This is an automated email from the ASF dual-hosted git repository. github-bot pushed a commit to branch asf-site in repository https://gitbox.apache.org/repos/asf/datafusion.git
The following commit(s) were added to refs/heads/asf-site by this push: new 7dadc1e2aa Publish built docs triggered by ce14fbccda551e76b646442a77ddcc75becf4b88 7dadc1e2aa is described below commit 7dadc1e2aa00f23440bb4afaecb48561f35f10cc Author: github-actions[bot] <github-actions[bot]@users.noreply.github.com> AuthorDate: Tue Feb 25 21:25:48 2025 +0000 Publish built docs triggered by ce14fbccda551e76b646442a77ddcc75becf4b88 --- _sources/user-guide/configs.md.txt | 1 + searchindex.js | 2 +- user-guide/configs.html | 118 +++++++++++++++++++------------------ 3 files changed, 63 insertions(+), 58 deletions(-) diff --git a/_sources/user-guide/configs.md.txt b/_sources/user-guide/configs.md.txt index 999735f4c0..a454a1777b 100644 --- a/_sources/user-guide/configs.md.txt +++ b/_sources/user-guide/configs.md.txt @@ -70,6 +70,7 @@ Environment variables are read during `SessionConfig` initialisation so they mus | datafusion.execution.parquet.max_row_group_size | 1048576 | (writing) Target maximum number of rows in each row group (defaults to 1M rows). Writing larger row groups requires more memory to write, but can get better compression and be faster to read. [...] | datafusion.execution.parquet.created_by | datafusion version 45.0.0 | (writing) Sets "created by" property [...] | datafusion.execution.parquet.column_index_truncate_length | 64 | (writing) Sets column index truncate length [...] +| datafusion.execution.parquet.statistics_truncate_length | NULL | (writing) Sets statictics truncate length. If NULL, uses default parquet writer setting [...] | datafusion.execution.parquet.data_page_row_count_limit | 20000 | (writing) Sets best effort maximum number of rows in data page [...] | datafusion.execution.parquet.encoding | NULL | (writing) Sets default encoding for any column. Valid values are: plain, plain_dictionary, rle, bit_packed, delta_binary_packed, delta_length_byte_array, delta_byte_array, rle_dictionary, and byte_stream_split. These values are not case sensitive. If NULL, uses default parquet writer setting [...] | datafusion.execution.parquet.bloom_filter_on_read | true | (writing) Use any available bloom filters when reading parquet files [...] diff --git a/searchindex.js b/searchindex.js index 3eda6450e7..437fd37765 100644 --- a/searchindex.js +++ b/searchindex.js @@ -1 +1 @@ -Search.setIndex({"alltitles":{"!=":[[51,"op-neq"]],"!~":[[51,"op-re-not-match"]],"!~*":[[51,"op-re-not-match-i"]],"!~~":[[51,"id19"]],"!~~*":[[51,"id20"]],"#":[[51,"op-bit-xor"]],"%":[[51,"op-modulo"]],"&":[[51,"op-bit-and"]],"(relation, name) tuples in logical fields and logical columns are unique":[[11,"relation-name-tuples-in-logical-fields-and-logical-columns-are-unique"]],"*":[[51,"op-multiply"]],"+":[[51,"op-plus"]],"-":[[51,"op-minus"]],"/":[[51,"op-divide"]],"2022 Q2":[[9,"q2"]], [...] \ No newline at end of file +Search.setIndex({"alltitles":{"!=":[[51,"op-neq"]],"!~":[[51,"op-re-not-match"]],"!~*":[[51,"op-re-not-match-i"]],"!~~":[[51,"id19"]],"!~~*":[[51,"id20"]],"#":[[51,"op-bit-xor"]],"%":[[51,"op-modulo"]],"&":[[51,"op-bit-and"]],"(relation, name) tuples in logical fields and logical columns are unique":[[11,"relation-name-tuples-in-logical-fields-and-logical-columns-are-unique"]],"*":[[51,"op-multiply"]],"+":[[51,"op-plus"]],"-":[[51,"op-minus"]],"/":[[51,"op-divide"]],"2022 Q2":[[9,"q2"]], [...] \ No newline at end of file diff --git a/user-guide/configs.html b/user-guide/configs.html index a4d5e3db11..94b15ba424 100644 --- a/user-guide/configs.html +++ b/user-guide/configs.html @@ -709,231 +709,235 @@ Environment variables are read during <code class="docutils literal notranslate" <td><p>64</p></td> <td><p>(writing) Sets column index truncate length</p></td> </tr> -<tr class="row-odd"><td><p>datafusion.execution.parquet.data_page_row_count_limit</p></td> +<tr class="row-odd"><td><p>datafusion.execution.parquet.statistics_truncate_length</p></td> +<td><p>NULL</p></td> +<td><p>(writing) Sets statictics truncate length. If NULL, uses default parquet writer setting</p></td> +</tr> +<tr class="row-even"><td><p>datafusion.execution.parquet.data_page_row_count_limit</p></td> <td><p>20000</p></td> <td><p>(writing) Sets best effort maximum number of rows in data page</p></td> </tr> -<tr class="row-even"><td><p>datafusion.execution.parquet.encoding</p></td> +<tr class="row-odd"><td><p>datafusion.execution.parquet.encoding</p></td> <td><p>NULL</p></td> <td><p>(writing) Sets default encoding for any column. Valid values are: plain, plain_dictionary, rle, bit_packed, delta_binary_packed, delta_length_byte_array, delta_byte_array, rle_dictionary, and byte_stream_split. These values are not case sensitive. If NULL, uses default parquet writer setting</p></td> </tr> -<tr class="row-odd"><td><p>datafusion.execution.parquet.bloom_filter_on_read</p></td> +<tr class="row-even"><td><p>datafusion.execution.parquet.bloom_filter_on_read</p></td> <td><p>true</p></td> <td><p>(writing) Use any available bloom filters when reading parquet files</p></td> </tr> -<tr class="row-even"><td><p>datafusion.execution.parquet.bloom_filter_on_write</p></td> +<tr class="row-odd"><td><p>datafusion.execution.parquet.bloom_filter_on_write</p></td> <td><p>false</p></td> <td><p>(writing) Write bloom filters for all columns when creating parquet files</p></td> </tr> -<tr class="row-odd"><td><p>datafusion.execution.parquet.bloom_filter_fpp</p></td> +<tr class="row-even"><td><p>datafusion.execution.parquet.bloom_filter_fpp</p></td> <td><p>NULL</p></td> <td><p>(writing) Sets bloom filter false positive probability. If NULL, uses default parquet writer setting</p></td> </tr> -<tr class="row-even"><td><p>datafusion.execution.parquet.bloom_filter_ndv</p></td> +<tr class="row-odd"><td><p>datafusion.execution.parquet.bloom_filter_ndv</p></td> <td><p>NULL</p></td> <td><p>(writing) Sets bloom filter number of distinct values. If NULL, uses default parquet writer setting</p></td> </tr> -<tr class="row-odd"><td><p>datafusion.execution.parquet.allow_single_file_parallelism</p></td> +<tr class="row-even"><td><p>datafusion.execution.parquet.allow_single_file_parallelism</p></td> <td><p>true</p></td> <td><p>(writing) Controls whether DataFusion will attempt to speed up writing parquet files by serializing them in parallel. Each column in each row group in each output file are serialized in parallel leveraging a maximum possible core count of n_files<em>n_row_groups</em>n_columns.</p></td> </tr> -<tr class="row-even"><td><p>datafusion.execution.parquet.maximum_parallel_row_group_writers</p></td> +<tr class="row-odd"><td><p>datafusion.execution.parquet.maximum_parallel_row_group_writers</p></td> <td><p>1</p></td> <td><p>(writing) By default parallel parquet writer is tuned for minimum memory usage in a streaming execution plan. You may see a performance benefit when writing large parquet files by increasing maximum_parallel_row_group_writers and maximum_buffered_record_batches_per_stream if your system has idle cores and can tolerate additional memory usage. Boosting these values is likely worthwhile when writing out already in-memory data, such as from a cached data frame.</p></td> </tr> -<tr class="row-odd"><td><p>datafusion.execution.parquet.maximum_buffered_record_batches_per_stream</p></td> +<tr class="row-even"><td><p>datafusion.execution.parquet.maximum_buffered_record_batches_per_stream</p></td> <td><p>2</p></td> <td><p>(writing) By default parallel parquet writer is tuned for minimum memory usage in a streaming execution plan. You may see a performance benefit when writing large parquet files by increasing maximum_parallel_row_group_writers and maximum_buffered_record_batches_per_stream if your system has idle cores and can tolerate additional memory usage. Boosting these values is likely worthwhile when writing out already in-memory data, such as from a cached data frame.</p></td> </tr> -<tr class="row-even"><td><p>datafusion.execution.planning_concurrency</p></td> +<tr class="row-odd"><td><p>datafusion.execution.planning_concurrency</p></td> <td><p>0</p></td> <td><p>Fan-out during initial physical planning. This is mostly use to plan <code class="docutils literal notranslate"><span class="pre">UNION</span></code> children in parallel. Defaults to the number of CPU cores on the system</p></td> </tr> -<tr class="row-odd"><td><p>datafusion.execution.skip_physical_aggregate_schema_check</p></td> +<tr class="row-even"><td><p>datafusion.execution.skip_physical_aggregate_schema_check</p></td> <td><p>false</p></td> <td><p>When set to true, skips verifying that the schema produced by planning the input of <code class="docutils literal notranslate"><span class="pre">LogicalPlan::Aggregate</span></code> exactly matches the schema of the input plan. When set to false, if the schema does not match exactly (including nullability and metadata), a planning error will be raised. This is used to workaround bugs in the planner that are now caught by the new schema verification step.</p></td> </tr> -<tr class="row-even"><td><p>datafusion.execution.sort_spill_reservation_bytes</p></td> +<tr class="row-odd"><td><p>datafusion.execution.sort_spill_reservation_bytes</p></td> <td><p>10485760</p></td> <td><p>Specifies the reserved memory for each spillable sort operation to facilitate an in-memory merge. When a sort operation spills to disk, the in-memory data must be sorted and merged before being written to a file. This setting reserves a specific amount of memory for that in-memory sort/merge process. Note: This setting is irrelevant if the sort operation cannot spill (i.e., if there’s no <code class="docutils literal notranslate"><span class="pre">DiskManager</span></code> configu [...] </tr> -<tr class="row-odd"><td><p>datafusion.execution.sort_in_place_threshold_bytes</p></td> +<tr class="row-even"><td><p>datafusion.execution.sort_in_place_threshold_bytes</p></td> <td><p>1048576</p></td> <td><p>When sorting, below what size should data be concatenated and sorted in a single RecordBatch rather than sorted in batches and merged.</p></td> </tr> -<tr class="row-even"><td><p>datafusion.execution.meta_fetch_concurrency</p></td> +<tr class="row-odd"><td><p>datafusion.execution.meta_fetch_concurrency</p></td> <td><p>32</p></td> <td><p>Number of files to read in parallel when inferring schema and statistics</p></td> </tr> -<tr class="row-odd"><td><p>datafusion.execution.minimum_parallel_output_files</p></td> +<tr class="row-even"><td><p>datafusion.execution.minimum_parallel_output_files</p></td> <td><p>4</p></td> <td><p>Guarantees a minimum level of output files running in parallel. RecordBatches will be distributed in round robin fashion to each parallel writer. Each writer is closed and a new file opened once soft_max_rows_per_output_file is reached.</p></td> </tr> -<tr class="row-even"><td><p>datafusion.execution.soft_max_rows_per_output_file</p></td> +<tr class="row-odd"><td><p>datafusion.execution.soft_max_rows_per_output_file</p></td> <td><p>50000000</p></td> <td><p>Target number of rows in output files when writing multiple. This is a soft max, so it can be exceeded slightly. There also will be one file smaller than the limit if the total number of rows written is not roughly divisible by the soft max</p></td> </tr> -<tr class="row-odd"><td><p>datafusion.execution.max_buffered_batches_per_output_file</p></td> +<tr class="row-even"><td><p>datafusion.execution.max_buffered_batches_per_output_file</p></td> <td><p>2</p></td> <td><p>This is the maximum number of RecordBatches buffered for each output file being worked. Higher values can potentially give faster write performance at the cost of higher peak memory consumption</p></td> </tr> -<tr class="row-even"><td><p>datafusion.execution.listing_table_ignore_subdirectory</p></td> +<tr class="row-odd"><td><p>datafusion.execution.listing_table_ignore_subdirectory</p></td> <td><p>true</p></td> <td><p>Should sub directories be ignored when scanning directories for data files. Defaults to true (ignores subdirectories), consistent with Hive. Note that this setting does not affect reading partitioned tables (e.g. <code class="docutils literal notranslate"><span class="pre">/table/year=2021/month=01/data.parquet</span></code>).</p></td> </tr> -<tr class="row-odd"><td><p>datafusion.execution.enable_recursive_ctes</p></td> +<tr class="row-even"><td><p>datafusion.execution.enable_recursive_ctes</p></td> <td><p>true</p></td> <td><p>Should DataFusion support recursive CTEs</p></td> </tr> -<tr class="row-even"><td><p>datafusion.execution.split_file_groups_by_statistics</p></td> +<tr class="row-odd"><td><p>datafusion.execution.split_file_groups_by_statistics</p></td> <td><p>false</p></td> <td><p>Attempt to eliminate sorts by packing & sorting files with non-overlapping statistics into the same file groups. Currently experimental</p></td> </tr> -<tr class="row-odd"><td><p>datafusion.execution.keep_partition_by_columns</p></td> +<tr class="row-even"><td><p>datafusion.execution.keep_partition_by_columns</p></td> <td><p>false</p></td> <td><p>Should DataFusion keep the columns used for partition_by in the output RecordBatches</p></td> </tr> -<tr class="row-even"><td><p>datafusion.execution.skip_partial_aggregation_probe_ratio_threshold</p></td> +<tr class="row-odd"><td><p>datafusion.execution.skip_partial_aggregation_probe_ratio_threshold</p></td> <td><p>0.8</p></td> <td><p>Aggregation ratio (number of distinct groups / number of input rows) threshold for skipping partial aggregation. If the value is greater then partial aggregation will skip aggregation for further input</p></td> </tr> -<tr class="row-odd"><td><p>datafusion.execution.skip_partial_aggregation_probe_rows_threshold</p></td> +<tr class="row-even"><td><p>datafusion.execution.skip_partial_aggregation_probe_rows_threshold</p></td> <td><p>100000</p></td> <td><p>Number of input rows partial aggregation partition should process, before aggregation ratio check and trying to switch to skipping aggregation mode</p></td> </tr> -<tr class="row-even"><td><p>datafusion.execution.use_row_number_estimates_to_optimize_partitioning</p></td> +<tr class="row-odd"><td><p>datafusion.execution.use_row_number_estimates_to_optimize_partitioning</p></td> <td><p>false</p></td> <td><p>Should DataFusion use row number estimates at the input to decide whether increasing parallelism is beneficial or not. By default, only exact row numbers (not estimates) are used for this decision. Setting this flag to <code class="docutils literal notranslate"><span class="pre">true</span></code> will likely produce better plans. if the source of statistics is accurate. We plan to make this the default in the future.</p></td> </tr> -<tr class="row-odd"><td><p>datafusion.execution.enforce_batch_size_in_joins</p></td> +<tr class="row-even"><td><p>datafusion.execution.enforce_batch_size_in_joins</p></td> <td><p>false</p></td> <td><p>Should DataFusion enforce batch size in joins or not. By default, DataFusion will not enforce batch size in joins. Enforcing batch size in joins can reduce memory usage when joining large tables with a highly-selective join filter, but is also slightly slower.</p></td> </tr> -<tr class="row-even"><td><p>datafusion.optimizer.enable_distinct_aggregation_soft_limit</p></td> +<tr class="row-odd"><td><p>datafusion.optimizer.enable_distinct_aggregation_soft_limit</p></td> <td><p>true</p></td> <td><p>When set to true, the optimizer will push a limit operation into grouped aggregations which have no aggregate expressions, as a soft limit, emitting groups once the limit is reached, before all rows in the group are read.</p></td> </tr> -<tr class="row-odd"><td><p>datafusion.optimizer.enable_round_robin_repartition</p></td> +<tr class="row-even"><td><p>datafusion.optimizer.enable_round_robin_repartition</p></td> <td><p>true</p></td> <td><p>When set to true, the physical plan optimizer will try to add round robin repartitioning to increase parallelism to leverage more CPU cores</p></td> </tr> -<tr class="row-even"><td><p>datafusion.optimizer.enable_topk_aggregation</p></td> +<tr class="row-odd"><td><p>datafusion.optimizer.enable_topk_aggregation</p></td> <td><p>true</p></td> <td><p>When set to true, the optimizer will attempt to perform limit operations during aggregations, if possible</p></td> </tr> -<tr class="row-odd"><td><p>datafusion.optimizer.filter_null_join_keys</p></td> +<tr class="row-even"><td><p>datafusion.optimizer.filter_null_join_keys</p></td> <td><p>false</p></td> <td><p>When set to true, the optimizer will insert filters before a join between a nullable and non-nullable column to filter out nulls on the nullable side. This filter can add additional overhead when the file format does not fully support predicate push down.</p></td> </tr> -<tr class="row-even"><td><p>datafusion.optimizer.repartition_aggregations</p></td> +<tr class="row-odd"><td><p>datafusion.optimizer.repartition_aggregations</p></td> <td><p>true</p></td> <td><p>Should DataFusion repartition data using the aggregate keys to execute aggregates in parallel using the provided <code class="docutils literal notranslate"><span class="pre">target_partitions</span></code> level</p></td> </tr> -<tr class="row-odd"><td><p>datafusion.optimizer.repartition_file_min_size</p></td> +<tr class="row-even"><td><p>datafusion.optimizer.repartition_file_min_size</p></td> <td><p>10485760</p></td> <td><p>Minimum total files size in bytes to perform file scan repartitioning.</p></td> </tr> -<tr class="row-even"><td><p>datafusion.optimizer.repartition_joins</p></td> +<tr class="row-odd"><td><p>datafusion.optimizer.repartition_joins</p></td> <td><p>true</p></td> <td><p>Should DataFusion repartition data using the join keys to execute joins in parallel using the provided <code class="docutils literal notranslate"><span class="pre">target_partitions</span></code> level</p></td> </tr> -<tr class="row-odd"><td><p>datafusion.optimizer.allow_symmetric_joins_without_pruning</p></td> +<tr class="row-even"><td><p>datafusion.optimizer.allow_symmetric_joins_without_pruning</p></td> <td><p>true</p></td> <td><p>Should DataFusion allow symmetric hash joins for unbounded data sources even when its inputs do not have any ordering or filtering If the flag is not enabled, the SymmetricHashJoin operator will be unable to prune its internal buffers, resulting in certain join types - such as Full, Left, LeftAnti, LeftSemi, Right, RightAnti, and RightSemi - being produced only at the end of the execution. This is not typical in stream processing. Additionally, without proper design for long runne [...] </tr> -<tr class="row-even"><td><p>datafusion.optimizer.repartition_file_scans</p></td> +<tr class="row-odd"><td><p>datafusion.optimizer.repartition_file_scans</p></td> <td><p>true</p></td> <td><p>When set to <code class="docutils literal notranslate"><span class="pre">true</span></code>, file groups will be repartitioned to achieve maximum parallelism. Currently Parquet and CSV formats are supported. If set to <code class="docutils literal notranslate"><span class="pre">true</span></code>, all files will be repartitioned evenly (i.e., a single large file might be partitioned into smaller chunks) for parallel scanning. If set to <code class="docutils literal notranslate"><s [...] </tr> -<tr class="row-odd"><td><p>datafusion.optimizer.repartition_windows</p></td> +<tr class="row-even"><td><p>datafusion.optimizer.repartition_windows</p></td> <td><p>true</p></td> <td><p>Should DataFusion repartition data using the partitions keys to execute window functions in parallel using the provided <code class="docutils literal notranslate"><span class="pre">target_partitions</span></code> level</p></td> </tr> -<tr class="row-even"><td><p>datafusion.optimizer.repartition_sorts</p></td> +<tr class="row-odd"><td><p>datafusion.optimizer.repartition_sorts</p></td> <td><p>true</p></td> <td><p>Should DataFusion execute sorts in a per-partition fashion and merge afterwards instead of coalescing first and sorting globally. With this flag is enabled, plans in the form below <code class="docutils literal notranslate"><span class="pre">text</span> <span class="pre">"SortExec:</span> <span class="pre">[a@0</span> <span class="pre">ASC]",</span> <span class="pre">"</span> <span class="pre">CoalescePartitionsExec",</span> <span class="pre">"</span> [...] </tr> -<tr class="row-odd"><td><p>datafusion.optimizer.prefer_existing_sort</p></td> +<tr class="row-even"><td><p>datafusion.optimizer.prefer_existing_sort</p></td> <td><p>false</p></td> <td><p>When true, DataFusion will opportunistically remove sorts when the data is already sorted, (i.e. setting <code class="docutils literal notranslate"><span class="pre">preserve_order</span></code> to true on <code class="docutils literal notranslate"><span class="pre">RepartitionExec</span></code> and using <code class="docutils literal notranslate"><span class="pre">SortPreservingMergeExec</span></code>) When false, DataFusion will maximize plan parallelism using <code class="docut [...] </tr> -<tr class="row-even"><td><p>datafusion.optimizer.skip_failed_rules</p></td> +<tr class="row-odd"><td><p>datafusion.optimizer.skip_failed_rules</p></td> <td><p>false</p></td> <td><p>When set to true, the logical plan optimizer will produce warning messages if any optimization rules produce errors and then proceed to the next rule. When set to false, any rules that produce errors will cause the query to fail</p></td> </tr> -<tr class="row-odd"><td><p>datafusion.optimizer.max_passes</p></td> +<tr class="row-even"><td><p>datafusion.optimizer.max_passes</p></td> <td><p>3</p></td> <td><p>Number of times that the optimizer will attempt to optimize the plan</p></td> </tr> -<tr class="row-even"><td><p>datafusion.optimizer.top_down_join_key_reordering</p></td> +<tr class="row-odd"><td><p>datafusion.optimizer.top_down_join_key_reordering</p></td> <td><p>true</p></td> <td><p>When set to true, the physical plan optimizer will run a top down process to reorder the join keys</p></td> </tr> -<tr class="row-odd"><td><p>datafusion.optimizer.prefer_hash_join</p></td> +<tr class="row-even"><td><p>datafusion.optimizer.prefer_hash_join</p></td> <td><p>true</p></td> <td><p>When set to true, the physical plan optimizer will prefer HashJoin over SortMergeJoin. HashJoin can work more efficiently than SortMergeJoin but consumes more memory</p></td> </tr> -<tr class="row-even"><td><p>datafusion.optimizer.hash_join_single_partition_threshold</p></td> +<tr class="row-odd"><td><p>datafusion.optimizer.hash_join_single_partition_threshold</p></td> <td><p>1048576</p></td> <td><p>The maximum estimated size in bytes for one input side of a HashJoin will be collected into a single partition</p></td> </tr> -<tr class="row-odd"><td><p>datafusion.optimizer.hash_join_single_partition_threshold_rows</p></td> +<tr class="row-even"><td><p>datafusion.optimizer.hash_join_single_partition_threshold_rows</p></td> <td><p>131072</p></td> <td><p>The maximum estimated size in rows for one input side of a HashJoin will be collected into a single partition</p></td> </tr> -<tr class="row-even"><td><p>datafusion.optimizer.default_filter_selectivity</p></td> +<tr class="row-odd"><td><p>datafusion.optimizer.default_filter_selectivity</p></td> <td><p>20</p></td> <td><p>The default filter selectivity used by Filter Statistics when an exact selectivity cannot be determined. Valid values are between 0 (no selectivity) and 100 (all rows are selected).</p></td> </tr> -<tr class="row-odd"><td><p>datafusion.optimizer.prefer_existing_union</p></td> +<tr class="row-even"><td><p>datafusion.optimizer.prefer_existing_union</p></td> <td><p>false</p></td> <td><p>When set to true, the optimizer will not attempt to convert Union to Interleave</p></td> </tr> -<tr class="row-even"><td><p>datafusion.optimizer.expand_views_at_output</p></td> +<tr class="row-odd"><td><p>datafusion.optimizer.expand_views_at_output</p></td> <td><p>false</p></td> <td><p>When set to true, if the returned type is a view type then the output will be coerced to a non-view. Coerces <code class="docutils literal notranslate"><span class="pre">Utf8View</span></code> to <code class="docutils literal notranslate"><span class="pre">LargeUtf8</span></code>, and <code class="docutils literal notranslate"><span class="pre">BinaryView</span></code> to <code class="docutils literal notranslate"><span class="pre">LargeBinary</span></code>.</p></td> </tr> -<tr class="row-odd"><td><p>datafusion.explain.logical_plan_only</p></td> +<tr class="row-even"><td><p>datafusion.explain.logical_plan_only</p></td> <td><p>false</p></td> <td><p>When set to true, the explain statement will only print logical plans</p></td> </tr> -<tr class="row-even"><td><p>datafusion.explain.physical_plan_only</p></td> +<tr class="row-odd"><td><p>datafusion.explain.physical_plan_only</p></td> <td><p>false</p></td> <td><p>When set to true, the explain statement will only print physical plans</p></td> </tr> -<tr class="row-odd"><td><p>datafusion.explain.show_statistics</p></td> +<tr class="row-even"><td><p>datafusion.explain.show_statistics</p></td> <td><p>false</p></td> <td><p>When set to true, the explain statement will print operator statistics for physical plans</p></td> </tr> -<tr class="row-even"><td><p>datafusion.explain.show_sizes</p></td> +<tr class="row-odd"><td><p>datafusion.explain.show_sizes</p></td> <td><p>true</p></td> <td><p>When set to true, the explain statement will print the partition sizes</p></td> </tr> -<tr class="row-odd"><td><p>datafusion.explain.show_schema</p></td> +<tr class="row-even"><td><p>datafusion.explain.show_schema</p></td> <td><p>false</p></td> <td><p>When set to true, the explain statement will print schema information</p></td> </tr> -<tr class="row-even"><td><p>datafusion.sql_parser.parse_float_as_decimal</p></td> +<tr class="row-odd"><td><p>datafusion.sql_parser.parse_float_as_decimal</p></td> <td><p>false</p></td> <td><p>When set to true, SQL parser will parse float as decimal type</p></td> </tr> -<tr class="row-odd"><td><p>datafusion.sql_parser.enable_ident_normalization</p></td> +<tr class="row-even"><td><p>datafusion.sql_parser.enable_ident_normalization</p></td> <td><p>true</p></td> <td><p>When set to true, SQL parser will normalize ident (convert ident to lowercase when not quoted)</p></td> </tr> -<tr class="row-even"><td><p>datafusion.sql_parser.enable_options_value_normalization</p></td> +<tr class="row-odd"><td><p>datafusion.sql_parser.enable_options_value_normalization</p></td> <td><p>false</p></td> <td><p>When set to true, SQL parser will normalize options value (convert value to lowercase). Note that this option is ignored and will be removed in the future. All case-insensitive values are normalized automatically.</p></td> </tr> -<tr class="row-odd"><td><p>datafusion.sql_parser.dialect</p></td> +<tr class="row-even"><td><p>datafusion.sql_parser.dialect</p></td> <td><p>generic</p></td> <td><p>Configure the SQL dialect used by DataFusion’s parser; supported values include: Generic, MySQL, PostgreSQL, Hive, SQLite, Snowflake, Redshift, MsSQL, ClickHouse, BigQuery, and Ansi.</p></td> </tr> -<tr class="row-even"><td><p>datafusion.sql_parser.support_varchar_with_length</p></td> +<tr class="row-odd"><td><p>datafusion.sql_parser.support_varchar_with_length</p></td> <td><p>true</p></td> <td><p>If true, permit lengths for <code class="docutils literal notranslate"><span class="pre">VARCHAR</span></code> such as <code class="docutils literal notranslate"><span class="pre">VARCHAR(20)</span></code>, but ignore the length. If false, error if a <code class="docutils literal notranslate"><span class="pre">VARCHAR</span></code> with a length is specified. The Arrow type system does not have a notion of maximum string length and thus DataFusion can not enforce such limits.</p></td> </tr> -<tr class="row-odd"><td><p>datafusion.sql_parser.collect_spans</p></td> +<tr class="row-even"><td><p>datafusion.sql_parser.collect_spans</p></td> <td><p>false</p></td> <td><p>When set to true, the source locations relative to the original SQL query (i.e. <a class="reference internal" href="#sqlparser::tokenizer::Span"><span class="xref myst"><code class="docutils literal notranslate"><span class="pre">Span</span></code></span></a>) will be collected and recorded in the logical plan nodes.</p></td> </tr> --------------------------------------------------------------------- To unsubscribe, e-mail: commits-unsubscr...@datafusion.apache.org For additional commands, e-mail: commits-h...@datafusion.apache.org