[
https://issues.apache.org/jira/browse/CASSANDRA-20250?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=17925301#comment-17925301
]
Dmitry Konstantinov edited comment on CASSANDRA-20250 at 2/8/25 4:39 PM:
-------------------------------------------------------------------------
JMH results, same tests but using AverageTime mode
Laptop (MacOS, OpenJDK11, 2,6 GHz 6-Core Intel Core i7)
{code:java}
4 threads ==
[java] Benchmark (type) Mode Cnt
Score Error Units
[java] ThreadLocalMetricsBench.increment LongAdder avgt 16
8.488 ± 1.140 ns/op
[java] ThreadLocalMetricsBench.increment LazySetArray avgt 16
4.813 ± 0.821 ns/op
[java] ThreadLocalMetricsBench.increment PiggybackArray avgt 16
4.430 ± 0.218 ns/op
{code}
Server (Linux, OpenJdk-11.0.26+4, Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz, 16
cores)
{code:java}
server, 4 threads ==
[java] Benchmark (type) Mode Cnt
Score Error Units
[java] ThreadLocalMetricsBench.increment LongAdder avgt 16
11.457 ? 0.340 ns/op
[java] ThreadLocalMetricsBench.increment LazySetArray avgt 16
5.587 ? 0.003 ns/op
[java] ThreadLocalMetricsBench.increment PiggybackArray avgt 16
4.293 ? 0.002 ns/op
server, 8 threads ==
[java] Benchmark (type) Mode Cnt
Score Error Units
[java] ThreadLocalMetricsBench.increment LongAdder avgt 16
11.136 ? 0.003 ns/op
[java] ThreadLocalMetricsBench.increment LazySetArray avgt 16
5.707 ? 0.107 ns/op
[java] ThreadLocalMetricsBench.increment PiggybackArray avgt 16
4.299 ? 0.017 ns/op
server, 16 threads ==
[java] Benchmark (type) Mode Cnt
Score Error Units
[java] ThreadLocalMetricsBench.increment LongAdder avgt 16
11.160 ? 0.018 ns/op
[java] ThreadLocalMetricsBench.increment LazySetArray avgt 16
5.637 ? 0.016 ns/op
[java] ThreadLocalMetricsBench.increment PiggybackArray avgt 16
4.611 ? 0.029 ns/op{code}
I am checking now the number of LongAdder operations which we have for the
write Cassandra flow per request (in the e2e benchmark) + I will try to run
e2e with disable metrics to ensure that async profiler graph is not biased
(note: I used -XX:+DebugNonSafepoints when I captured it).
was (Author: dnk):
JMH results, same tests but using AverageTime mode
Laptop (MacOS, OpenJDK11, 2,6 GHz 6-Core Intel Core i7)
{code:java}
4 threads ==
[java] Benchmark (type) Mode Cnt
Score Error Units
[java] ThreadLocalMetricsBench.increment LongAdder avgt 16
8.488 ± 1.140 ns/op
[java] ThreadLocalMetricsBench.increment LazySetArray avgt 16
4.813 ± 0.821 ns/op
[java] ThreadLocalMetricsBench.increment PiggybackArray avgt 16
4.430 ± 0.218 ns/op
{code}
Server (Linux, OpenJdk-11.0.26+4, Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz, 16
cores)
{code:java}
server, 4 threads ==
[java] Benchmark (type) Mode Cnt
Score Error Units
[java] ThreadLocalMetricsBench.increment LongAdder avgt 16
11.457 ? 0.340 ns/op
[java] ThreadLocalMetricsBench.increment LazySetArray avgt 16
5.587 ? 0.003 ns/op
[java] ThreadLocalMetricsBench.increment PiggybackArray avgt 16
4.293 ? 0.002 ns/op
server, 8 threads ==
[java] Benchmark (type) Mode Cnt
Score Error Units
[java] ThreadLocalMetricsBench.increment LongAdder avgt 16
11.136 ? 0.003 ns/op
[java] ThreadLocalMetricsBench.increment LazySetArray avgt 16
5.707 ? 0.107 ns/op
[java] ThreadLocalMetricsBench.increment PiggybackArray avgt 16
4.299 ? 0.017 ns/op
server, 16 threads ==
[java] Benchmark (type) Mode Cnt
Score Error Units
[java] ThreadLocalMetricsBench.increment LongAdder avgt 16
11.160 ? 0.018 ns/op
[java] ThreadLocalMetricsBench.increment LazySetArray avgt 16
5.637 ? 0.016 ns/op
[java] ThreadLocalMetricsBench.increment PiggybackArray avgt 16
4.611 ? 0.029 ns/op{code}
I am checking now the number of LongAdder operations which we have for the
write Cassandra flow (in the e2e benchmark) + I will try to run e2e with
disable metrics to ensure that async profiler graph is not biased (note: I used
-XX:+DebugNonSafepoints when I captured it).
> Provide the ability to disable specific metrics collection
> ----------------------------------------------------------
>
> Key: CASSANDRA-20250
> URL: https://issues.apache.org/jira/browse/CASSANDRA-20250
> Project: Apache Cassandra
> Issue Type: New Feature
> Components: Observability/Metrics
> Reporter: Dmitry Konstantinov
> Assignee: Dmitry Konstantinov
> Priority: Normal
> Attachments: async_profiler_cpu_profiles.zip,
> cpu_profile_insert.html, jmh-result.json
>
>
> Cassandra has a lot of metrics collected, many of them are collected per
> table, so their instance number is multiplied by number of tables. From one
> side it gives a better observability, from another side metrics are not for
> free, there is an overhead associated with them:
> 1) CPU overhead: in case of simple CPU bound load: I already see like 5.5% of
> total CPU spent for metrics in cpu framegraphs for read load and 11% for
> write load.
> Example: [^cpu_profile_insert.html] (search by "codahale" pattern)
> 2) memory overhead: we spend memory for entities used to aggregate metrics
> such as LongAdders and reservoirs + for MBeans (String concatenation within
> object names is a major cause of it, for each table+metric name combination a
> new String is created)
>
> The idea of this ticket is to allow an operator to configure a list of
> disabled metrics in cassandra.yaml, like:
> {code:java}
> disabled_metrics:
> - metric_a
> - metric_b
> {code}
> From implementation point of view I see two possible approaches (which can be
> combined):
> # Generic: when a metric is registering if it is listed in disabled_metrics
> we do not publish it via JMX and provide a noop implementation of metric
> object (such as histogram) for it.
> Logging analogy: log level check within log method
> # Specialized: for some metrics the process of value calculation is not for
> free and introduces an overhead as well, in such cases it would be useful to
> check within specific logic using an API (like: isMetricEnabled) do we need
> to do it. Example of such metric:
> ClientRequestSizeMetrics.recordRowAndColumnCountMetrics
> Logging analogy: an explicit 'if (isDebugEnabled())' condition used when a
> message parameter is expensive.
--
This message was sent by Atlassian Jira
(v8.20.10#820010)
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]