a 
href="CQL-2.2.html#createTypeStmt">CREATE TYPE</a></li><li><a 
href="CQL-2.2.html#alterTypeStmt">ALTER TYPE</
 a></li><li><a href="CQL-2.2.html#dropTypeStmt">DROP TYPE</a></li><li><a 
href="CQL-2.2.html#createTriggerStmt">CREATE TRIGGER</a></li><li><a 
href="CQL-2.2.html#dropTriggerStmt">DROP TRIGGER</a></li><li><a 
href="CQL-2.2.html#createFunctionStmt">CREATE FUNCTION</a></li><li><a 
href="CQL-2.2.html#dropFunctionStmt">DROP FUNCTION</a></li><li><a 
href="CQL-2.2.html#createAggregateStmt">CREATE AGGREGATE</a></li><li><a 
href="CQL-2.2.html#dropAggregateStmt">DROP AGGREGATE</a></li></ol></li><li><a 
href="CQL-2.2.html#dataManipulation">Data Manipulation</a><ol 
style="list-style: none;"><li><a 
href="CQL-2.2.html#insertStmt">INSERT</a></li><li><a 
href="CQL-2.2.html#updateStmt">UPDATE</a></li><li><a 
href="CQL-2.2.html#deleteStmt">DELETE</a></li><li><a 
href="CQL-2.2.html#batchStmt">BATCH</a></li></ol></li><li><a 
href="CQL-2.2.html#queries">Queries</a><ol style="list-style: none;"><li><a 
href="CQL-2.2.html#selectStmt">SELECT</a></li></ol></li><li><a 
href="CQL-2.2.html#databaseRoles">Database Roles</a><
 ol style="list-style: none;"><li><a href="CQL-2.2.html#createRoleStmt">CREATE 
ROLE</a></li><li><a href="CQL-2.2.html#alterRoleStmt">ALTER ROLE</a></li><li><a 
href="CQL-2.2.html#dropRoleStmt">DROP ROLE</a></li><li><a 
href="CQL-2.2.html#grantRoleStmt">GRANT ROLE</a></li><li><a 
href="CQL-2.2.html#revokeRoleStmt">REVOKE ROLE</a></li><li><a 
href="CQL-2.2.html#createUserStmt">CREATE USER </a></li><li><a 
href="CQL-2.2.html#alterUserStmt">ALTER USER </a></li><li><a 
href="CQL-2.2.html#dropUserStmt">DROP USER </a></li><li><a 
href="CQL-2.2.html#listUsersStmt">LIST USERS</a></li></ol></li><li><a 
href="CQL-2.2.html#dataControl">Data Control</a><ol style="list-style: 
none;"><li><a href="CQL-2.2.html#permissions">Permissions </a></li><li><a 
href="CQL-2.2.html#grantPermissionsStmt">GRANT PERMISSION</a></li><li><a 
href="CQL-2.2.html#revokePermissionsStmt">REVOKE 
PERMISSION</a></li></ol></li><li><a href="CQL-2.2.html#types">Data Types</a><ol 
style="list-style: none;"><li><a href="CQL-2.2.html#usingti
 mestamps">Working with timestamps</a></li><li><a 
href="CQL-2.2.html#usingdates">Working with dates</a></li><li><a 
href="CQL-2.2.html#usingtime">Working with time</a></li><li><a 
href="CQL-2.2.html#counters">Counters</a></li><li><a 
href="CQL-2.2.html#collections">Working with 
collections</a></li></ol></li><li><a 
href="CQL-2.2.html#functions">Functions</a><ol style="list-style: none;"><li><a 
href="CQL-2.2.html#tokenFun">Token</a></li><li><a 
href="CQL-2.2.html#uuidFun">Uuid</a></li><li><a 
href="CQL-2.2.html#timeuuidFun">Timeuuid functions</a></li><li><a 
href="CQL-2.2.html#timeFun">Time conversion functions</a></li><li><a 
href="CQL-2.2.html#blobFun">Blob conversion functions</a></li></ol></li><li><a 
href="CQL-2.2.html#aggregates">Aggregates</a><ol style="list-style: 
none;"><li><a href="CQL-2.2.html#countFct">Count</a></li><li><a 
href="CQL-2.2.html#maxMinFcts">Max and Min</a></li><li><a 
href="CQL-2.2.html#sumFct">Sum</a></li><li><a 
href="CQL-2.2.html#avgFct">Avg</a></li></ol></li><li><a h
 ref="CQL-2.2.html#udfs">User-Defined Functions</a></li><li><a 
href="CQL-2.2.html#udas">User-Defined Aggregates</a></li><li><a 
href="CQL-2.2.html#json">JSON Support</a><ol style="list-style: none;"><li><a 
href="CQL-2.2.html#selectJson">SELECT JSON</a></li><li><a 
href="CQL-2.2.html#insertJson">INSERT JSON</a></li><li><a 
href="CQL-2.2.html#jsonEncoding">JSON Encoding of Cassandra Data 
Types</a></li><li><a href="CQL-2.2.html#fromJson">The fromJson() 
Function</a></li><li><a href="CQL-2.2.html#toJson">The toJson() 
Function</a></li></ol></li><li><a href="CQL-2.2.html#appendixA">Appendix A: CQL 
Keywords</a></li><li><a href="CQL-2.2.html#appendixB">Appendix B: CQL Reserved 
Types</a></li><li><a href="CQL-2.2.html#changes">Changes</a><ol 
style="list-style: none;"><li><a 
href="CQL-2.2.html#a3.3.0">3.3.0</a></li><li><a 
href="CQL-2.2.html#a3.2.0">3.2.0</a></li><li><a 
href="CQL-2.2.html#a3.1.7">3.1.7</a></li><li><a 
href="CQL-2.2.html#a3.1.6">3.1.6</a></li><li><a 
href="CQL-2.2.html#a3.1.5">3.1.5</a
 ></li><li><a href="CQL-2.2.html#a3.1.4">3.1.4</a></li><li><a 
 >href="CQL-2.2.html#a3.1.3">3.1.3</a></li><li><a 
 >href="CQL-2.2.html#a3.1.2">3.1.2</a></li><li><a 
 >href="CQL-2.2.html#a3.1.1">3.1.1</a></li><li><a 
 >href="CQL-2.2.html#a3.1.0">3.1.0</a></li><li><a 
 >href="CQL-2.2.html#a3.0.5">3.0.5</a></li><li><a 
 >href="CQL-2.2.html#a3.0.4">3.0.4</a></li><li><a 
 >href="CQL-2.2.html#a3.0.3">3.0.3</a></li><li><a 
 >href="CQL-2.2.html#a3.0.2">3.0.2</a></li><li><a 
 >href="CQL-2.2.html#a3.0.1">3.0.1</a></li></ol></li><li><a 
 >href="CQL-2.2.html#Versioning">Versioning</a></li></ol></li></ol></span><h2 
 >id="CQLSyntax">CQL Syntax</h2><h3 id="Preamble">Preamble</h3><p>This document 
 >describes the Cassandra Query Language (CQL) version 3. CQL v3 is not 
 >backward compatible with CQL v2 and differs from it in numerous ways. Note 
 >that this document describes the last version of the languages. However, the 
 ><a href="#changes">changes</a> section provides the diff between the 
 >different versions of CQL v3.</p><p>CQL v3 offers
  a model very close to SQL in the sense that data is put in <em>tables</em> 
containing <em>rows</em> of <em>columns</em>. For that reason, when used in 
this document, these terms (tables, rows and columns) have the same definition 
than they have in SQL. But please note that as such, they do 
<strong>not</strong> refer to the concept of rows and columns found in the 
internal implementation of Cassandra and in the thrift and CQL v2 API.</p><h3 
id="Conventions">Conventions</h3><p>To aid in specifying the CQL syntax, we 
will use the following conventions in this document:</p><ul><li>Language rules 
will be given in a <a 
href="http://en.wikipedia.org/wiki/Backus%E2%80%93Naur_Form";>BNF</a> -like 
notation:</li></ul><pre class="syntax"><pre>&lt;start> ::= TERMINAL 
&lt;non-terminal1> &lt;non-terminal1>
+<?xml version='1.0' encoding='utf-8' ?><!DOCTYPE html PUBLIC "-//W3C//DTD 
XHTML 1.0 Transitional//EN" 
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd";><html 
xmlns="http://www.w3.org/1999/xhtml";><head><meta http-equiv="Content-Type" 
content="text/html; charset=utf-8"/><title>CQL</title></head><body><p><link 
rel="StyleSheet" href="CQL.css" type="text/css" media="screen"></p><h1 
id="CassandraQueryLanguageCQLv3.3.1">Cassandra Query Language (CQL) 
v3.3.1</h1><span id="tableOfContents"><ol style="list-style: none;"><li><a 
href="CQL.html#CassandraQueryLanguageCQLv3.3.1">Cassandra Query Language (CQL) 
v3.3.1</a><ol style="list-style: none;"><li><a href="CQL.html#CQLSyntax">CQL 
Syntax</a><ol style="list-style: none;"><li><a 
href="CQL.html#Preamble">Preamble</a></li><li><a 
href="CQL.html#Conventions">Conventions</a></li><li><a 
href="CQL.html#identifiers">Identifiers and keywords</a></li><li><a 
href="CQL.html#constants">Constants</a></li><li><a 
href="CQL.html#Comments">Comments</a></l
 i><li><a href="CQL.html#statements">Statements</a></li><li><a 
href="CQL.html#preparedStatement">Prepared Statement</a></li></ol></li><li><a 
href="CQL.html#dataDefinition">Data Definition</a><ol style="list-style: 
none;"><li><a href="CQL.html#createKeyspaceStmt">CREATE KEYSPACE</a></li><li><a 
href="CQL.html#useStmt">USE</a></li><li><a 
href="CQL.html#alterKeyspaceStmt">ALTER KEYSPACE</a></li><li><a 
href="CQL.html#dropKeyspaceStmt">DROP KEYSPACE</a></li><li><a 
href="CQL.html#createTableStmt">CREATE TABLE</a></li><li><a 
href="CQL.html#alterTableStmt">ALTER TABLE</a></li><li><a 
href="CQL.html#dropTableStmt">DROP TABLE</a></li><li><a 
href="CQL.html#truncateStmt">TRUNCATE</a></li><li><a 
href="CQL.html#createIndexStmt">CREATE INDEX</a></li><li><a 
href="CQL.html#dropIndexStmt">DROP INDEX</a></li><li><a 
href="CQL.html#createTypeStmt">CREATE TYPE</a></li><li><a 
href="CQL.html#alterTypeStmt">ALTER TYPE</a></li><li><a 
href="CQL.html#dropTypeStmt">DROP TYPE</a></li><li><a href="CQL.html#createTri
 ggerStmt">CREATE TRIGGER</a></li><li><a href="CQL.html#dropTriggerStmt">DROP 
TRIGGER</a></li><li><a href="CQL.html#createFunctionStmt">CREATE 
FUNCTION</a></li><li><a href="CQL.html#dropFunctionStmt">DROP 
FUNCTION</a></li><li><a href="CQL.html#createAggregateStmt">CREATE 
AGGREGATE</a></li><li><a href="CQL.html#dropAggregateStmt">DROP 
AGGREGATE</a></li></ol></li><li><a href="CQL.html#dataManipulation">Data 
Manipulation</a><ol style="list-style: none;"><li><a 
href="CQL.html#insertStmt">INSERT</a></li><li><a 
href="CQL.html#updateStmt">UPDATE</a></li><li><a 
href="CQL.html#deleteStmt">DELETE</a></li><li><a 
href="CQL.html#batchStmt">BATCH</a></li></ol></li><li><a 
href="CQL.html#queries">Queries</a><ol style="list-style: none;"><li><a 
href="CQL.html#selectStmt">SELECT</a></li></ol></li><li><a 
href="CQL.html#databaseRoles">Database Roles</a><ol style="list-style: 
none;"><li><a href="CQL.html#createRoleStmt">CREATE ROLE</a></li><li><a 
href="CQL.html#alterRoleStmt">ALTER ROLE</a></li><li><a hr
 ef="CQL.html#dropRoleStmt">DROP ROLE</a></li><li><a 
href="CQL.html#grantRoleStmt">GRANT ROLE</a></li><li><a 
href="CQL.html#revokeRoleStmt">REVOKE ROLE</a></li><li><a 
href="CQL.html#createUserStmt">CREATE USER </a></li><li><a 
href="CQL.html#alterUserStmt">ALTER USER </a></li><li><a 
href="CQL.html#dropUserStmt">DROP USER </a></li><li><a 
href="CQL.html#listUsersStmt">LIST USERS</a></li></ol></li><li><a 
href="CQL.html#dataControl">Data Control</a><ol style="list-style: 
none;"><li><a href="CQL.html#permissions">Permissions </a></li><li><a 
href="CQL.html#grantPermissionsStmt">GRANT PERMISSION</a></li><li><a 
href="CQL.html#revokePermissionsStmt">REVOKE 
PERMISSION</a></li></ol></li><li><a href="CQL.html#types">Data Types</a><ol 
style="list-style: none;"><li><a href="CQL.html#usingtimestamps">Working with 
timestamps</a></li><li><a href="CQL.html#usingdates">Working with 
dates</a></li><li><a href="CQL.html#usingtime">Working with time</a></li><li><a 
href="CQL.html#counters">Counters</a></li><
 li><a href="CQL.html#collections">Working with 
collections</a></li></ol></li><li><a href="CQL.html#functions">Functions</a><ol 
style="list-style: none;"><li><a href="CQL.html#tokenFun">Token</a></li><li><a 
href="CQL.html#uuidFun">Uuid</a></li><li><a 
href="CQL.html#timeuuidFun">Timeuuid functions</a></li><li><a 
href="CQL.html#timeFun">Time conversion functions</a></li><li><a 
href="CQL.html#blobFun">Blob conversion functions</a></li></ol></li><li><a 
href="CQL.html#aggregates">Aggregates</a><ol style="list-style: none;"><li><a 
href="CQL.html#countFct">Count</a></li><li><a href="CQL.html#maxMinFcts">Max 
and Min</a></li><li><a href="CQL.html#sumFct">Sum</a></li><li><a 
href="CQL.html#avgFct">Avg</a></li></ol></li><li><a 
href="CQL.html#udfs">User-Defined Functions</a></li><li><a 
href="CQL.html#udas">User-Defined Aggregates</a></li><li><a 
href="CQL.html#json">JSON Support</a><ol style="list-style: none;"><li><a 
href="CQL.html#selectJson">SELECT JSON</a></li><li><a href="CQL.html#insertJson"
 >INSERT JSON</a></li><li><a href="CQL.html#jsonEncoding">JSON Encoding of 
 >Cassandra Data Types</a></li><li><a href="CQL.html#fromJson">The fromJson() 
 >Function</a></li><li><a href="CQL.html#toJson">The toJson() 
 >Function</a></li></ol></li><li><a href="CQL.html#appendixA">Appendix A: CQL 
 >Keywords</a></li><li><a href="CQL.html#appendixB">Appendix B: CQL Reserved 
 >Types</a></li><li><a href="CQL.html#changes">Changes</a><ol 
 >style="list-style: none;"><li><a href="CQL.html#a3.3.1">3.3.1</a></li><li><a 
 >href="CQL.html#a3.3.0">3.3.0</a></li><li><a 
 >href="CQL.html#a3.2.0">3.2.0</a></li><li><a 
 >href="CQL.html#a3.1.7">3.1.7</a></li><li><a 
 >href="CQL.html#a3.1.6">3.1.6</a></li><li><a 
 >href="CQL.html#a3.1.5">3.1.5</a></li><li><a 
 >href="CQL.html#a3.1.4">3.1.4</a></li><li><a 
 >href="CQL.html#a3.1.3">3.1.3</a></li><li><a 
 >href="CQL.html#a3.1.2">3.1.2</a></li><li><a 
 >href="CQL.html#a3.1.1">3.1.1</a></li><li><a 
 >href="CQL.html#a3.1.0">3.1.0</a></li><li><a 
 >href="CQL.html#a3.0.5">3.0.5</a></li><li><a href="CQL.html#
 a3.0.4">3.0.4</a></li><li><a href="CQL.html#a3.0.3">3.0.3</a></li><li><a 
href="CQL.html#a3.0.2">3.0.2</a></li><li><a 
href="CQL.html#a3.0.1">3.0.1</a></li></ol></li><li><a 
href="CQL.html#Versioning">Versioning</a></li></ol></li></ol></span><h2 
id="CQLSyntax">CQL Syntax</h2><h3 id="Preamble">Preamble</h3><p>This document 
describes the Cassandra Query Language (CQL) version 3. CQL v3 is not backward 
compatible with CQL v2 and differs from it in numerous ways. Note that this 
document describes the last version of the languages. However, the <a 
href="#changes">changes</a> section provides the diff between the different 
versions of CQL v3.</p><p>CQL v3 offers a model very close to SQL in the sense 
that data is put in <em>tables</em> containing <em>rows</em> of 
<em>columns</em>. For that reason, when used in this document, these terms 
(tables, rows and columns) have the same definition than they have in SQL. But 
please note that as such, they do <strong>not</strong> refer to the concept of
  rows and columns found in the internal implementation of Cassandra and in the 
thrift and CQL v2 API.</p><h3 id="Conventions">Conventions</h3><p>To aid in 
specifying the CQL syntax, we will use the following conventions in this 
document:</p><ul><li>Language rules will be given in a <a 
href="http://en.wikipedia.org/wiki/Backus%E2%80%93Naur_Form";>BNF</a> -like 
notation:</li></ul><pre class="syntax"><pre>&lt;start> ::= TERMINAL 
&lt;non-terminal1> &lt;non-terminal1>
 </pre></pre><ul><li>Nonterminal symbols will have <code>&lt;angle 
brackets></code>.</li><li>As additional shortcut notations to BNF, we&#8217;ll 
use traditional regular expression&#8217;s symbols (<code>?</code>, 
<code>+</code> and <code>*</code>) to signify that a given symbol is optional 
and/or can be repeated. We&#8217;ll also allow parentheses to group symbols and 
the <code>[&lt;characters>]</code> notation to represent any one of 
<code>&lt;characters></code>.</li><li>The grammar is provided for documentation 
purposes and leave some minor details out. For instance, the last column 
definition in a <code>CREATE TABLE</code> statement is optional but supported 
if present even though the provided grammar in this document suggest it is not 
supported. </li><li>Sample code will be provided in a code block:</li></ul><pre 
class="sample"><pre>SELECT sample_usage FROM cql;
 </pre></pre><ul><li>References to keywords or pieces of CQL code in running 
text will be shown in a <code>fixed-width font</code>.</li></ul><h3 
id="identifiers">Identifiers and keywords</h3><p>The CQL language uses 
<em>identifiers</em> (or <em>names</em>) to identify tables, columns and other 
objects. An identifier is a token matching the regular expression 
<code>[a-zA-Z]</code><code>[a-zA-Z0-9_]</code><code>*</code>.</p><p>A number of 
such identifiers, like <code>SELECT</code> or <code>WITH</code>, are 
<em>keywords</em>. They have a fixed meaning for the language and most are 
reserved. The list of those keywords can be found in <a 
href="#appendixA">Appendix A</a>.</p><p>Identifiers and (unquoted) keywords are 
case insensitive. Thus <code>SELECT</code> is the same than <code>select</code> 
or <code>sElEcT</code>, and <code>myId</code> is the same than 
<code>myid</code> or <code>MYID</code> for instance. A convention often used 
(in particular by the samples of this documentation) is t
 o use upper case for keywords and lower case for other 
identifiers.</p><p>There is a second kind of identifiers called <em>quoted 
identifiers</em> defined by enclosing an arbitrary sequence of characters in 
double-quotes(<code>"</code>). Quoted identifiers are never keywords. Thus 
<code>"select"</code> is not a reserved keyword and can be used to refer to a 
column, while <code>select</code> would raise a parse error. Also, contrarily 
to unquoted identifiers and keywords, quoted identifiers are case sensitive 
(<code>"My Quoted Id"</code> is <em>different</em> from <code>"my quoted 
id"</code>). A fully lowercase quoted identifier that matches 
<code>[a-zA-Z]</code><code>[a-zA-Z0-9_]</code><code>*</code> is equivalent to 
the unquoted identifier obtained by removing the double-quote (so 
<code>"myid"</code> is equivalent to <code>myid</code> and to <code>myId</code> 
but different from <code>"myId"</code>). Inside a quoted identifier, the 
double-quote character can be repeated to escape it
 , so <code>"foo "" bar"</code> is a valid identifier.</p><h3 
id="constants">Constants</h3><p>CQL defines the following kind of 
<em>constants</em>: strings, integers, floats, booleans, uuids and 
blobs:</p><ul><li>A string constant is an arbitrary sequence of characters 
characters enclosed by single-quote(<code>'</code>). One can include a 
single-quote in a string by repeating it, e.g. <code>'It''s raining 
today'</code>. Those are not to be confused with quoted identifiers that use 
double-quotes.</li><li>An integer constant is defined by 
<code>'-'?[0-9]+</code>.</li><li>A float constant is defined by 
<code>'-'?[0-9]+('.'[0-9]*)?([eE][+-]?[0-9+])?</code>. On top of that, 
<code>NaN</code> and <code>Infinity</code> are also float constants.</li><li>A 
boolean constant is either <code>true</code> or <code>false</code> up to 
case-insensitivity (i.e. <code>True</code> is a valid boolean 
constant).</li><li>A <a 
href="http://en.wikipedia.org/wiki/Universally_unique_identifier";>UUID</a> 
constan
 t is defined by <code>hex{8}-hex{4}-hex{4}-hex{4}-hex{12}</code> where 
<code>hex</code> is an hexadecimal character, e.g. <code>[0-9a-fA-F]</code> and 
<code>{4}</code> is the number of such characters.</li><li>A blob constant is 
an hexadecimal number defined by <code>0[xX](hex)+</code> where 
<code>hex</code> is an hexadecimal character, e.g. 
<code>[0-9a-fA-F]</code>.</li></ul><p>For how these constants are typed, see 
the <a href="#types">data types section</a>.</p><h3 
id="Comments">Comments</h3><p>A comment in CQL is a line beginning by either 
double dashes (<code>--</code>) or double slash 
(<code>//</code>).</p><p>Multi-line comments are also supported through 
enclosure within <code>/*</code> and <code>*/</code> (but nesting is not 
supported).</p><pre class="sample"><pre>-- This is a comment
 // This is a comment too
@@ -104,7 +104,7 @@ CREATE TABLE timeline (
 INSERT INTO test(pk, t, v, s) VALUES (0, 0, 'val0', 'static0');
 INSERT INTO test(pk, t, v, s) VALUES (0, 1, 'val1', 'static1');
 SELECT * FROM test WHERE pk=0 AND t=0;
-</pre></pre><p>the last query will return <code>'static1'</code> as value for 
<code>s</code>, since <code>s</code> is static and thus the 2nd insertion 
modified this &#8220;shared&#8221; value. Note however that static columns are 
only static within a given partition, and if in the example above both rows 
where from different partitions (i.e. if they had different value for 
<code>pk</code>), then the 2nd insertion would not have modified the value of 
<code>s</code> for the first row.</p><p>A few restrictions applies to when 
static columns are allowed:</p><ul><li>tables with the <code>COMPACT 
STORAGE</code> option (see below) cannot have them</li><li>a table without 
clustering columns cannot have static columns (in a table without clustering 
columns, every partition has only one row, and so every column is inherently 
static).</li><li>only non <code>PRIMARY KEY</code> columns can be 
static</li></ul><h4 id="createTableOptions"><code>&lt;option></code></h4><p>The 
<code>CREATE TABLE</cod
 e> statement supports a number of options that controls the configuration of a 
new table. These options can be specified after the <code>WITH</code> 
keyword.</p><p>The first of these option is <code>COMPACT STORAGE</code>. This 
option is mainly targeted towards backward compatibility for definitions 
created before CQL3 (see <a 
href="http://www.datastax.com/dev/blog/thrift-to-cql3";>www.datastax.com/dev/blog/thrift-to-cql3</a>
 for more details).  The option also provides a slightly more compact layout of 
data on disk but at the price of diminished flexibility and extensibility for 
the table.  Most notably, <code>COMPACT STORAGE</code> tables cannot have 
collections nor static columns and a <code>COMPACT STORAGE</code> table with at 
least one clustering column supports exactly one (as in not 0 nor more than 1) 
column not part of the <code>PRIMARY KEY</code> definition (which imply in 
particular that you cannot add nor remove columns after creation). For those 
reasons, <code>COMPACT STO
 RAGE</code> is not recommended outside of the backward compatibility reason 
evoked above.</p><p>Another option is <code>CLUSTERING ORDER</code>. It allows 
to define the ordering of rows on disk. It takes the list of the clustering 
column names with, for each of them, the on-disk order (Ascending or 
descending). Note that this option affects <a href="#selectOrderBy">what 
<code>ORDER BY</code> are allowed during <code>SELECT</code></a>.</p><p>Table 
creation supports the following other 
<code>&lt;property></code>:</p><table><tr><th>option                    
</th><th>kind   </th><th>default   
</th><th>description</th></tr><tr><td><code>comment</code>                    
</td><td><em>simple</em> </td><td>none        </td><td>A free-form, 
human-readable comment.</td></tr><tr><td><code>read_repair_chance</code>        
 </td><td><em>simple</em> </td><td>0.1         </td><td>The probability with 
which to query extra nodes (e.g. more nodes than required by the consistency 
level) for the purpos
 e of read repairs.</td></tr><tr><td><code>dclocal_read_repair_chance</code> 
</td><td><em>simple</em> </td><td>0           </td><td>The probability with 
which to query extra nodes (e.g. more nodes than required by the consistency 
level) belonging to the same data center than the read coordinator for the 
purpose of read repairs.</td></tr><tr><td><code>gc_grace_seconds</code>         
  </td><td><em>simple</em> </td><td>864000      </td><td>Time to wait before 
garbage collecting tombstones (deletion 
markers).</td></tr><tr><td><code>bloom_filter_fp_chance</code>     
</td><td><em>simple</em> </td><td>0.00075     </td><td>The target probability 
of false positive of the sstable bloom filters. Said bloom filters will be 
sized to provide the provided probability (thus lowering this value impact the 
size of bloom filters in-memory and 
on-disk)</td></tr><tr><td><code>compaction</code>                 
</td><td><em>map</em>    </td><td><em>see below</em> </td><td>The compaction 
options to use, se
 e below.</td></tr><tr><td><code>compression</code>                
</td><td><em>map</em>    </td><td><em>see below</em> </td><td>Compression 
options, see below. </td></tr><tr><td><code>caching</code>                    
</td><td><em>simple</em> </td><td>keys_only   </td><td>Whether to cache keys 
(&#8220;key cache&#8221;) and/or rows (&#8220;row cache&#8221;) for this table. 
Valid values are: <code>all</code>, <code>keys_only</code>, 
<code>rows_only</code> and <code>none</code>. 
</td></tr><tr><td><code>default_time_to_live</code>       
</td><td><em>simple</em> </td><td>0           </td><td>The default expiration 
time (&#8220;TTL&#8221;) in seconds for a table.</td></tr></table><h4 
id="compactionOptions"><code>compaction</code> options</h4><p>The 
<code>compaction</code> property must at least define the <code>'class'</code> 
sub-option, that defines the compaction strategy class to use. The default 
supported class are <code>'SizeTieredCompactionStrategy'</code> and 
<code>'LeveledCompacti
 onStrategy'</code>. Custom strategy can be provided by specifying the full 
class name as a <a href="#constants">string constant</a>. The rest of the 
sub-options depends on the chosen class. The sub-options supported by the 
default classes are:</p><table><tr><th>option                         
</th><th>supported compaction strategy </th><th>default </th><th>description 
</th></tr><tr><td><code>enabled</code>                        
</td><td><em>all</em>                           </td><td>true      </td><td>A 
boolean denoting whether compaction should be enabled or 
not.</td></tr><tr><td><code>tombstone_threshold</code>            
</td><td><em>all</em>                           </td><td>0.2       </td><td>A 
ratio such that if a sstable has more than this ratio of gcable tombstones over 
all contained columns, the sstable will be compacted (with no other sstables) 
for the purpose of purging those tombstones. 
</td></tr><tr><td><code>tombstone_compaction_interval</code>  
</td><td><em>all</em>
                            </td><td>1 day     </td><td>The minimum time to 
wait after an sstable creation time before considering it for &#8220;tombstone 
compaction&#8221;, where &#8220;tombstone compaction&#8221; is the compaction 
triggered if the sstable has more gcable tombstones than 
<code>tombstone_threshold</code>. 
</td></tr><tr><td><code>unchecked_tombstone_compaction</code> 
</td><td><em>all</em>                           </td><td>false    
</td><td>Setting this to true enables more aggressive tombstone compactions 
&#8211; single sstable tombstone compactions will run without checking how 
likely it is that they will be successful. 
</td></tr><tr><td><code>min_sstable_size</code>               
</td><td>SizeTieredCompactionStrategy    </td><td>50MB      </td><td>The size 
tiered strategy groups SSTables to compact in buckets. A bucket groups SSTables 
that differs from less than 50% in size.  However, for small sizes, this would 
result in a bucketing that is too fine grained. <code
 >min_sstable_size</code> defines a size threshold (in bytes) below which all 
 >SSTables belong to one unique 
 >bucket</td></tr><tr><td><code>min_threshold</code>                  
 ></td><td>SizeTieredCompactionStrategy    </td><td>4         </td><td>Minimum 
 >number of SSTables needed to start a minor 
 >compaction.</td></tr><tr><td><code>max_threshold</code>                  
 ></td><td>SizeTieredCompactionStrategy    </td><td>32        </td><td>Maximum 
 >number of SSTables processed by one minor 
 >compaction.</td></tr><tr><td><code>bucket_low</code>                     
 ></td><td>SizeTieredCompactionStrategy    </td><td>0.5       </td><td>Size 
 >tiered consider sstables to be within the same bucket if their size is within 
 >[average_size * <code>bucket_low</code>, average_size * 
 ><code>bucket_high</code> ] (i.e the default groups sstable whose sizes 
 >diverges by at most 50%)</td></tr><tr><td><code>bucket_high</code>            
 >        </td><td>SizeTieredCompactionStrategy    </td><td>1.5       
 ></td><td>Siz
 e tiered consider sstables to be within the same bucket if their size is 
within [average_size * <code>bucket_low</code>, average_size * 
<code>bucket_high</code> ] (i.e the default groups sstable whose sizes diverges 
by at most 50%).</td></tr><tr><td><code>sstable_size_in_mb</code>             
</td><td>LeveledCompactionStrategy       </td><td>5MB       </td><td>The target 
size (in MB) for sstables in the leveled strategy. Note that while sstable 
sizes should stay less or equal to <code>sstable_size_in_mb</code>, it is 
possible to exceptionally have a larger sstable as during compaction, data for 
a given partition key are never split into 2 sstables</td></tr></table><p>For 
the <code>compression</code> property, the following default sub-options are 
available:</p><table><tr><th>option              </th><th>default        
</th><th>description </th></tr><tr><td><code>sstable_compression</code> 
</td><td>LZ4Compressor    </td><td>The compression algorithm to use. Default 
compressor are: LZ
 4Compressor, SnappyCompressor and DeflateCompressor. Use an empty string 
(<code>''</code>) to disable compression. Custom compressor can be provided by 
specifying the full class name as a <a href="#constants">string 
constant</a>.</td></tr><tr><td><code>chunk_length_kb</code>     </td><td>64KB   
          </td><td>On disk SSTables are compressed by block (to allow random 
reads). This defines the size (in KB) of said block. Bigger values may improve 
the compression rate, but increases the minimum size of data to be read from 
disk for a read </td></tr><tr><td><code>crc_check_chance</code>    </td><td>1.0 
             </td><td>When compression is enabled, each compressed block 
includes a checksum of that block for the purpose of detecting disk bitrot and 
avoiding the propagation of corruption to other replica. This option defines 
the probability with which those checksums are checked during read. By default 
they are always checked. Set to 0 to disable checksum checking and to 0.5 for in
 stance to check them every other read</td></tr></table><h4 
id="Otherconsiderations">Other considerations:</h4><ul><li>When <a 
href="#insertStmt">inserting</a> / <a href="#updateStmt">updating</a> a given 
row, not all columns needs to be defined (except for those part of the key), 
and missing columns occupy no space on disk. Furthermore, adding new columns 
(see &lt;a href=#alterStmt><tt>ALTER TABLE</tt></a>) is a constant time 
operation. There is thus no need to try to anticipate future usage (or to cry 
when you haven&#8217;t) when creating a table.</li></ul><h3 
id="alterTableStmt">ALTER TABLE</h3><p><i>Syntax:</i></p><pre 
class="syntax"><pre>&lt;alter-table-stmt> ::= ALTER (TABLE | COLUMNFAMILY) 
&lt;tablename> &lt;instruction>
+</pre></pre><p>the last query will return <code>'static1'</code> as value for 
<code>s</code>, since <code>s</code> is static and thus the 2nd insertion 
modified this &#8220;shared&#8221; value. Note however that static columns are 
only static within a given partition, and if in the example above both rows 
where from different partitions (i.e. if they had different value for 
<code>pk</code>), then the 2nd insertion would not have modified the value of 
<code>s</code> for the first row.</p><p>A few restrictions applies to when 
static columns are allowed:</p><ul><li>tables with the <code>COMPACT 
STORAGE</code> option (see below) cannot have them</li><li>a table without 
clustering columns cannot have static columns (in a table without clustering 
columns, every partition has only one row, and so every column is inherently 
static).</li><li>only non <code>PRIMARY KEY</code> columns can be 
static</li></ul><h4 id="createTableOptions"><code>&lt;option></code></h4><p>The 
<code>CREATE TABLE</cod
 e> statement supports a number of options that controls the configuration of a 
new table. These options can be specified after the <code>WITH</code> 
keyword.</p><p>The first of these option is <code>COMPACT STORAGE</code>. This 
option is mainly targeted towards backward compatibility for definitions 
created before CQL3 (see <a 
href="http://www.datastax.com/dev/blog/thrift-to-cql3";>www.datastax.com/dev/blog/thrift-to-cql3</a>
 for more details).  The option also provides a slightly more compact layout of 
data on disk but at the price of diminished flexibility and extensibility for 
the table.  Most notably, <code>COMPACT STORAGE</code> tables cannot have 
collections nor static columns and a <code>COMPACT STORAGE</code> table with at 
least one clustering column supports exactly one (as in not 0 nor more than 1) 
column not part of the <code>PRIMARY KEY</code> definition (which imply in 
particular that you cannot add nor remove columns after creation). For those 
reasons, <code>COMPACT STO
 RAGE</code> is not recommended outside of the backward compatibility reason 
evoked above.</p><p>Another option is <code>CLUSTERING ORDER</code>. It allows 
to define the ordering of rows on disk. It takes the list of the clustering 
column names with, for each of them, the on-disk order (Ascending or 
descending). Note that this option affects <a href="#selectOrderBy">what 
<code>ORDER BY</code> are allowed during <code>SELECT</code></a>.</p><p>Table 
creation supports the following other 
<code>&lt;property></code>:</p><table><tr><th>option                    
</th><th>kind   </th><th>default   
</th><th>description</th></tr><tr><td><code>comment</code>                    
</td><td><em>simple</em> </td><td>none        </td><td>A free-form, 
human-readable comment.</td></tr><tr><td><code>read_repair_chance</code>        
 </td><td><em>simple</em> </td><td>0.1         </td><td>The probability with 
which to query extra nodes (e.g. more nodes than required by the consistency 
level) for the purpos
 e of read repairs.</td></tr><tr><td><code>dclocal_read_repair_chance</code> 
</td><td><em>simple</em> </td><td>0           </td><td>The probability with 
which to query extra nodes (e.g. more nodes than required by the consistency 
level) belonging to the same data center than the read coordinator for the 
purpose of read repairs.</td></tr><tr><td><code>gc_grace_seconds</code>         
  </td><td><em>simple</em> </td><td>864000      </td><td>Time to wait before 
garbage collecting tombstones (deletion 
markers).</td></tr><tr><td><code>bloom_filter_fp_chance</code>     
</td><td><em>simple</em> </td><td>0.00075     </td><td>The target probability 
of false positive of the sstable bloom filters. Said bloom filters will be 
sized to provide the provided probability (thus lowering this value impact the 
size of bloom filters in-memory and 
on-disk)</td></tr><tr><td><code>default_time_to_live</code>       
</td><td><em>simple</em> </td><td>0           </td><td>The default expiration 
time (&#8220;TTL&
 #8221;) in seconds for a table.</td></tr><tr><td><code>compaction</code>       
          </td><td><em>map</em>    </td><td><em>see below</em> 
</td><td>Compaction options, see <a 
href="#compactionOptions">below</a>.</td></tr><tr><td><code>compression</code>  
              </td><td><em>map</em>    </td><td><em>see below</em> 
</td><td>Compression options, see <a 
href="#compressionOptions">below</a>.</td></tr><tr><td><code>caching</code>     
               </td><td><em>map</em>    </td><td><em>see below</em> 
</td><td>Caching options, see <a 
href="#cachingOptions">below</a>.</td></tr></table><h4 
id="compactionOptions">Compaction options</h4><p>The <code>compaction</code> 
property must at least define the <code>'class'</code> sub-option, that defines 
the compaction strategy class to use. The default supported class are 
<code>'SizeTieredCompactionStrategy'</code>, 
<code>'LeveledCompactionStrategy'</code> and 
<code>'DateTieredCompactionStrategy'</code>. Custom strategy can be provided by 
sp
 ecifying the full class name as a <a href="#constants">string constant</a>. 
The rest of the sub-options depends on the chosen class. The sub-options 
supported by the default classes are:</p><table><tr><th>option                  
       </th><th>supported compaction strategy </th><th>default    
</th><th>description </th></tr><tr><td><code>enabled</code>                     
   </td><td><em>all</em>                           </td><td>true         
</td><td>A boolean denoting whether compaction should be enabled or 
not.</td></tr><tr><td><code>tombstone_threshold</code>            
</td><td><em>all</em>                           </td><td>0.2          
</td><td>A ratio such that if a sstable has more than this ratio of gcable 
tombstones over all contained columns, the sstable will be compacted (with no 
other sstables) for the purpose of purging those tombstones. 
</td></tr><tr><td><code>tombstone_compaction_interval</code>  
</td><td><em>all</em>                           </td><td>1 day       
  </td><td>The minimum time to wait after an sstable creation time before 
considering it for &#8220;tombstone compaction&#8221;, where &#8220;tombstone 
compaction&#8221; is the compaction triggered if the sstable has more gcable 
tombstones than <code>tombstone_threshold</code>. 
</td></tr><tr><td><code>unchecked_tombstone_compaction</code> 
</td><td><em>all</em>                           </td><td>false        
</td><td>Setting this to true enables more aggressive tombstone compactions 
&#8211; single sstable tombstone compactions will run without checking how 
likely it is that they will be successful. 
</td></tr><tr><td><code>min_sstable_size</code>               
</td><td>SizeTieredCompactionStrategy    </td><td>50MB         </td><td>The 
size tiered strategy groups SSTables to compact in buckets. A bucket groups 
SSTables that differs from less than 50% in size.  However, for small sizes, 
this would result in a bucketing that is too fine grained. 
<code>min_sstable_size</code> defines a siz
 e threshold (in bytes) below which all SSTables belong to one unique 
bucket</td></tr><tr><td><code>min_threshold</code>                  
</td><td>SizeTieredCompactionStrategy    </td><td>4            </td><td>Minimum 
number of SSTables needed to start a minor 
compaction.</td></tr><tr><td><code>max_threshold</code>                  
</td><td>SizeTieredCompactionStrategy    </td><td>32           </td><td>Maximum 
number of SSTables processed by one minor 
compaction.</td></tr><tr><td><code>bucket_low</code>                     
</td><td>SizeTieredCompactionStrategy    </td><td>0.5          </td><td>Size 
tiered consider sstables to be within the same bucket if their size is within 
[average_size * <code>bucket_low</code>, average_size * 
<code>bucket_high</code> ] (i.e the default groups sstable whose sizes diverges 
by at most 50%)</td></tr><tr><td><code>bucket_high</code>                    
</td><td>SizeTieredCompactionStrategy    </td><td>1.5          </td><td>Size 
tiered consider sstables
  to be within the same bucket if their size is within [average_size * 
<code>bucket_low</code>, average_size * <code>bucket_high</code> ] (i.e the 
default groups sstable whose sizes diverges by at most 
50%).</td></tr><tr><td><code>sstable_size_in_mb</code>             
</td><td>LeveledCompactionStrategy       </td><td>5MB          </td><td>The 
target size (in MB) for sstables in the leveled strategy. Note that while 
sstable sizes should stay less or equal to <code>sstable_size_in_mb</code>, it 
is possible to exceptionally have a larger sstable as during compaction, data 
for a given partition key are never split into 2 
sstables</td></tr><tr><td><code>timestamp_resolution</code>           
</td><td>DateTieredCompactionStrategy    </td><td>MICROSECONDS </td><td>The 
timestamp resolution used when inserting data, could be MILLISECONDS, 
MICROSECONDS etc (should be understandable by Java 
TimeUnit)</td></tr><tr><td><code>base_time_seconds</code>              
</td><td>DateTieredCompactionStrate
 gy    </td><td>60           </td><td>The base size of the time windows. 
</td></tr><tr><td><code>max_sstable_age_days</code>           
</td><td>DateTieredCompactionStrategy    </td><td>365          
</td><td>SSTables only containing data that is older than this will never be 
compacted. </td></tr></table><h4 id="compressionOptions">Compression 
options</h4><p>For the <code>compression</code> property, the following 
sub-options are available:</p><table><tr><th>option              
</th><th>default        </th><th>description 
</th></tr><tr><td><code>sstable_compression</code> </td><td>LZ4Compressor    
</td><td>The compression algorithm to use. Default compressor are: 
LZ4Compressor, SnappyCompressor and DeflateCompressor. Use an empty string 
(<code>''</code>) to disable compression. Custom compressor can be provided by 
specifying the full class name as a <a href="#constants">string 
constant</a>.</td></tr><tr><td><code>chunk_length_kb</code>     </td><td>64KB   
          </td><td>On disk SST
 ables are compressed by block (to allow random reads). This defines the size 
(in KB) of said block. Bigger values may improve the compression rate, but 
increases the minimum size of data to be read from disk for a read 
</td></tr><tr><td><code>crc_check_chance</code>    </td><td>1.0              
</td><td>When compression is enabled, each compressed block includes a checksum 
of that block for the purpose of detecting disk bitrot and avoiding the 
propagation of corruption to other replica. This option defines the probability 
with which those checksums are checked during read. By default they are always 
checked. Set to 0 to disable checksum checking and to 0.5 for instance to check 
them every other read</td></tr></table><h4 id="cachingOptions">Caching 
options</h4><p>For the <code>caching</code> property, the following sub-options 
are available:</p><table><tr><th>option              </th><th>default        
</th><th>description </th></tr><tr><td><code>keys</code>                 
</td><td>
 ALL   </td><td>Whether to cache keys (&#8220;key cache&#8221;) for this table. 
Valid values are: <code>ALL</code> and 
<code>NONE</code>.</td></tr><tr><td><code>rows_per_partition</code>   
</td><td>NONE   </td><td>The amount of rows to cache per partition (&#8220;row 
cache&#8221;). If an integer <code>n</code> is specified, the first 
<code>n</code> queried rows of a partition will be cached. Other possible 
options are <code>ALL</code>, to cache all rows of a queried partition, or 
<code>NONE</code> to disable row caching.</td></tr></table><h4 
id="Otherconsiderations">Other considerations:</h4><ul><li>When <a 
href="#insertStmt">inserting</a> / <a href="#updateStmt">updating</a> a given 
row, not all columns needs to be defined (except for those part of the key), 
and missing columns occupy no space on disk. Furthermore, adding new columns 
(see &lt;a href=#alterStmt><tt>ALTER TABLE</tt></a>) is a constant time 
operation. There is thus no need to try to anticipate future usage (or to cry w
 hen you haven&#8217;t) when creating a table.</li></ul><h3 
id="alterTableStmt">ALTER TABLE</h3><p><i>Syntax:</i></p><pre 
class="syntax"><pre>&lt;alter-table-stmt> ::= ALTER (TABLE | COLUMNFAMILY) 
&lt;tablename> &lt;instruction>
 
 &lt;instruction> ::= ALTER &lt;identifier> TYPE &lt;type>
                 | ADD   &lt;identifier> &lt;type>
@@ -121,7 +121,7 @@ WITH comment = 'A most excellent and use
  AND read_repair_chance = 0.2;
 </pre></pre><p><br/>The <code>ALTER</code> statement is used to manipulate 
table definitions. It allows for adding new columns, dropping existing ones, 
changing the type of existing columns, or updating the table options. As with 
table creation, <code>ALTER COLUMNFAMILY</code> is allowed as an alias for 
<code>ALTER TABLE</code>.</p><p>The <code>&lt;tablename></code> is the table 
name optionally preceded by the keyspace name.  The 
<code>&lt;instruction></code> defines the alteration to 
perform:</p><ul><li><code>ALTER</code>: Update the type of a given defined 
column. Note that the type of the <a 
href="#createTablepartitionClustering">clustering columns</a> cannot be 
modified as it induces the on-disk ordering of rows. Columns on which a <a 
href="#createIndexStmt">secondary index</a> is defined have the same 
restriction. Other columns are free from those restrictions (no validation of 
existing data is performed), but it is usually a bad idea to change the type to 
a non-compatible one,
  unless no data have been inserted for that column yet, as this could confuse 
CQL drivers/tools.</li><li><code>ADD</code>: Adds a new column to the table. 
The <code>&lt;identifier></code> for the new column must not conflict with an 
existing column. Moreover, columns cannot be added to tables defined with the 
<code>COMPACT STORAGE</code> option.</li><li><code>DROP</code>: Removes a 
column from the table. Dropped columns will immediately become unavailable in 
the queries and will not be included in compacted sstables in the future. If a 
column is readded, queries won&#8217;t return values written before the column 
was last dropped. It is assumed that timestamps represent actual time, so if 
this is not your case, you should NOT readd previously dropped columns. Columns 
can&#8217;t be dropped from tables defined with the <code>COMPACT 
STORAGE</code> option.</li><li><code>WITH</code>: Allows to update the options 
of the table. The <a href="#createTableOptions">supported <code>&lt;option
 ></code></a> (and syntax) are the same as for the <code>CREATE TABLE</code> 
 >statement except that <code>COMPACT STORAGE</code> is not supported. Note 
 >that setting any <code>compaction</code> sub-options has the effect of 
 >erasing all previous <code>compaction</code> options, so you  need to 
 >re-specify all the sub-options if you want to keep them. The same note 
 >applies to the set of <code>compression</code> sub-options.</li></ul><h3 
 >id="dropTableStmt">DROP TABLE</h3><p><i>Syntax:</i></p><pre 
 >class="syntax"><pre>&lt;drop-table-stmt> ::= DROP TABLE ( IF EXISTS )? 
 >&lt;tablename>
 </pre></pre><p><i>Sample:</i></p><pre class="sample"><pre>DROP TABLE 
worldSeriesAttendees;
-</pre></pre><p>The <code>DROP TABLE</code> statement results in the immediate, 
irreversible removal of a table, including all data contained in it. As for 
table creation, <code>DROP COLUMNFAMILY</code> is allowed as an alias for 
<code>DROP TABLE</code>.</p><p>If the table does not exist, the statement will 
return an error, unless <code>IF EXISTS</code> is used in which case the 
operation is a no-op.</p><h3 
id="truncateStmt">TRUNCATE</h3><p><i>Syntax:</i></p><pre 
class="syntax"><pre>&lt;truncate-stmt> ::= TRUNCATE &lt;tablename>
+</pre></pre><p>The <code>DROP TABLE</code> statement results in the immediate, 
irreversible removal of a table, including all data contained in it. As for 
table creation, <code>DROP COLUMNFAMILY</code> is allowed as an alias for 
<code>DROP TABLE</code>.</p><p>If the table does not exist, the statement will 
return an error, unless <code>IF EXISTS</code> is used in which case the 
operation is a no-op.</p><h3 
id="truncateStmt">TRUNCATE</h3><p><i>Syntax:</i></p><pre 
class="syntax"><pre>&lt;truncate-stmt> ::= TRUNCATE ( TABLE | COLUMNFAMILY )? 
&lt;tablename>
 </pre></pre><p><i>Sample:</i></p><pre class="sample"><pre>TRUNCATE 
superImportantData;
 </pre></pre><p>The <code>TRUNCATE</code> statement permanently removes all 
data from a table.</p><h3 id="createIndexStmt">CREATE 
INDEX</h3><p><i>Syntax:</i></p><pre class="syntax"><pre>&lt;create-index-stmt> 
::= CREATE ( CUSTOM )? INDEX ( IF NOT EXISTS )? ( &lt;indexname> )?
                             ON &lt;tablename> '(' &lt;index-identifier> ')'
@@ -212,16 +212,16 @@ DROP FUNCTION afunction ( text );
                             AGGREGATE ( IF NOT EXISTS )?
                             ( &lt;keyspace> '.' )? &lt;aggregate-name>
                             '(' &lt;arg-type> ( ',' &lt;arg-type> )* ')'
-                            SFUNC ( &lt;keyspace> '.' )? 
&lt;state-functionname>
+                            SFUNC &lt;state-functionname>
                             STYPE &lt;state-type>
-                            ( FINALFUNC ( &lt;keyspace> '.' )? 
&lt;final-functionname> )?
+                            ( FINALFUNC &lt;final-functionname> )?
                             ( INITCOND &lt;init-cond> )?
 </pre></pre><p><br/><i>Sample:</i></p><pre class="sample"><pre>CREATE 
AGGREGATE myaggregate ( val text )
   SFUNC myaggregate_state
   STYPE text
   FINALFUNC myaggregate_final
   INITCOND 'foo';
-</pre></pre><p>See the section on <a href="#udas">user-defined aggregates</a> 
for a complete example.</p><p><code>CREATE AGGREGATE</code> creates or replaces 
a user-defined aggregate.</p><p><code>CREATE AGGREGATE</code> with the optional 
<code>OR REPLACE</code> keywords either creates an aggregate or replaces an 
existing one with the same signature. A <code>CREATE AGGREGATE</code> without 
<code>OR REPLACE</code> fails if an aggregate with the same signature already 
exists.</p><p><code>CREATE AGGREGATE</code> with the optional <code>IF NOT 
EXISTS</code> keywords either creates an aggregate if it does not already 
exist.</p><p><code>OR REPLACE</code> and <code>IF NOT EXIST</code> cannot be 
used together.</p><p>Aggregates belong to a keyspace. If no keyspace is 
specified in <code>&lt;aggregate-name></code>, the current keyspace is used 
(i.e. the keyspace specified using the <a href="#useStmt"><code>USE</code></a> 
statement). It is not possible to create a user-defined aggregate in one o
 f the system keyspaces.</p><p>Signatures for user-defined aggregates follow 
the <a href="#functionSignature">same rules</a> as for user-defined 
functions.</p><p><code>STYPE</code> defines the type of the state value and 
must be specified.</p><p>The optional <code>INITCOND</code> defines the initial 
state value for the aggregate. It defaults to <code>null</code>. A non-@null@ 
<code>INITCOND</code> must be specified for state functions that are declared 
with <code>RETURNS NULL ON NULL INPUT</code>.</p><p><code>SFUNC</code> 
references an existing function to be used as the state modifying function. The 
type of first argument of the state function must match <code>STYPE</code>. The 
remaining argument types of the state function must match the argument types of 
the aggregate function. State is not updated for state functions declared with 
<code>RETURNS NULL ON NULL INPUT</code> and called with <code>null</code>. 
Functions from the system keyspace are resolved before functions in the curr
 ent keyspace.</p><p>The optional <code>FINALFUNC</code> is called just before 
the aggregate result is returned. It must take only one argument with type 
<code>STYPE</code>. The return type of the <code>FINALFUNC</code> may be a 
different type. A final function declared with <code>RETURNS NULL ON NULL 
INPUT</code> means that the aggregate&#8217;s return value will be 
<code>null</code>, if the last state is <code>null</code>. Functions from the 
system keyspace are resolved before functions in the current keyspace.</p><p>If 
no <code>FINALFUNC</code> is defined, the overall return type of the aggregate 
function is <code>STYPE</code>.  If a <code>FINALFUNC</code> is defined, it is 
the return type of that function.</p><p>See the section on <a 
href="#udas">user-defined aggregates</a> for more information.</p><h3 
id="dropAggregateStmt">DROP AGGREGATE</h3><p><i>Syntax:</i></p><pre 
class="syntax"><pre>&lt;drop-aggregate-stmt> ::= DROP AGGREGATE ( IF EXISTS )?
+</pre></pre><p>See the section on <a href="#udas">user-defined aggregates</a> 
for a complete example.</p><p><code>CREATE AGGREGATE</code> creates or replaces 
a user-defined aggregate.</p><p><code>CREATE AGGREGATE</code> with the optional 
<code>OR REPLACE</code> keywords either creates an aggregate or replaces an 
existing one with the same signature. A <code>CREATE AGGREGATE</code> without 
<code>OR REPLACE</code> fails if an aggregate with the same signature already 
exists.</p><p><code>CREATE AGGREGATE</code> with the optional <code>IF NOT 
EXISTS</code> keywords either creates an aggregate if it does not already 
exist.</p><p><code>OR REPLACE</code> and <code>IF NOT EXIST</code> cannot be 
used together.</p><p>Aggregates belong to a keyspace. If no keyspace is 
specified in <code>&lt;aggregate-name></code>, the current keyspace is used 
(i.e. the keyspace specified using the <a href="#useStmt"><code>USE</code></a> 
statement). It is not possible to create a user-defined aggregate in one o
 f the system keyspaces.</p><p>Signatures for user-defined aggregates follow 
the <a href="#functionSignature">same rules</a> as for user-defined 
functions.</p><p><code>STYPE</code> defines the type of the state value and 
must be specified.</p><p>The optional <code>INITCOND</code> defines the initial 
state value for the aggregate. It defaults to <code>null</code>. A non-@null@ 
<code>INITCOND</code> must be specified for state functions that are declared 
with <code>RETURNS NULL ON NULL INPUT</code>.</p><p><code>SFUNC</code> 
references an existing function to be used as the state modifying function. The 
type of first argument of the state function must match <code>STYPE</code>. The 
remaining argument types of the state function must match the argument types of 
the aggregate function. State is not updated for state functions declared with 
<code>RETURNS NULL ON NULL INPUT</code> and called with 
<code>null</code>.</p><p>The optional <code>FINALFUNC</code> is called just 
before the aggregat
 e result is returned. It must take only one argument with type 
<code>STYPE</code>. The return type of the <code>FINALFUNC</code> may be a 
different type. A final function declared with <code>RETURNS NULL ON NULL 
INPUT</code> means that the aggregate&#8217;s return value will be 
<code>null</code>, if the last state is <code>null</code>.</p><p>If no 
<code>FINALFUNC</code> is defined, the overall return type of the aggregate 
function is <code>STYPE</code>.  If a <code>FINALFUNC</code> is defined, it is 
the return type of that function.</p><p>See the section on <a 
href="#udas">user-defined aggregates</a> for more information.</p><h3 
id="dropAggregateStmt">DROP AGGREGATE</h3><p><i>Syntax:</i></p><pre 
class="syntax"><pre>&lt;drop-aggregate-stmt> ::= DROP AGGREGATE ( IF EXISTS )?
                          ( &lt;keyspace> '.' )? &lt;aggregate-name>
                          ( '(' &lt;arg-type> ( ',' &lt;arg-type> )* ')' )?
 </pre></pre><p></p><p><i>Sample:</i></p><pre class="sample"><pre>DROP 
AGGREGATE myAggregate;
@@ -312,7 +312,7 @@ DELETE phone FROM Users WHERE userid IN
   INSERT INTO users (userid, password) VALUES ('user4', 'ch@ngem3c');
   DELETE name FROM users WHERE userid = 'user1';
 APPLY BATCH;
-</pre></pre><p>The <code>BATCH</code> statement group multiple modification 
statements (insertions/updates and deletions) into a single statement. It 
serves several purposes:</p><ol><li>It saves network round-trips between the 
client and the server (and sometimes between the server coordinator and the 
replicas) when batching multiple updates.</li><li>All updates in a 
<code>BATCH</code> belonging to a given partition key are performed in 
isolation.</li><li>By default, all operations in the batch are performed 
atomically.  See the notes on <a 
href="#unloggedBatch"><code>UNLOGGED</code></a> for more 
details.</li></ol><p>Note that:</p><ul><li><code>BATCH</code> statements may 
only contain <code>UPDATE</code>, <code>INSERT</code> and <code>DELETE</code> 
statements.</li><li>Batches are <em>not</em> a full analogue for SQL 
transactions.</li><li>If a timestamp is not specified for each operation, then 
all operations will be applied with the same timestamp. Due to 
Cassandra&#8217;s conflict 
 resolution procedure in the case of <a 
href="http://wiki.apache.org/cassandra/FAQ#clocktie";>timestamp ties</a>, 
operations may be applied in an order that is different from the order they are 
listed in the <code>BATCH</code> statement. To force a particular operation 
ordering, you must specify per-operation timestamps.</li></ul><h4 
id="unloggedBatch"><code>UNLOGGED</code></h4><p>By default, Cassandra uses a 
batch log to ensure all operations in a batch are applied atomically. (Note 
that the operations are still only isolated within a single 
partition.)</p><p>There is a performance penalty for batch atomicity when a 
batch spans multiple partitions. If you do not want to incur this penalty, you 
can tell Cassandra to skip the batchlog with the <code>UNLOGGED</code> option. 
If the <code>UNLOGGED</code> option is used, operations are only atomic within 
a single partition.</p><h4 id="counterBatch"><code>COUNTER</code></h4><p>Use 
the <code>COUNTER</code> option for batched counter updates.
   Unlike other updates in Cassandra, counter updates are not 
idempotent.</p><h4 
id="batchOptions"><code>&lt;option></code></h4><p><code>BATCH</code> supports 
both the <code>TIMESTAMP</code> option, with similar semantic to the one 
described in the <a href="#updateOptions"><code>UPDATE</code></a> statement 
(the timestamp applies to all the statement inside the batch). However, if 
used, <code>TIMESTAMP</code> <strong>must not</strong> be used in the 
statements within the batch.</p><h2 id="queries">Queries</h2><h3 
id="selectStmt">SELECT</h3><p><i>Syntax:</i></p><pre 
class="syntax"><pre>&lt;select-stmt> ::= SELECT ( JSON )? &lt;select-clause>
+</pre></pre><p>The <code>BATCH</code> statement group multiple modification 
statements (insertions/updates and deletions) into a single statement. It 
serves several purposes:</p><ol><li>It saves network round-trips between the 
client and the server (and sometimes between the server coordinator and the 
replicas) when batching multiple updates.</li><li>All updates in a 
<code>BATCH</code> belonging to a given partition key are performed in 
isolation.</li><li>By default, all operations in the batch are performed as 
<code>LOGGED</code>, to ensure all mutations eventually complete (or none 
will).  See the notes on <a href="#unloggedBatch"><code>UNLOGGED</code></a> for 
more details.</li></ol><p>Note that:</p><ul><li><code>BATCH</code> statements 
may only contain <code>UPDATE</code>, <code>INSERT</code> and 
<code>DELETE</code> statements.</li><li>Batches are <em>not</em> a full 
analogue for SQL transactions.</li><li>If a timestamp is not specified for each 
operation, then all operations wil
 l be applied with the same timestamp. Due to Cassandra&#8217;s conflict 
resolution procedure in the case of <a 
href="http://wiki.apache.org/cassandra/FAQ#clocktie";>timestamp ties</a>, 
operations may be applied in an order that is different from the order they are 
listed in the <code>BATCH</code> statement. To force a particular operation 
ordering, you must specify per-operation timestamps.</li></ul><h4 
id="unloggedBatch"><code>UNLOGGED</code></h4><p>By default, Cassandra uses a 
batch log to ensure all operations in a batch eventually complete or none will 
(note however that operations are only isolated within a single 
partition).</p><p>There is a performance penalty for batch atomicity when a 
batch spans multiple partitions. If you do not want to incur this penalty, you 
can tell Cassandra to skip the batchlog with the <code>UNLOGGED</code> option. 
If the <code>UNLOGGED</code> option is used, a failed batch might leave the 
patch only partly applied.</p><h4 id="counterBatch"><code>COU
 NTER</code></h4><p>Use the <code>COUNTER</code> option for batched counter 
updates.  Unlike other updates in Cassandra, counter updates are not 
idempotent.</p><h4 
id="batchOptions"><code>&lt;option></code></h4><p><code>BATCH</code> supports 
both the <code>TIMESTAMP</code> option, with similar semantic to the one 
described in the <a href="#updateOptions"><code>UPDATE</code></a> statement 
(the timestamp applies to all the statement inside the batch). However, if 
used, <code>TIMESTAMP</code> <strong>must not</strong> be used in the 
statements within the batch.</p><h2 id="queries">Queries</h2><h3 
id="selectStmt">SELECT</h3><p><i>Syntax:</i></p><pre 
class="syntax"><pre>&lt;select-stmt> ::= SELECT ( JSON )? &lt;select-clause>
                   FROM &lt;tablename>
                   ( WHERE &lt;where-clause> )?
                   ( ORDER BY &lt;order-by> )?
@@ -516,10 +516,12 @@ REVOKE DESCRIBE ON ALL ROLES FROM role_a
                 | float
                 | inet
                 | int
+                | smallint
                 | text
                 | time
                 | timestamp
                 | timeuuid
+                | tinyint
                 | uuid
                 | varchar
                 | varint
@@ -528,7 +530,7 @@ REVOKE DESCRIBE ON ALL ROLES FROM role_a
                     | set  '&lt;' &lt;native-type> '>'
                     | map  '&lt;' &lt;native-type> ',' &lt;native-type> '>'
 &lt;tuple-type> ::= tuple '&lt;' &lt;type> (',' &lt;type>)* '>'
-</pre></pre><p>Note that the native types are keywords and as such are 
case-insensitive. They are however not reserved ones.</p><p>The following table 
gives additional informations on the native data types, and on which kind of <a 
href="#constants">constants</a> each type supports:</p><table><tr><th>type    
</th><th>constants 
supported</th><th>description</th></tr><tr><td><code>ascii</code>    </td><td>  
strings            </td><td>ASCII character 
string</td></tr><tr><td><code>bigint</code>   </td><td>  integers           
</td><td>64-bit signed long</td></tr><tr><td><code>blob</code>     </td><td>  
blobs              </td><td>Arbitrary bytes (no 
validation)</td></tr><tr><td><code>boolean</code>  </td><td>  booleans          
 </td><td>true or false</td></tr><tr><td><code>counter</code>  </td><td>  
integers           </td><td>Counter column (64-bit signed value). See <a 
href="#counters">Counters</a> for details</td></tr><tr><td><code>date</code>    
 </td><td>  integers, strings  </td>
 <td>A date (with no corresponding time value).  See <a 
href="#usingdates">Working with dates</a> below for more 
information.</td></tr><tr><td><code>decimal</code>  </td><td>  integers, floats 
  </td><td>Variable-precision decimal</td></tr><tr><td><code>double</code>   
</td><td>  integers           </td><td>64-bit IEEE-754 floating 
point</td></tr><tr><td><code>float</code>    </td><td>  integers, floats   
</td><td>32-bit IEEE-754 floating point</td></tr><tr><td><code>inet</code>     
</td><td>  strings            </td><td>An IP address. It can be either 4 bytes 
long (IPv4) or 16 bytes long (IPv6). There is no <code>inet</code> constant, IP 
address should be inputed as strings</td></tr><tr><td><code>int</code>      
</td><td>  integers           </td><td>32-bit signed 
int</td></tr><tr><td><code>text</code>     </td><td>  strings            
</td><td>UTF8 encoded string</td></tr><tr><td><code>time</code>     </td><td>  
integers, strings  </td><td>A time with nanosecond precision.  See <a 
 href="#usingtime">Working with time</a> below for more 
information.</td></tr><tr><td><code>timestamp</code></td><td>  integers, 
strings  </td><td>A timestamp. Strings constant are allow to input timestamps 
as dates, see <a href="#usingtimestamps">Working with timestamps</a> below for 
more information.</td></tr><tr><td><code>timeuuid</code> </td><td>  uuids       
       </td><td>Type 1 UUID. This is generally used as a 
&#8220;conflict-free&#8221; timestamp. Also see the <a 
href="#timeuuidFun">functions on 
Timeuuid</a></td></tr><tr><td><code>uuid</code>     </td><td>  uuids            
  </td><td>Type 1 or type 4 UUID</td></tr><tr><td><code>varchar</code>  
</td><td>  strings            </td><td>UTF8 encoded 
string</td></tr><tr><td><code>varint</code>   </td><td>  integers           
</td><td>Arbitrary-precision integer</td></tr></table><p>For more information 
on how to use the collection types, see the <a href="#collections">Working with 
collections</a> section below.</p><h3 id="usingti
 mestamps">Working with timestamps</h3><p>Values of the <code>timestamp</code> 
type are encoded as 64-bit signed integers representing a number of 
milliseconds since the standard base time known as &#8220;the epoch&#8221;: 
January 1 1970 at 00:00:00 GMT.</p><p>Timestamp can be input in CQL as simple 
long integers, giving the number of milliseconds since the epoch, as defined 
above.</p><p>They can also be input as string literals in any of the following 
ISO 8601 formats, each representing the time and date Mar 2, 2011, at 04:05:00 
AM, GMT.:</p><ul><li><code>2011-02-03 
04:05+0000</code></li><li><code>2011-02-03 
04:05:00+0000</code></li><li><code>2011-02-03 
04:05:00.000+0000</code></li><li><code>2011-02-03T04:05+0000</code></li><li><code>2011-02-03T04:05:00+0000</code></li><li><code>2011-02-03T04:05:00.000+0000</code></li></ul><p>The
 <code>+0000</code> above is an RFC 822 4-digit time zone specification; 
<code>+0000</code> refers to GMT. US Pacific Standard Time is 
<code>-0800</code>. T
 he time zone may be omitted if desired&#8212; the date will be interpreted as 
being in the time zone under which the coordinating Cassandra node is 
configured.</p><ul><li><code>2011-02-03 04:05</code></li><li><code>2011-02-03 
04:05:00</code></li><li><code>2011-02-03 
04:05:00.000</code></li><li><code>2011-02-03T04:05</code></li><li><code>2011-02-03T04:05:00</code></li><li><code>2011-02-03T04:05:00.000</code></li></ul><p>There
 are clear difficulties inherent in relying on the time zone configuration 
being as expected, though, so it is recommended that the time zone always be 
specified for timestamps when feasible.</p><p>The time of day may also be 
omitted, if the date is the only piece that 
matters:</p><ul><li><code>2011-02-03</code></li><li><code>2011-02-03+0000</code></li></ul><p>In
 that case, the time of day will default to 00:00:00, in the specified or 
default time zone.</p><h3 id="usingdates">Working with dates</h3><p>Values of 
the <code>date</code> type are encoded as 32-bit uns
 igned integers representing a number of days with &#8220;the epoch&#8221; at 
the center of the range (2^31). Epoch is January 1st, 1970</p><p>A date can be 
input in CQL as an unsigned integer as defined above.</p><p>They can also be 
input as string literals in the following 
format:</p><ul><li><code>2014-01-01</code></li></ul><h3 id="usingtime">Working 
with time</h3><p>Values of the <code>time</code> type are encoded as 64-bit 
signed integers representing the number of nanoseconds since midnight.</p><p>A 
time can be input in CQL as simple long integers, giving the number of 
nanoseconds since midnight.</p><p>They can also be input as string literals in 
any of the following 
formats:</p><ul><li><code>08:12:54</code></li><li><code>08:12:54.123</code></li><li><code>08:12:54.123456</code></li><li><code>08:12:54.123456789</code></li></ul><h3
 id="counters">Counters</h3><p>The <code>counter</code> type is used to define 
<em>counter columns</em>. A counter column is a column whose value is a 6
 4-bit signed integer and on which 2 operations are supported: incrementation 
and decrementation (see <a href="#updateStmt"><code>UPDATE</code></a> for 
syntax).  Note the value of a counter cannot be set. A counter doesn&#8217;t 
exist until first incremented/decremented, and the first 
incrementation/decrementation is made as if the previous value was 0. Deletion 
of counter columns is supported but have some limitations (see the <a 
href="http://wiki.apache.org/cassandra/Counters";>Cassandra Wiki</a> for more 
information).</p><p>The use of the counter type is limited in the following 
way:</p><ul><li>It cannot be used for column that is part of the <code>PRIMARY 
KEY</code> of a table.</li><li>A table that contains a counter can only contain 
counters. In other words, either all the columns of a table outside the 
<code>PRIMARY KEY</code> have the counter type, or none of them have 
it.</li></ul><h3 id="collections">Working with collections</h3><h4 
id="Noteworthycharacteristics">Noteworthy c
 haracteristics</h4><p>Collections are meant for storing/denormalizing 
relatively small amount of data. They work well for things like &#8220;the 
phone numbers of a given user&#8221;, &#8220;labels applied to an email&#8221;, 
etc. But when items are expected to grow unbounded (&#8220;all the messages 
sent by a given user&#8221;, &#8220;events registered by a sensor&#8221;, ...), 
then collections are not appropriate anymore and a specific table (with 
clustering columns) should be used. Concretely, collections have the following 
limitations:</p><ul><li>Collections are always read in their entirety (and 
reading one is not paged internally).</li><li>Collections cannot have more than 
65535 elements. More precisely, while it may be possible to insert more than 
65535 elements, it is not possible to read more than the 65535 first elements 
(see <a 
href="https://issues.apache.org/jira/browse/CASSANDRA-5428";>CASSANDRA-5428</a> 
for details).</li><li>While insertion operations on sets and maps ne
 ver incur a read-before-write internally, some operations on lists do (see the 
section on lists below for details). It is thus advised to prefer sets over 
lists when possible.</li></ul><p>Please note that while some of those 
limitations may or may not be loosen in the future, the general rule that 
collections are for denormalizing small amount of data is meant to stay.</p><h4 
id="map">Maps</h4><p>A <code>map</code> is a <a href="#types">typed</a> set of 
key-value pairs, where keys are unique. Furthermore, note that the map are 
internally sorted by their keys and will thus always be returned in that order. 
To create a column of type <code>map</code>, use the <code>map</code> keyword 
suffixed with comma-separated key and value types, enclosed in angle brackets.  
For example:</p><pre class="sample"><pre>CREATE TABLE users (
+</pre></pre><p>Note that the native types are keywords and as such are 
case-insensitive. They are however not reserved ones.</p><p>The following table 
gives additional informations on the native data types, and on which kind of <a 
href="#constants">constants</a> each type supports:</p><table><tr><th>type    
</th><th>constants 
supported</th><th>description</th></tr><tr><td><code>ascii</code>    </td><td>  
strings            </td><td>ASCII character 
string</td></tr><tr><td><code>bigint</code>   </td><td>  integers           
</td><td>64-bit signed long</td></tr><tr><td><code>blob</code>     </td><td>  
blobs              </td><td>Arbitrary bytes (no 
validation)</td></tr><tr><td><code>boolean</code>  </td><td>  booleans          
 </td><td>true or false</td></tr><tr><td><code>counter</code>  </td><td>  
integers           </td><td>Counter column (64-bit signed value). See <a 
href="#counters">Counters</a> for details</td></tr><tr><td><code>date</code>    
 </td><td>  integers, strings  </td>
 <td>A date (with no corresponding time value).  See <a 
href="#usingdates">Working with dates</a> below for more 
information.</td></tr><tr><td><code>decimal</code>  </td><td>  integers, floats 
  </td><td>Variable-precision decimal</td></tr><tr><td><code>double</code>   
</td><td>  integers           </td><td>64-bit IEEE-754 floating 
point</td></tr><tr><td><code>float</code>    </td><td>  integers, floats   
</td><td>32-bit IEEE-754 floating point</td></tr><tr><td><code>inet</code>     
</td><td>  strings            </td><td>An IP address. It can be either 4 bytes 
long (IPv4) or 16 bytes long (IPv6). There is no <code>inet</code> constant, IP 
address should be inputed as strings</td></tr><tr><td><code>int</code>      
</td><td>  integers           </td><td>32-bit signed 
int</td></tr><tr><td><code>smallint</code> </td><td>  integers           
</td><td>16-bit signed int</td></tr><tr><td><code>text</code>     </td><td>  
strings            </td><td>UTF8 encoded string</td></tr><tr><td><code>t
 ime</code>     </td><td>  integers, strings  </td><td>A time with nanosecond 
precision.  See <a href="#usingtime">Working with time</a> below for more 
information.</td></tr><tr><td><code>timestamp</code></td><td>  integers, 
strings  </td><td>A timestamp. Strings constant are allow to input timestamps 
as dates, see <a href="#usingtimestamps">Working with timestamps</a> below for 
more information.</td></tr><tr><td><code>timeuuid</code> </td><td>  uuids       
       </td><td>Type 1 UUID. This is generally used as a 
&#8220;conflict-free&#8221; timestamp. Also see the <a 
href="#timeuuidFun">functions on 
Timeuuid</a></td></tr><tr><td><code>tinyint</code>  </td><td>  integers         
  </td><td>8-bit signed int</td></tr><tr><td><code>uuid</code>     </td><td>  
uuids              </td><td>Type 1 or type 4 
UUID</td></tr><tr><td><code>varchar</code>  </td><td>  strings            
</td><td>UTF8 encoded string</td></tr><tr><td><code>varint</code>   </td><td>  
integers           </td><td>Arbitra
 ry-precision integer</td></tr></table><p>For more information on how to use 
the collection types, see the <a href="#collections">Working with 
collections</a> section below.</p><h3 id="usingtimestamps">Working with 
timestamps</h3><p>Values of the <code>timestamp</code> type are encoded as 
64-bit signed integers representing a number of milliseconds since the standard 
base time known as &#8220;the epoch&#8221;: January 1 1970 at 00:00:00 
GMT.</p><p>Timestamp can be input in CQL as simple long integers, giving the 
number of milliseconds since the epoch, as defined above.</p><p>They can also 
be input as string literals in any of the following ISO 8601 formats, each 
representing the time and date Mar 2, 2011, at 04:05:00 AM, 
GMT.:</p><ul><li><code>2011-02-03 04:05+0000</code></li><li><code>2011-02-03 
04:05:00+0000</code></li><li><code>2011-02-03 
04:05:00.000+0000</code></li><li><code>2011-02-03T04:05+0000</code></li><li><code>2011-02-03T04:05:00+0000</code></li><li><code>2011-02-03T04:05
 :00.000+0000</code></li></ul><p>The <code>+0000</code> above is an RFC 822 
4-digit time zone specification; <code>+0000</code> refers to GMT. US Pacific 
Standard Time is <code>-0800</code>. The time zone may be omitted if 
desired&#8212; the date will be interpreted as being in the time zone under 
which the coordinating Cassandra node is 
configured.</p><ul><li><code>2011-02-03 04:05</code></li><li><code>2011-02-03 
04:05:00</code></li><li><code>2011-02-03 
04:05:00.000</code></li><li><code>2011-02-03T04:05</code></li><li><code>2011-02-03T04:05:00</code></li><li><code>2011-02-03T04:05:00.000</code></li></ul><p>There
 are clear difficulties inherent in relying on the time zone configuration 
being as expected, though, so it is recommended that the time zone always be 
specified for timestamps when feasible.</p><p>The time of day may also be 
omitted, if the date is the only piece that 
matters:</p><ul><li><code>2011-02-03</code></li><li><code>2011-02-03+0000</code></li></ul><p>In
 that case, t
 he time of day will default to 00:00:00, in the specified or default time 
zone.</p><h3 id="usingdates">Working with dates</h3><p>Values of the 
<code>date</code> type are encoded as 32-bit unsigned integers representing a 
number of days with &#8220;the epoch&#8221; at the center of the range (2^31). 
Epoch is January 1st, 1970</p><p>A date can be input in CQL as an unsigned 
integer as defined above.</p><p>They can also be input as string literals in 
the following format:</p><ul><li><code>2014-01-01</code></li></ul><h3 
id="usingtime">Working with time</h3><p>Values of the <code>time</code> type 
are encoded as 64-bit signed integers representing the number of nanoseconds 
since midnight.</p><p>A time can be input in CQL as simple long integers, 
giving the number of nanoseconds since midnight.</p><p>They can also be input 
as string literals in any of the following 
formats:</p><ul><li><code>08:12:54</code></li><li><code>08:12:54.123</code></li><li><code>08:12:54.123456</code></li><li><code
 >08:12:54.123456789</code></li></ul><h3 id="counters">Counters</h3><p>The 
 ><code>counter</code> type is used to define <em>counter columns</em>. A 
 >counter column is a column whose value is a 64-bit signed integer and on 
 >which 2 operations are supported: incrementation and decrementation (see <a 
 >href="#updateStmt"><code>UPDATE</code></a> for syntax).  Note the value of a 
 >counter cannot be set. A counter doesn&#8217;t exist until first 
 >incremented/decremented, and the first incrementation/decrementation is made 
 >as if the previous value was 0. Deletion of counter columns is supported but 
 >have some limitations (see the <a 
 >href="http://wiki.apache.org/cassandra/Counters";>Cassandra Wiki</a> for more 
 >information).</p><p>The use of the counter type is limited in the following 
 >way:</p><ul><li>It cannot be used for column that is part of the 
 ><code>PRIMARY KEY</code> of a table.</li><li>A table that contains a counter 
 >can only contain counters. In other words, either all the columns of a table 
 outside the <code>PRIMARY KEY</code> have the counter type, or none of them 
have it.</li></ul><h3 id="collections">Working with collections</h3><h4 
id="Noteworthycharacteristics">Noteworthy characteristics</h4><p>Collections 
are meant for storing/denormalizing relatively small amount of data. They work 
well for things like &#8220;the phone numbers of a given user&#8221;, 
&#8220;labels applied to an email&#8221;, etc. But when items are expected to 
grow unbounded (&#8220;all the messages sent by a given user&#8221;, 
&#8220;events registered by a sensor&#8221;, ...), then collections are not 
appropriate anymore and a specific table (with clustering columns) should be 
used. Concretely, collections have the following 
limitations:</p><ul><li>Collections are always read in their entirety (and 
reading one is not paged internally).</li><li>Collections cannot have more than 
65535 elements. More precisely, while it may be possible to insert more than 
65535 elements, it is not possible to read
  more than the 65535 first elements (see <a 
href="https://issues.apache.org/jira/browse/CASSANDRA-5428";>CASSANDRA-5428</a> 
for details).</li><li>While insertion operations on sets and maps never incur a 
read-before-write internally, some operations on lists do (see the section on 
lists below for details). It is thus advised to prefer sets over lists when 
possible.</li></ul><p>Please note that while some of those limitations may or 
may not be loosen in the future, the general rule that collections are for 
denormalizing small amount of data is meant to stay.</p><h4 
id="map">Maps</h4><p>A <code>map</code> is a <a href="#types">typed</a> set of 
key-value pairs, where keys are unique. Furthermore, note that the map are 
internally sorted by their keys and will thus always be returned in that order. 
To create a column of type <code>map</code>, use the <code>map</code> keyword 
suffixed with comma-separated key and value types, enclosed in angle brackets.  
For example:</p><pre class="sample"
 ><pre>CREATE TABLE users (
     id text PRIMARY KEY,
     given text,
     surname text,
@@ -573,7 +575,7 @@ UPDATE plays SET scores = scores - [ 12,
 )
 </pre></pre><p>then the <code>token</code> function will take a single 
argument of type <code>text</code> (in that case, the partition key is 
<code>userid</code> (there is no clustering columns so the partition key is the 
same than the primary key)), and the return type will be 
<code>bigint</code>.</p><h3 id="uuidFun">Uuid</h3><p>The <code>uuid</code> 
function takes no parameters and generates a random type 4 uuid suitable for 
use in INSERT or SET statements.</p><h3 id="timeuuidFun">Timeuuid 
functions</h3><h4 id="now"><code>now</code></h4><p>The <code>now</code> 
function takes no arguments and generates a new unique timeuuid (at the time 
where the statement using it is executed). Note that this method is useful for 
insertion but is largely non-sensical in <code>WHERE</code> clauses. For 
instance, a query of the form</p><pre class="sample"><pre>SELECT * FROM myTable 
WHERE t = now()
 </pre></pre><p>will never return any result by design, since the value 
returned by <code>now()</code> is guaranteed to be unique.</p><h4 
id="minTimeuuidandmaxTimeuuid"><code>minTimeuuid</code> and 
<code>maxTimeuuid</code></h4><p>The <code>minTimeuuid</code> (resp. 
<code>maxTimeuuid</code>) function takes a <code>timestamp</code> value 
<code>t</code> (which can be <a href="#usingtimestamps">either a timestamp or a 
date string</a> ) and return a <em>fake</em> <code>timeuuid</code> 
corresponding to the <em>smallest</em> (resp. <em>biggest</em>) possible 
<code>timeuuid</code> having for timestamp <code>t</code>. So for 
instance:</p><pre class="sample"><pre>SELECT * FROM myTable WHERE t > 
maxTimeuuid('2013-01-01 00:05+0000') AND t &lt; minTimeuuid('2013-02-02 
10:00+0000')
-</pre></pre><p>will select all rows where the <code>timeuuid</code> column 
<code>t</code> is strictly older than &#8216;2013-01-01 00:05+0000&#8217; but 
strictly younger than &#8216;2013-02-02 10:00+0000&#8217;.  Please note that 
<code>t >= maxTimeuuid('2013-01-01 00:05+0000')</code> would still <em>not</em> 
select a <code>timeuuid</code> generated exactly at &#8216;2013-01-01 
00:05+0000&#8217; and is essentially equivalent to <code>t > 
maxTimeuuid('2013-01-01 00:05+0000')</code>.</p><p><em>Warning</em>: We called 
the values generated by <code>minTimeuuid</code> and <code>maxTimeuuid</code> 
<em>fake</em> UUID because they do no respect the Time-Based UUID generation 
process specified by the <a href="http://www.ietf.org/rfc/rfc4122.txt";>RFC 
4122</a>. In particular, the value returned by these 2 methods will not be 
unique. This means you should only use those methods for querying (as in the 
example above). Inserting the result of those methods is almost certainly <em>a 
bad idea</em>.<
 /p><h3 id="timeFun">Time conversion functions</h3><p>A number of functions are 
provided to &#8220;convert&#8221; a <code>timeuuid</code>, a 
<code>timestamp</code> or a <code>date</code> into another <code>native</code> 
type.</p><table><tr><th>function name    </th><th>input type   
</th><th>description</th></tr><tr><td><code>toDate</code>            
</td><td><code>timeuuid</code>      </td><td>Converts the <code>timeuuid</code> 
argument into a <code>date</code> type</td></tr><tr><td><code>toDate</code>     
       </td><td><code>timestamp</code>     </td><td>Converts the 
<code>timestamp</code> argument into a <code>date</code> 
type</td></tr><tr><td><code>toTimestamp</code>       
</td><td><code>timeuuid</code>      </td><td>Converts the <code>timeuuid</code> 
argument into a <code>timestamp</code> 
type</td></tr><tr><td><code>toTimestamp</code>       </td><td><code>date</code> 
         </td><td>Converts the <code>date</code> argument into a 
<code>timestamp</code> type</td></tr><tr><td><c
 ode>toUnixTimestamp</code>   </td><td><code>timeuuid</code>      
</td><td>Converts the <code>timeuuid</code> argument into a <code>bigInt</code> 
raw value</td></tr><tr><td><code>toUnixTimestamp</code>   
</td><td><code>timestamp</code>     </td><td>Converts the 
<code>timestamp</code> argument into a <code>bigInt</code> raw 
value</td></tr><tr><td><code>toUnixTimestamp</code>   
</td><td><code>date</code>          </td><td>Converts the <code>date</code> 
argument into a <code>bigInt</code> raw 
value</td></tr><tr><td><code>dateOf</code>            
</td><td><code>timeuuid</code>      </td><td>Similar to 
<code>toTimestamp(timeuuid)</code> 
(DEPRECATED)</td></tr><tr><td><code>unixTimestampOf</code>   
</td><td><code>timeuuid</code>      </td><td>Similar to 
<code>toUnixTimestamp(timeuuid)</code> (DEPRECATED)</td></tr></table><h3 
id="blobFun">Blob conversion functions</h3><p>A number of functions are 
provided to &#8220;convert&#8221; the native types into binary data 
(<code>blob</code>). For eve
 ry <code>&lt;native-type></code> <code>type</code> supported by CQL3 (a 
notable exceptions is <code>blob</code>, for obvious reasons), the function 
<code>typeAsBlob</code> takes a argument of type <code>type</code> and return 
it as a <code>blob</code>.  Conversely, the function <code>blobAsType</code> 
takes a 64-bit <code>blob</code> argument and convert it to a 
<code>bigint</code> value.  And so for instance, <code>bigintAsBlob(3)</code> 
is <code>0x0000000000000003</code> and 
<code>blobAsBigint(0x0000000000000003)</code> is <code>3</code>.</p><h2 
id="aggregates">Aggregates</h2><p>CQL3 distinguishes between built-in 
aggregates (so called &#8216;native aggregates&#8217;) and <a 
href="#udas">user-defined aggregates</a>.  CQL3 includes several native 
aggregates, described below:</p><h3 id="countFct">Count</h3><p>The 
<code>count</code> function can be used to count the rows returned by a query. 
Example:</p><pre class="sample"><pre>SELECT COUNT(*) FROM plays;
+</pre></pre><p>will select all rows where the <code>timeuuid</code> column 
<code>t</code> is strictly older than &#8216;2013-01-01 00:05+0000&#8217; but 
strictly younger than &#8216;2013-02-02 10:00+0000&#8217;.  Please note that 
<code>t >= maxTimeuuid('2013-01-01 00:05+0000')</code> would still <em>not</em> 
select a <code>timeuuid</code> generated exactly at &#8216;2013-01-01 
00:05+0000&#8217; and is essentially equivalent to <code>t > 
maxTimeuuid('2013-01-01 00:05+0000')</code>.</p><p><em>Warning</em>: We called 
the values generated by <code>minTimeuuid</code> and <code>maxTimeuuid</code> 
<em>fake</em> UUID because they do no respect the Time-Based UUID generation 
process specified by the <a href="http://www.ietf.org/rfc/rfc4122.txt";>RFC 
4122</a>. In particular, the value returned by these 2 methods will not be 
unique. This means you should only use those methods for querying (as in the 
example above). Inserting the result of those methods is almost certainly <em>a 
bad idea</em>.<
 /p><h3 id="timeFun">Time conversion functions</h3><p>A number of functions are 
provided to &#8220;convert&#8221; a <code>timeuuid</code>, a 
<code>timestamp</code> or a <code>date</code> into another <code>native</code> 
type.</p><table><tr><th>function name    </th><th>input type   
</th><th>description</th></tr><tr><td><code>toDate</code>            
</td><td><code>timeuuid</code>      </td><td>Converts the <code>timeuuid</code> 
argument into a <code>date</code> type</td></tr><tr><td><code>toDate</code>     
       </td><td><code>timestamp</code>     </td><td>Converts the 
<code>timestamp</code> argument into a <code>date</code> 
type</td></tr><tr><td><code>toTimestamp</code>       
</td><td><code>timeuuid</code>      </td><td>Converts the <code>timeuuid</code> 
argument into a <code>timestamp</code> 
type</td></tr><tr><td><code>toTimestamp</code>       </td><td><code>date</code> 
         </td><td>Converts the <code>date</code> argument into a 
<code>timestamp</code> type</td></tr><tr><td><c
 ode>toUnixTimestamp</code>   </td><td><code>timeuuid</code>      
</td><td>Converts the <code>timeuuid</code> argument into a <code>bigInt</code> 
raw value</td></tr><tr><td><code>toUnixTimestamp</code>   
</td><td><code>timestamp</code>     </td><td>Converts the 
<code>timestamp</code> argument into a <code>bigInt</code> raw 
value</td></tr><tr><td><code>toUnixTimestamp</code>   
</td><td><code>date</code>          </td><td>Converts the <code>date</code> 
argument into a <code>bigInt</code> raw 
value</td></tr><tr><td><code>dateOf</code>            
</td><td><code>timeuuid</code>      </td><td>Similar to 
<code>toTimestamp(timeuuid)</code> 
(DEPRECATED)</td></tr><tr><td><code>unixTimestampOf</code>   
</td><td><code>timeuuid</code>      </td><td>Similar to 
<code>toUnixTimestamp(timeuuid)</code> (DEPRECATED)</td></tr></table><h3 
id="blobFun">Blob conversion functions</h3><p>A number of functions are 
provided to &#8220;convert&#8221; the native types into binary data 
(<code>blob</code>). For eve
 ry <code>&lt;native-type></code> <code>type</code> supported by CQL3 (a 
notable exceptions is <code>blob</code>, for obvious reasons), the function 
<code>typeAsBlob</code> takes a argument of type <code>type</code> and return 
it as a <code>blob</code>.  Conversely, the function <code>blobAsType</code> 
takes a 64-bit <code>blob</code> argument and convert it to a 
<code>bigint</code> value.  And so for instance, <code>bigintAsBlob(3)</code> 
is <code>0x0000000000000003</code> and 
<code>blobAsBigint(0x0000000000000003)</code> is <code>3</code>.</p><h2 
id="aggregates">Aggregates</h2><p>Aggregate functions work on a set of rows. 
They receive values for each row and returns one value for the whole 
set.<br/>If <code>normal</code> columns, <code>scalar functions</code>, 
<code>UDT</code> fields, <code>writetime</code> or <code>ttl</code> are 
selected together with aggregate functions, the values returned for them will 
be the ones of the first row matching the query.</p><p>CQL3 distinguishes b
 etween built-in aggregates (so called &#8216;native aggregates&#8217;) and <a 
href="#udas">user-defined aggregates</a>. CQL3 includes several native 
aggregates, described below:</p><h3 id="countFct">Count</h3><p>The 
<code>count</code> function can be used to count the rows returned by a query. 
Example:</p><pre class="sample"><pre>SELECT COUNT(*) FROM plays;
 SELECT COUNT(1) FROM plays;
 </pre></pre><p>It also can be used to count the non null value of a given 
column. Example:</p><pre class="sample"><pre>SELECT COUNT(scores) FROM plays;
 </pre></pre><h3 id="maxMinFcts">Max and Min</h3><p>The <code>max</code> and 
<code>min</code> functions can be used to compute the maximum and the minimum 
value returned by a query for a given column.</p><pre 
class="sample"><pre>SELECT MIN(players), MAX(players) FROM plays WHERE game = 
'quake';
@@ -595,7 +597,7 @@ CREATE FUNCTION fct_using_udt ( udtarg f
   RETURNS text
   LANGUAGE java
   AS $$ return udtarg.getString("txt"); $$;

[... 32 lines stripped ...]


Reply via email to