This is an automated email from the ASF dual-hosted git repository.

goldmedal pushed a commit to branch main
in repository https://gitbox.apache.org/repos/asf/datafusion.git


The following commit(s) were added to refs/heads/main by this push:
     new 18e54f2773 chore: migrate to `invoke_with_args` for datetime functions 
(#14876)
18e54f2773 is described below

commit 18e54f277319d4a5f7449ff4130923d089665410
Author: Andy Yen <38731840+onlyjackfr...@users.noreply.github.com>
AuthorDate: Wed Feb 26 09:04:45 2025 +0800

    chore: migrate to `invoke_with_args` for datetime functions (#14876)
    
    * migrate to involk_with_args for datatime functions
    
    * Fix clippy
    
    ---------
    
    Co-authored-by: Andrew Lamb <and...@nerdnetworks.org>
---
 datafusion/functions/src/datetime/current_date.rs  |   5 +-
 datafusion/functions/src/datetime/current_time.rs  |   5 +-
 datafusion/functions/src/datetime/date_bin.rs      | 179 ++++++++++++---------
 datafusion/functions/src/datetime/date_part.rs     |  10 +-
 datafusion/functions/src/datetime/date_trunc.rs    |  44 +++--
 datafusion/functions/src/datetime/from_unixtime.rs |  42 +++--
 datafusion/functions/src/datetime/make_date.rs     | 125 +++++++-------
 datafusion/functions/src/datetime/now.rs           |   5 +-
 datafusion/functions/src/datetime/to_char.rs       |  93 ++++++-----
 datafusion/functions/src/datetime/to_date.rs       |  89 ++++++----
 datafusion/functions/src/datetime/to_local_time.rs |  17 +-
 datafusion/functions/src/datetime/to_timestamp.rs  |  76 +++++----
 datafusion/functions/src/datetime/to_unixtime.rs   |  23 ++-
 13 files changed, 399 insertions(+), 314 deletions(-)

diff --git a/datafusion/functions/src/datetime/current_date.rs 
b/datafusion/functions/src/datetime/current_date.rs
index 868cbe23d6..9998e7d375 100644
--- a/datafusion/functions/src/datetime/current_date.rs
+++ b/datafusion/functions/src/datetime/current_date.rs
@@ -81,10 +81,9 @@ impl ScalarUDFImpl for CurrentDateFunc {
         Ok(Date32)
     }
 
-    fn invoke_batch(
+    fn invoke_with_args(
         &self,
-        _args: &[ColumnarValue],
-        _number_rows: usize,
+        _args: datafusion_expr::ScalarFunctionArgs,
     ) -> Result<ColumnarValue> {
         internal_err!(
             "invoke should not be called on a simplified current_date() 
function"
diff --git a/datafusion/functions/src/datetime/current_time.rs 
b/datafusion/functions/src/datetime/current_time.rs
index 142184508e..c416d0240b 100644
--- a/datafusion/functions/src/datetime/current_time.rs
+++ b/datafusion/functions/src/datetime/current_time.rs
@@ -78,10 +78,9 @@ impl ScalarUDFImpl for CurrentTimeFunc {
         Ok(Time64(Nanosecond))
     }
 
-    fn invoke_batch(
+    fn invoke_with_args(
         &self,
-        _args: &[ColumnarValue],
-        _number_rows: usize,
+        _args: datafusion_expr::ScalarFunctionArgs,
     ) -> Result<ColumnarValue> {
         internal_err!(
             "invoke should not be called on a simplified current_time() 
function"
diff --git a/datafusion/functions/src/datetime/date_bin.rs 
b/datafusion/functions/src/datetime/date_bin.rs
index a288693699..5ffae46dde 100644
--- a/datafusion/functions/src/datetime/date_bin.rs
+++ b/datafusion/functions/src/datetime/date_bin.rs
@@ -187,11 +187,11 @@ impl ScalarUDFImpl for DateBinFunc {
         }
     }
 
-    fn invoke_batch(
+    fn invoke_with_args(
         &self,
-        args: &[ColumnarValue],
-        _number_rows: usize,
+        args: datafusion_expr::ScalarFunctionArgs,
     ) -> Result<ColumnarValue> {
+        let args = &args.args;
         if args.len() == 2 {
             // Default to unix EPOCH
             let origin = 
ColumnarValue::Scalar(ScalarValue::TimestampNanosecond(
@@ -514,10 +514,9 @@ mod tests {
     use chrono::TimeDelta;
 
     #[test]
-    #[allow(deprecated)] // TODO migrate UDF invoke from invoke_batch
     fn test_date_bin() {
-        let res = DateBinFunc::new().invoke_batch(
-            &[
+        let mut args = datafusion_expr::ScalarFunctionArgs {
+            args: vec![
                 ColumnarValue::Scalar(ScalarValue::IntervalDayTime(Some(
                     IntervalDayTime {
                         days: 0,
@@ -527,14 +526,16 @@ mod tests {
                 
ColumnarValue::Scalar(ScalarValue::TimestampNanosecond(Some(1), None)),
                 
ColumnarValue::Scalar(ScalarValue::TimestampNanosecond(Some(1), None)),
             ],
-            1,
-        );
+            number_rows: 1,
+            return_type: &DataType::Timestamp(TimeUnit::Nanosecond, None),
+        };
+        let res = DateBinFunc::new().invoke_with_args(args);
         assert!(res.is_ok());
 
         let timestamps = 
Arc::new((1..6).map(Some).collect::<TimestampNanosecondArray>());
         let batch_len = timestamps.len();
-        let res = DateBinFunc::new().invoke_batch(
-            &[
+        args = datafusion_expr::ScalarFunctionArgs {
+            args: vec![
                 ColumnarValue::Scalar(ScalarValue::IntervalDayTime(Some(
                     IntervalDayTime {
                         days: 0,
@@ -544,12 +545,14 @@ mod tests {
                 ColumnarValue::Array(timestamps),
                 
ColumnarValue::Scalar(ScalarValue::TimestampNanosecond(Some(1), None)),
             ],
-            batch_len,
-        );
+            number_rows: batch_len,
+            return_type: &DataType::Timestamp(TimeUnit::Nanosecond, None),
+        };
+        let res = DateBinFunc::new().invoke_with_args(args);
         assert!(res.is_ok());
 
-        let res = DateBinFunc::new().invoke_batch(
-            &[
+        args = datafusion_expr::ScalarFunctionArgs {
+            args: vec![
                 ColumnarValue::Scalar(ScalarValue::IntervalDayTime(Some(
                     IntervalDayTime {
                         days: 0,
@@ -558,13 +561,15 @@ mod tests {
                 ))),
                 
ColumnarValue::Scalar(ScalarValue::TimestampNanosecond(Some(1), None)),
             ],
-            1,
-        );
+            number_rows: 1,
+            return_type: &DataType::Timestamp(TimeUnit::Nanosecond, None),
+        };
+        let res = DateBinFunc::new().invoke_with_args(args);
         assert!(res.is_ok());
 
         // stride supports month-day-nano
-        let res = DateBinFunc::new().invoke_batch(
-            &[
+        args = datafusion_expr::ScalarFunctionArgs {
+            args: vec![
                 ColumnarValue::Scalar(ScalarValue::IntervalMonthDayNano(Some(
                     IntervalMonthDayNano {
                         months: 0,
@@ -575,8 +580,10 @@ mod tests {
                 
ColumnarValue::Scalar(ScalarValue::TimestampNanosecond(Some(1), None)),
                 
ColumnarValue::Scalar(ScalarValue::TimestampNanosecond(Some(1), None)),
             ],
-            1,
-        );
+            number_rows: 1,
+            return_type: &DataType::Timestamp(TimeUnit::Nanosecond, None),
+        };
+        let res = DateBinFunc::new().invoke_with_args(args);
         assert!(res.is_ok());
 
         //
@@ -584,37 +591,42 @@ mod tests {
         //
 
         // invalid number of arguments
-        let res = DateBinFunc::new().invoke_batch(
-            &[ColumnarValue::Scalar(ScalarValue::IntervalDayTime(Some(
+        args = datafusion_expr::ScalarFunctionArgs {
+            args: vec![ColumnarValue::Scalar(ScalarValue::IntervalDayTime(Some(
                 IntervalDayTime {
                     days: 0,
                     milliseconds: 1,
                 },
             )))],
-            1,
-        );
+            number_rows: 1,
+            return_type: &DataType::Timestamp(TimeUnit::Nanosecond, None),
+        };
+        let res = DateBinFunc::new().invoke_with_args(args);
         assert_eq!(
             res.err().unwrap().strip_backtrace(),
             "Execution error: DATE_BIN expected two or three arguments"
         );
 
         // stride: invalid type
-        let res = DateBinFunc::new().invoke_batch(
-            &[
+        args = datafusion_expr::ScalarFunctionArgs {
+            args: vec![
                 ColumnarValue::Scalar(ScalarValue::IntervalYearMonth(Some(1))),
                 
ColumnarValue::Scalar(ScalarValue::TimestampNanosecond(Some(1), None)),
                 
ColumnarValue::Scalar(ScalarValue::TimestampNanosecond(Some(1), None)),
             ],
-            1,
-        );
+            number_rows: 1,
+            return_type: &DataType::Timestamp(TimeUnit::Nanosecond, None),
+        };
+        let res = DateBinFunc::new().invoke_with_args(args);
         assert_eq!(
             res.err().unwrap().strip_backtrace(),
             "Execution error: DATE_BIN expects stride argument to be an 
INTERVAL but got Interval(YearMonth)"
         );
 
         // stride: invalid value
-        let res = DateBinFunc::new().invoke_batch(
-            &[
+
+        args = datafusion_expr::ScalarFunctionArgs {
+            args: vec![
                 ColumnarValue::Scalar(ScalarValue::IntervalDayTime(Some(
                     IntervalDayTime {
                         days: 0,
@@ -624,60 +636,69 @@ mod tests {
                 
ColumnarValue::Scalar(ScalarValue::TimestampNanosecond(Some(1), None)),
                 
ColumnarValue::Scalar(ScalarValue::TimestampNanosecond(Some(1), None)),
             ],
-            1,
-        );
+            number_rows: 1,
+            return_type: &DataType::Timestamp(TimeUnit::Nanosecond, None),
+        };
+
+        let res = DateBinFunc::new().invoke_with_args(args);
         assert_eq!(
             res.err().unwrap().strip_backtrace(),
             "Execution error: DATE_BIN stride must be non-zero"
         );
 
         // stride: overflow of day-time interval
-        let res = DateBinFunc::new().invoke_batch(
-            &[
+        args = datafusion_expr::ScalarFunctionArgs {
+            args: vec![
                 ColumnarValue::Scalar(ScalarValue::IntervalDayTime(Some(
                     IntervalDayTime::MAX,
                 ))),
                 
ColumnarValue::Scalar(ScalarValue::TimestampNanosecond(Some(1), None)),
                 
ColumnarValue::Scalar(ScalarValue::TimestampNanosecond(Some(1), None)),
             ],
-            1,
-        );
+            number_rows: 1,
+            return_type: &DataType::Timestamp(TimeUnit::Nanosecond, None),
+        };
+        let res = DateBinFunc::new().invoke_with_args(args);
         assert_eq!(
             res.err().unwrap().strip_backtrace(),
             "Execution error: DATE_BIN stride argument is too large"
         );
 
         // stride: overflow of month-day-nano interval
-        let res = DateBinFunc::new().invoke_batch(
-            &[
+        args = datafusion_expr::ScalarFunctionArgs {
+            args: vec![
                 ColumnarValue::Scalar(ScalarValue::new_interval_mdn(0, 
i32::MAX, 1)),
                 
ColumnarValue::Scalar(ScalarValue::TimestampNanosecond(Some(1), None)),
                 
ColumnarValue::Scalar(ScalarValue::TimestampNanosecond(Some(1), None)),
             ],
-            1,
-        );
+            number_rows: 1,
+            return_type: &DataType::Timestamp(TimeUnit::Nanosecond, None),
+        };
+        let res = DateBinFunc::new().invoke_with_args(args);
         assert_eq!(
             res.err().unwrap().strip_backtrace(),
             "Execution error: DATE_BIN stride argument is too large"
         );
 
         // stride: month intervals
-        let res = DateBinFunc::new().invoke_batch(
-            &[
+        args = datafusion_expr::ScalarFunctionArgs {
+            args: vec![
                 ColumnarValue::Scalar(ScalarValue::new_interval_mdn(1, 1, 1)),
                 
ColumnarValue::Scalar(ScalarValue::TimestampNanosecond(Some(1), None)),
                 
ColumnarValue::Scalar(ScalarValue::TimestampNanosecond(Some(1), None)),
             ],
-            1,
-        );
+            number_rows: 1,
+            return_type: &DataType::Timestamp(TimeUnit::Nanosecond, None),
+        };
+        let res = DateBinFunc::new().invoke_with_args(args);
         assert_eq!(
             res.err().unwrap().strip_backtrace(),
             "This feature is not implemented: DATE_BIN stride does not support 
combination of month, day and nanosecond intervals"
         );
 
         // origin: invalid type
-        let res = DateBinFunc::new().invoke_batch(
-            &[
+        args = datafusion_expr::ScalarFunctionArgs {
+            args: vec![
                 ColumnarValue::Scalar(ScalarValue::IntervalDayTime(Some(
                     IntervalDayTime {
                         days: 0,
@@ -687,15 +708,17 @@ mod tests {
                 
ColumnarValue::Scalar(ScalarValue::TimestampNanosecond(Some(1), None)),
                 
ColumnarValue::Scalar(ScalarValue::TimestampMicrosecond(Some(1), None)),
             ],
-            1,
-        );
+            number_rows: 1,
+            return_type: &DataType::Timestamp(TimeUnit::Nanosecond, None),
+        };
+        let res = DateBinFunc::new().invoke_with_args(args);
         assert_eq!(
             res.err().unwrap().strip_backtrace(),
             "Execution error: DATE_BIN expects origin argument to be a 
TIMESTAMP with nanosecond precision but got Timestamp(Microsecond, None)"
         );
 
-        let res = DateBinFunc::new().invoke_batch(
-            &[
+        args = datafusion_expr::ScalarFunctionArgs {
+            args: vec![
                 ColumnarValue::Scalar(ScalarValue::IntervalDayTime(Some(
                     IntervalDayTime {
                         days: 0,
@@ -705,8 +728,10 @@ mod tests {
                 
ColumnarValue::Scalar(ScalarValue::TimestampMicrosecond(Some(1), None)),
                 
ColumnarValue::Scalar(ScalarValue::TimestampNanosecond(Some(1), None)),
             ],
-            1,
-        );
+            number_rows: 1,
+            return_type: &DataType::Timestamp(TimeUnit::Nanosecond, None),
+        };
+        let res = DateBinFunc::new().invoke_with_args(args);
         assert!(res.is_ok());
 
         // unsupported array type for stride
@@ -720,14 +745,16 @@ mod tests {
                 })
                 .collect::<IntervalDayTimeArray>(),
         );
-        let res = DateBinFunc::new().invoke_batch(
-            &[
+        args = datafusion_expr::ScalarFunctionArgs {
+            args: vec![
                 ColumnarValue::Array(intervals),
                 
ColumnarValue::Scalar(ScalarValue::TimestampNanosecond(Some(1), None)),
                 
ColumnarValue::Scalar(ScalarValue::TimestampNanosecond(Some(1), None)),
             ],
-            1,
-        );
+            number_rows: 1,
+            return_type: &DataType::Timestamp(TimeUnit::Nanosecond, None),
+        };
+        let res = DateBinFunc::new().invoke_with_args(args);
         assert_eq!(
             res.err().unwrap().strip_backtrace(),
             "This feature is not implemented: DATE_BIN only supports literal 
values for the stride argument, not arrays"
@@ -736,8 +763,8 @@ mod tests {
         // unsupported array type for origin
         let timestamps = 
Arc::new((1..6).map(Some).collect::<TimestampNanosecondArray>());
         let batch_len = timestamps.len();
-        let res = DateBinFunc::new().invoke_batch(
-            &[
+        args = datafusion_expr::ScalarFunctionArgs {
+            args: vec![
                 ColumnarValue::Scalar(ScalarValue::IntervalDayTime(Some(
                     IntervalDayTime {
                         days: 0,
@@ -747,8 +774,10 @@ mod tests {
                 
ColumnarValue::Scalar(ScalarValue::TimestampNanosecond(Some(1), None)),
                 ColumnarValue::Array(timestamps),
             ],
-            batch_len,
-        );
+            number_rows: batch_len,
+            return_type: &DataType::Timestamp(TimeUnit::Nanosecond, None),
+        };
+        let res = DateBinFunc::new().invoke_with_args(args);
         assert_eq!(
             res.err().unwrap().strip_backtrace(),
             "This feature is not implemented: DATE_BIN only supports literal 
values for the origin argument, not arrays"
@@ -864,20 +893,22 @@ mod tests {
                     .collect::<TimestampNanosecondArray>()
                     .with_timezone_opt(tz_opt.clone());
                 let batch_len = input.len();
-                #[allow(deprecated)] // TODO migrate UDF invoke to invoke_batch
-                let result = DateBinFunc::new()
-                    .invoke_batch(
-                        &[
-                            
ColumnarValue::Scalar(ScalarValue::new_interval_dt(1, 0)),
-                            ColumnarValue::Array(Arc::new(input)),
-                            
ColumnarValue::Scalar(ScalarValue::TimestampNanosecond(
-                                
Some(string_to_timestamp_nanos(origin).unwrap()),
-                                tz_opt.clone(),
-                            )),
-                        ],
-                        batch_len,
-                    )
-                    .unwrap();
+                let args = datafusion_expr::ScalarFunctionArgs {
+                    args: vec![
+                        ColumnarValue::Scalar(ScalarValue::new_interval_dt(1, 
0)),
+                        ColumnarValue::Array(Arc::new(input)),
+                        ColumnarValue::Scalar(ScalarValue::TimestampNanosecond(
+                            Some(string_to_timestamp_nanos(origin).unwrap()),
+                            tz_opt.clone(),
+                        )),
+                    ],
+                    number_rows: batch_len,
+                    return_type: &DataType::Timestamp(
+                        TimeUnit::Nanosecond,
+                        tz_opt.clone(),
+                    ),
+                };
+                let result = 
DateBinFunc::new().invoke_with_args(args).unwrap();
                 if let ColumnarValue::Array(result) = result {
                     assert_eq!(
                         result.data_type(),
diff --git a/datafusion/functions/src/datetime/date_part.rs 
b/datafusion/functions/src/datetime/date_part.rs
index 49b7a4ec46..bfd06b39d2 100644
--- a/datafusion/functions/src/datetime/date_part.rs
+++ b/datafusion/functions/src/datetime/date_part.rs
@@ -167,11 +167,11 @@ impl ScalarUDFImpl for DatePartFunc {
             )
     }
 
-    fn invoke_batch(
+    fn invoke_with_args(
         &self,
-        args: &[ColumnarValue],
-        _number_rows: usize,
+        args: datafusion_expr::ScalarFunctionArgs,
     ) -> Result<ColumnarValue> {
+        let args = args.args;
         let [part, array] = take_function_args(self.name(), args)?;
 
         let part = if let ColumnarValue::Scalar(ScalarValue::Utf8(Some(v))) = 
part {
@@ -187,11 +187,11 @@ impl ScalarUDFImpl for DatePartFunc {
         let is_scalar = matches!(array, ColumnarValue::Scalar(_));
 
         let array = match array {
-            ColumnarValue::Array(array) => Arc::clone(array),
+            ColumnarValue::Array(array) => Arc::clone(&array),
             ColumnarValue::Scalar(scalar) => scalar.to_array()?,
         };
 
-        let part_trim = part_normalization(part);
+        let part_trim = part_normalization(&part);
 
         // using IntervalUnit here means we hand off all the work of 
supporting plurals (like "seconds")
         // and synonyms ( like "ms,msec,msecond,millisecond") to Arrow
diff --git a/datafusion/functions/src/datetime/date_trunc.rs 
b/datafusion/functions/src/datetime/date_trunc.rs
index 7c10cdd002..ed3eb228bf 100644
--- a/datafusion/functions/src/datetime/date_trunc.rs
+++ b/datafusion/functions/src/datetime/date_trunc.rs
@@ -160,11 +160,11 @@ impl ScalarUDFImpl for DateTruncFunc {
         }
     }
 
-    fn invoke_batch(
+    fn invoke_with_args(
         &self,
-        args: &[ColumnarValue],
-        _number_rows: usize,
+        args: datafusion_expr::ScalarFunctionArgs,
     ) -> Result<ColumnarValue> {
+        let args = args.args;
         let (granularity, array) = (&args[0], &args[1]);
 
         let granularity = if let 
ColumnarValue::Scalar(ScalarValue::Utf8(Some(v))) =
@@ -726,16 +726,15 @@ mod tests {
                 .collect::<TimestampNanosecondArray>()
                 .with_timezone_opt(tz_opt.clone());
             let batch_len = input.len();
-            #[allow(deprecated)] // TODO migrate UDF invoke to invoke_batch
-            let result = DateTruncFunc::new()
-                .invoke_batch(
-                    &[
-                        ColumnarValue::Scalar(ScalarValue::from("day")),
-                        ColumnarValue::Array(Arc::new(input)),
-                    ],
-                    batch_len,
-                )
-                .unwrap();
+            let args = datafusion_expr::ScalarFunctionArgs {
+                args: vec![
+                    ColumnarValue::Scalar(ScalarValue::from("day")),
+                    ColumnarValue::Array(Arc::new(input)),
+                ],
+                number_rows: batch_len,
+                return_type: &DataType::Timestamp(TimeUnit::Nanosecond, 
tz_opt.clone()),
+            };
+            let result = DateTruncFunc::new().invoke_with_args(args).unwrap();
             if let ColumnarValue::Array(result) = result {
                 assert_eq!(
                     result.data_type(),
@@ -889,16 +888,15 @@ mod tests {
                 .collect::<TimestampNanosecondArray>()
                 .with_timezone_opt(tz_opt.clone());
             let batch_len = input.len();
-            #[allow(deprecated)] // TODO migrate UDF invoke to invoke_batch
-            let result = DateTruncFunc::new()
-                .invoke_batch(
-                    &[
-                        ColumnarValue::Scalar(ScalarValue::from("hour")),
-                        ColumnarValue::Array(Arc::new(input)),
-                    ],
-                    batch_len,
-                )
-                .unwrap();
+            let args = datafusion_expr::ScalarFunctionArgs {
+                args: vec![
+                    ColumnarValue::Scalar(ScalarValue::from("hour")),
+                    ColumnarValue::Array(Arc::new(input)),
+                ],
+                number_rows: batch_len,
+                return_type: &DataType::Timestamp(TimeUnit::Nanosecond, 
tz_opt.clone()),
+            };
+            let result = DateTruncFunc::new().invoke_with_args(args).unwrap();
             if let ColumnarValue::Array(result) = result {
                 assert_eq!(
                     result.data_type(),
diff --git a/datafusion/functions/src/datetime/from_unixtime.rs 
b/datafusion/functions/src/datetime/from_unixtime.rs
index 534b7a4fa6..ed8181452d 100644
--- a/datafusion/functions/src/datetime/from_unixtime.rs
+++ b/datafusion/functions/src/datetime/from_unixtime.rs
@@ -117,11 +117,11 @@ impl ScalarUDFImpl for FromUnixtimeFunc {
         internal_err!("call return_type_from_args instead")
     }
 
-    fn invoke_batch(
+    fn invoke_with_args(
         &self,
-        args: &[ColumnarValue],
-        _number_rows: usize,
+        args: datafusion_expr::ScalarFunctionArgs,
     ) -> Result<ColumnarValue> {
+        let args = args.args;
         let len = args.len();
         if len != 1 && len != 2 {
             return exec_err!(
@@ -161,16 +161,21 @@ impl ScalarUDFImpl for FromUnixtimeFunc {
 #[cfg(test)]
 mod test {
     use crate::datetime::from_unixtime::FromUnixtimeFunc;
+    use arrow::datatypes::DataType;
+    use arrow::datatypes::TimeUnit::Second;
     use datafusion_common::ScalarValue;
     use datafusion_common::ScalarValue::Int64;
     use datafusion_expr::{ColumnarValue, ScalarUDFImpl};
+    use std::sync::Arc;
 
     #[test]
     fn test_without_timezone() {
-        let args = [ColumnarValue::Scalar(Int64(Some(1729900800)))];
-
-        // TODO use invoke_with_args
-        let result = FromUnixtimeFunc::new().invoke_batch(&args, 1).unwrap();
+        let args = datafusion_expr::ScalarFunctionArgs {
+            args: vec![ColumnarValue::Scalar(Int64(Some(1729900800)))],
+            number_rows: 1,
+            return_type: &DataType::Timestamp(Second, None),
+        };
+        let result = FromUnixtimeFunc::new().invoke_with_args(args).unwrap();
 
         match result {
             ColumnarValue::Scalar(ScalarValue::TimestampSecond(Some(sec), 
None)) => {
@@ -182,15 +187,20 @@ mod test {
 
     #[test]
     fn test_with_timezone() {
-        let args = [
-            ColumnarValue::Scalar(Int64(Some(1729900800))),
-            ColumnarValue::Scalar(ScalarValue::Utf8(Some(
-                "America/New_York".to_string(),
-            ))),
-        ];
-
-        // TODO use invoke_with_args
-        let result = FromUnixtimeFunc::new().invoke_batch(&args, 2).unwrap();
+        let args = datafusion_expr::ScalarFunctionArgs {
+            args: vec![
+                ColumnarValue::Scalar(Int64(Some(1729900800))),
+                ColumnarValue::Scalar(ScalarValue::Utf8(Some(
+                    "America/New_York".to_string(),
+                ))),
+            ],
+            number_rows: 2,
+            return_type: &DataType::Timestamp(
+                Second,
+                Some(Arc::from("America/New_York")),
+            ),
+        };
+        let result = FromUnixtimeFunc::new().invoke_with_args(args).unwrap();
 
         match result {
             ColumnarValue::Scalar(ScalarValue::TimestampSecond(Some(sec), 
Some(tz))) => {
diff --git a/datafusion/functions/src/datetime/make_date.rs 
b/datafusion/functions/src/datetime/make_date.rs
index f081dfd11e..929fa601f1 100644
--- a/datafusion/functions/src/datetime/make_date.rs
+++ b/datafusion/functions/src/datetime/make_date.rs
@@ -106,13 +106,13 @@ impl ScalarUDFImpl for MakeDateFunc {
         Ok(Date32)
     }
 
-    fn invoke_batch(
+    fn invoke_with_args(
         &self,
-        args: &[ColumnarValue],
-        _number_rows: usize,
+        args: datafusion_expr::ScalarFunctionArgs,
     ) -> Result<ColumnarValue> {
         // first, identify if any of the arguments is an Array. If yes, store 
its `len`,
         // as any scalar will need to be converted to an array of len `len`.
+        let args = args.args;
         let len = args
             .iter()
             .fold(Option::<usize>::None, |acc, arg| match arg {
@@ -223,22 +223,24 @@ fn make_date_inner<F: FnMut(i32)>(
 mod tests {
     use crate::datetime::make_date::MakeDateFunc;
     use arrow::array::{Array, Date32Array, Int32Array, Int64Array, 
UInt32Array};
+    use arrow::datatypes::DataType;
     use datafusion_common::ScalarValue;
     use datafusion_expr::{ColumnarValue, ScalarUDFImpl};
     use std::sync::Arc;
 
     #[test]
     fn test_make_date() {
-        #[allow(deprecated)] // TODO migrate UDF to invoke from invoke_batch
+        let args = datafusion_expr::ScalarFunctionArgs {
+            args: vec![
+                ColumnarValue::Scalar(ScalarValue::Int32(Some(2024))),
+                ColumnarValue::Scalar(ScalarValue::Int64(Some(1))),
+                ColumnarValue::Scalar(ScalarValue::UInt32(Some(14))),
+            ],
+            number_rows: 1,
+            return_type: &DataType::Date32,
+        };
         let res = MakeDateFunc::new()
-            .invoke_batch(
-                &[
-                    ColumnarValue::Scalar(ScalarValue::Int32(Some(2024))),
-                    ColumnarValue::Scalar(ScalarValue::Int64(Some(1))),
-                    ColumnarValue::Scalar(ScalarValue::UInt32(Some(14))),
-                ],
-                1,
-            )
+            .invoke_with_args(args)
             .expect("that make_date parsed values without error");
 
         if let ColumnarValue::Scalar(ScalarValue::Date32(date)) = res {
@@ -247,16 +249,17 @@ mod tests {
             panic!("Expected a scalar value")
         }
 
-        #[allow(deprecated)] // TODO migrate UDF to invoke from invoke_batch
+        let args = datafusion_expr::ScalarFunctionArgs {
+            args: vec![
+                ColumnarValue::Scalar(ScalarValue::Int64(Some(2024))),
+                ColumnarValue::Scalar(ScalarValue::UInt64(Some(1))),
+                ColumnarValue::Scalar(ScalarValue::UInt32(Some(14))),
+            ],
+            number_rows: 1,
+            return_type: &DataType::Date32,
+        };
         let res = MakeDateFunc::new()
-            .invoke_batch(
-                &[
-                    ColumnarValue::Scalar(ScalarValue::Int64(Some(2024))),
-                    ColumnarValue::Scalar(ScalarValue::UInt64(Some(1))),
-                    ColumnarValue::Scalar(ScalarValue::UInt32(Some(14))),
-                ],
-                1,
-            )
+            .invoke_with_args(args)
             .expect("that make_date parsed values without error");
 
         if let ColumnarValue::Scalar(ScalarValue::Date32(date)) = res {
@@ -265,16 +268,17 @@ mod tests {
             panic!("Expected a scalar value")
         }
 
-        #[allow(deprecated)] // TODO migrate UDF to invoke from invoke_batch
+        let args = datafusion_expr::ScalarFunctionArgs {
+            args: vec![
+                
ColumnarValue::Scalar(ScalarValue::Utf8(Some("2024".to_string()))),
+                
ColumnarValue::Scalar(ScalarValue::LargeUtf8(Some("1".to_string()))),
+                
ColumnarValue::Scalar(ScalarValue::Utf8(Some("14".to_string()))),
+            ],
+            number_rows: 1,
+            return_type: &DataType::Date32,
+        };
         let res = MakeDateFunc::new()
-            .invoke_batch(
-                &[
-                    
ColumnarValue::Scalar(ScalarValue::Utf8(Some("2024".to_string()))),
-                    
ColumnarValue::Scalar(ScalarValue::LargeUtf8(Some("1".to_string()))),
-                    
ColumnarValue::Scalar(ScalarValue::Utf8(Some("14".to_string()))),
-                ],
-                1,
-            )
+            .invoke_with_args(args)
             .expect("that make_date parsed values without error");
 
         if let ColumnarValue::Scalar(ScalarValue::Date32(date)) = res {
@@ -287,16 +291,17 @@ mod tests {
         let months = Arc::new((1..5).map(Some).collect::<Int32Array>());
         let days = Arc::new((11..15).map(Some).collect::<UInt32Array>());
         let batch_len = years.len();
-        #[allow(deprecated)] // TODO migrate UDF to invoke from invoke_batch
+        let args = datafusion_expr::ScalarFunctionArgs {
+            args: vec![
+                ColumnarValue::Array(years),
+                ColumnarValue::Array(months),
+                ColumnarValue::Array(days),
+            ],
+            number_rows: batch_len,
+            return_type: &DataType::Date32,
+        };
         let res = MakeDateFunc::new()
-            .invoke_batch(
-                &[
-                    ColumnarValue::Array(years),
-                    ColumnarValue::Array(months),
-                    ColumnarValue::Array(days),
-                ],
-                batch_len,
-            )
+            .invoke_with_args(args)
             .expect("that make_date parsed values without error");
 
         if let ColumnarValue::Array(array) = res {
@@ -316,54 +321,60 @@ mod tests {
         //
 
         // invalid number of arguments
-        #[allow(deprecated)] // TODO migrate UDF to invoke from invoke_batch
-        let res = MakeDateFunc::new()
-            
.invoke_batch(&[ColumnarValue::Scalar(ScalarValue::Int32(Some(1)))], 1);
+        let args = datafusion_expr::ScalarFunctionArgs {
+            args: vec![ColumnarValue::Scalar(ScalarValue::Int32(Some(1)))],
+            number_rows: 1,
+            return_type: &DataType::Date32,
+        };
+        let res = MakeDateFunc::new().invoke_with_args(args);
         assert_eq!(
             res.err().unwrap().strip_backtrace(),
             "Execution error: make_date function requires 3 arguments, got 1"
         );
 
         // invalid type
-        #[allow(deprecated)] // TODO migrate UDF to invoke from invoke_batch
-        let res = MakeDateFunc::new().invoke_batch(
-            &[
+        let args = datafusion_expr::ScalarFunctionArgs {
+            args: vec![
                 ColumnarValue::Scalar(ScalarValue::IntervalYearMonth(Some(1))),
                 
ColumnarValue::Scalar(ScalarValue::TimestampNanosecond(Some(1), None)),
                 
ColumnarValue::Scalar(ScalarValue::TimestampNanosecond(Some(1), None)),
             ],
-            1,
-        );
+            number_rows: 1,
+            return_type: &DataType::Date32,
+        };
+        let res = MakeDateFunc::new().invoke_with_args(args);
         assert_eq!(
             res.err().unwrap().strip_backtrace(),
             "Arrow error: Cast error: Casting from Interval(YearMonth) to 
Int32 not supported"
         );
 
         // overflow of month
-        #[allow(deprecated)] // TODO migrate UDF to invoke from invoke_batch
-        let res = MakeDateFunc::new().invoke_batch(
-            &[
+        let args = datafusion_expr::ScalarFunctionArgs {
+            args: vec![
                 ColumnarValue::Scalar(ScalarValue::Int32(Some(2023))),
                 ColumnarValue::Scalar(ScalarValue::UInt64(Some(u64::MAX))),
                 ColumnarValue::Scalar(ScalarValue::Int32(Some(22))),
             ],
-            1,
-        );
+            number_rows: 1,
+            return_type: &DataType::Date32,
+        };
+        let res = MakeDateFunc::new().invoke_with_args(args);
         assert_eq!(
             res.err().unwrap().strip_backtrace(),
             "Arrow error: Cast error: Can't cast value 18446744073709551615 to 
type Int32"
         );
 
         // overflow of day
-        #[allow(deprecated)] // TODO migrate UDF to invoke from invoke_batch
-        let res = MakeDateFunc::new().invoke_batch(
-            &[
+        let args = datafusion_expr::ScalarFunctionArgs {
+            args: vec![
                 ColumnarValue::Scalar(ScalarValue::Int32(Some(2023))),
                 ColumnarValue::Scalar(ScalarValue::Int32(Some(22))),
                 ColumnarValue::Scalar(ScalarValue::UInt32(Some(u32::MAX))),
             ],
-            1,
-        );
+            number_rows: 1,
+            return_type: &DataType::Date32,
+        };
+        let res = MakeDateFunc::new().invoke_with_args(args);
         assert_eq!(
             res.err().unwrap().strip_backtrace(),
             "Arrow error: Cast error: Can't cast value 4294967295 to type 
Int32"
diff --git a/datafusion/functions/src/datetime/now.rs 
b/datafusion/functions/src/datetime/now.rs
index 76e8757376..b26dc52cee 100644
--- a/datafusion/functions/src/datetime/now.rs
+++ b/datafusion/functions/src/datetime/now.rs
@@ -88,10 +88,9 @@ impl ScalarUDFImpl for NowFunc {
         internal_err!("return_type_from_args should be called instead")
     }
 
-    fn invoke_batch(
+    fn invoke_with_args(
         &self,
-        _args: &[ColumnarValue],
-        _number_rows: usize,
+        _args: datafusion_expr::ScalarFunctionArgs,
     ) -> Result<ColumnarValue> {
         internal_err!("invoke should not be called on a simplified now() 
function")
     }
diff --git a/datafusion/functions/src/datetime/to_char.rs 
b/datafusion/functions/src/datetime/to_char.rs
index b049ca01ac..a9630ea4f9 100644
--- a/datafusion/functions/src/datetime/to_char.rs
+++ b/datafusion/functions/src/datetime/to_char.rs
@@ -135,12 +135,12 @@ impl ScalarUDFImpl for ToCharFunc {
         Ok(Utf8)
     }
 
-    fn invoke_batch(
+    fn invoke_with_args(
         &self,
-        args: &[ColumnarValue],
-        _number_rows: usize,
+        args: datafusion_expr::ScalarFunctionArgs,
     ) -> Result<ColumnarValue> {
-        let [date_time, format] = take_function_args(self.name(), args)?;
+        let args = args.args;
+        let [date_time, format] = take_function_args(self.name(), &args)?;
 
         match format {
             ColumnarValue::Scalar(ScalarValue::Utf8(None))
@@ -152,7 +152,7 @@ impl ScalarUDFImpl for ToCharFunc {
                 // invoke to_char_scalar with the known string, without 
converting to array
                 _to_char_scalar(date_time.clone(), Some(format))
             }
-            ColumnarValue::Array(_) => _to_char_array(args),
+            ColumnarValue::Array(_) => _to_char_array(&args),
             _ => {
                 exec_err!(
                     "Format for `to_char` must be non-null Utf8, received 
{:?}",
@@ -297,6 +297,7 @@ mod tests {
         TimestampMicrosecondArray, TimestampMillisecondArray, 
TimestampNanosecondArray,
         TimestampSecondArray,
     };
+    use arrow::datatypes::DataType;
     use chrono::{NaiveDateTime, Timelike};
     use datafusion_common::ScalarValue;
     use datafusion_expr::{ColumnarValue, ScalarUDFImpl};
@@ -378,12 +379,13 @@ mod tests {
         ];
 
         for (value, format, expected) in scalar_data {
-            #[allow(deprecated)] // TODO migrate UDF to invoke from 
invoke_batch
+            let args = datafusion_expr::ScalarFunctionArgs {
+                args: vec![ColumnarValue::Scalar(value), 
ColumnarValue::Scalar(format)],
+                number_rows: 1,
+                return_type: &DataType::Utf8,
+            };
             let result = ToCharFunc::new()
-                .invoke_batch(
-                    &[ColumnarValue::Scalar(value), 
ColumnarValue::Scalar(format)],
-                    1,
-                )
+                .invoke_with_args(args)
                 .expect("that to_char parsed values without error");
 
             if let ColumnarValue::Scalar(ScalarValue::Utf8(date)) = result {
@@ -457,15 +459,16 @@ mod tests {
 
         for (value, format, expected) in scalar_array_data {
             let batch_len = format.len();
-            #[allow(deprecated)] // TODO migrate UDF to invoke from 
invoke_batch
+            let args = datafusion_expr::ScalarFunctionArgs {
+                args: vec![
+                    ColumnarValue::Scalar(value),
+                    ColumnarValue::Array(Arc::new(format) as ArrayRef),
+                ],
+                number_rows: batch_len,
+                return_type: &DataType::Utf8,
+            };
             let result = ToCharFunc::new()
-                .invoke_batch(
-                    &[
-                        ColumnarValue::Scalar(value),
-                        ColumnarValue::Array(Arc::new(format) as ArrayRef),
-                    ],
-                    batch_len,
-                )
+                .invoke_with_args(args)
                 .expect("that to_char parsed values without error");
 
             if let ColumnarValue::Scalar(ScalarValue::Utf8(date)) = result {
@@ -587,15 +590,16 @@ mod tests {
 
         for (value, format, expected) in array_scalar_data {
             let batch_len = value.len();
-            #[allow(deprecated)] // TODO migrate UDF to invoke from 
invoke_batch
+            let args = datafusion_expr::ScalarFunctionArgs {
+                args: vec![
+                    ColumnarValue::Array(value as ArrayRef),
+                    ColumnarValue::Scalar(format),
+                ],
+                number_rows: batch_len,
+                return_type: &DataType::Utf8,
+            };
             let result = ToCharFunc::new()
-                .invoke_batch(
-                    &[
-                        ColumnarValue::Array(value as ArrayRef),
-                        ColumnarValue::Scalar(format),
-                    ],
-                    batch_len,
-                )
+                .invoke_with_args(args)
                 .expect("that to_char parsed values without error");
 
             if let ColumnarValue::Array(result) = result {
@@ -608,15 +612,16 @@ mod tests {
 
         for (value, format, expected) in array_array_data {
             let batch_len = value.len();
-            #[allow(deprecated)] // TODO migrate UDF to invoke from 
invoke_batch
+            let args = datafusion_expr::ScalarFunctionArgs {
+                args: vec![
+                    ColumnarValue::Array(value),
+                    ColumnarValue::Array(Arc::new(format) as ArrayRef),
+                ],
+                number_rows: batch_len,
+                return_type: &DataType::Utf8,
+            };
             let result = ToCharFunc::new()
-                .invoke_batch(
-                    &[
-                        ColumnarValue::Array(value),
-                        ColumnarValue::Array(Arc::new(format) as ArrayRef),
-                    ],
-                    batch_len,
-                )
+                .invoke_with_args(args)
                 .expect("that to_char parsed values without error");
 
             if let ColumnarValue::Array(result) = result {
@@ -632,23 +637,27 @@ mod tests {
         //
 
         // invalid number of arguments
-        #[allow(deprecated)] // TODO migrate UDF to invoke from invoke_batch
-        let result = ToCharFunc::new()
-            
.invoke_batch(&[ColumnarValue::Scalar(ScalarValue::Int32(Some(1)))], 1);
+        let args = datafusion_expr::ScalarFunctionArgs {
+            args: vec![ColumnarValue::Scalar(ScalarValue::Int32(Some(1)))],
+            number_rows: 1,
+            return_type: &DataType::Utf8,
+        };
+        let result = ToCharFunc::new().invoke_with_args(args);
         assert_eq!(
             result.err().unwrap().strip_backtrace(),
             "Execution error: to_char function requires 2 arguments, got 1"
         );
 
         // invalid type
-        #[allow(deprecated)] // TODO migrate UDF to invoke from invoke_batch
-        let result = ToCharFunc::new().invoke_batch(
-            &[
+        let args = datafusion_expr::ScalarFunctionArgs {
+            args: vec![
                 ColumnarValue::Scalar(ScalarValue::Int32(Some(1))),
                 
ColumnarValue::Scalar(ScalarValue::TimestampNanosecond(Some(1), None)),
             ],
-            1,
-        );
+            number_rows: 1,
+            return_type: &DataType::Utf8,
+        };
+        let result = ToCharFunc::new().invoke_with_args(args);
         assert_eq!(
             result.err().unwrap().strip_backtrace(),
             "Execution error: Format for `to_char` must be non-null Utf8, 
received Timestamp(Nanosecond, None)"
diff --git a/datafusion/functions/src/datetime/to_date.rs 
b/datafusion/functions/src/datetime/to_date.rs
index 6d873ab524..91740b2c31 100644
--- a/datafusion/functions/src/datetime/to_date.rs
+++ b/datafusion/functions/src/datetime/to_date.rs
@@ -130,25 +130,25 @@ impl ScalarUDFImpl for ToDateFunc {
         Ok(Date32)
     }
 
-    fn invoke_batch(
+    fn invoke_with_args(
         &self,
-        args: &[ColumnarValue],
-        _number_rows: usize,
+        args: datafusion_expr::ScalarFunctionArgs,
     ) -> Result<ColumnarValue> {
+        let args = args.args;
         if args.is_empty() {
             return exec_err!("to_date function requires 1 or more arguments, 
got 0");
         }
 
         // validate that any args after the first one are Utf8
         if args.len() > 1 {
-            validate_data_types(args, "to_date")?;
+            validate_data_types(&args, "to_date")?;
         }
 
         match args[0].data_type() {
             Int32 | Int64 | Null | Float64 | Date32 | Date64 => {
                 args[0].cast_to(&Date32, None)
             }
-            Utf8View | LargeUtf8 | Utf8 => self.to_date(args),
+            Utf8View | LargeUtf8 | Utf8 => self.to_date(&args),
             other => {
                 exec_err!("Unsupported data type {:?} for function to_date", 
other)
             }
@@ -163,6 +163,7 @@ impl ScalarUDFImpl for ToDateFunc {
 #[cfg(test)]
 mod tests {
     use arrow::array::{Array, Date32Array, GenericStringArray, 
StringViewArray};
+    use arrow::datatypes::DataType;
     use arrow::{compute::kernels::cast_utils::Parser, datatypes::Date32Type};
     use datafusion_common::ScalarValue;
     use datafusion_expr::{ColumnarValue, ScalarUDFImpl};
@@ -207,9 +208,12 @@ mod tests {
         }
 
         fn test_scalar(sv: ScalarValue, tc: &TestCase) {
-            #[allow(deprecated)] // TODO migrate UDF to invoke from 
invoke_batch
-            let to_date_result =
-                ToDateFunc::new().invoke_batch(&[ColumnarValue::Scalar(sv)], 
1);
+            let args = datafusion_expr::ScalarFunctionArgs {
+                args: vec![ColumnarValue::Scalar(sv)],
+                number_rows: 1,
+                return_type: &DataType::Date32,
+            };
+            let to_date_result = ToDateFunc::new().invoke_with_args(args);
 
             match to_date_result {
                 Ok(ColumnarValue::Scalar(ScalarValue::Date32(date_val))) => {
@@ -230,9 +234,12 @@ mod tests {
         {
             let date_array = A::from(vec![tc.date_str]);
             let batch_len = date_array.len();
-            #[allow(deprecated)] // TODO migrate UDF to invoke from 
invoke_batch
-            let to_date_result = ToDateFunc::new()
-                .invoke_batch(&[ColumnarValue::Array(Arc::new(date_array))], 
batch_len);
+            let args = datafusion_expr::ScalarFunctionArgs {
+                args: vec![ColumnarValue::Array(Arc::new(date_array))],
+                number_rows: batch_len,
+                return_type: &DataType::Date32,
+            };
+            let to_date_result = ToDateFunc::new().invoke_with_args(args);
 
             match to_date_result {
                 Ok(ColumnarValue::Array(a)) => {
@@ -321,14 +328,15 @@ mod tests {
         fn test_scalar(sv: ScalarValue, tc: &TestCase) {
             let format_scalar = 
ScalarValue::Utf8(Some(tc.format_str.to_string()));
 
-            #[allow(deprecated)] // TODO migrate UDF to invoke from 
invoke_batch
-            let to_date_result = ToDateFunc::new().invoke_batch(
-                &[
+            let args = datafusion_expr::ScalarFunctionArgs {
+                args: vec![
                     ColumnarValue::Scalar(sv),
                     ColumnarValue::Scalar(format_scalar),
                 ],
-                1,
-            );
+                number_rows: 1,
+                return_type: &DataType::Date32,
+            };
+            let to_date_result = ToDateFunc::new().invoke_with_args(args);
 
             match to_date_result {
                 Ok(ColumnarValue::Scalar(ScalarValue::Date32(date_val))) => {
@@ -350,14 +358,15 @@ mod tests {
             let format_array = A::from(vec![tc.format_str]);
             let batch_len = date_array.len();
 
-            #[allow(deprecated)] // TODO migrate UDF to invoke from 
invoke_batch
-            let to_date_result = ToDateFunc::new().invoke_batch(
-                &[
+            let args = datafusion_expr::ScalarFunctionArgs {
+                args: vec![
                     ColumnarValue::Array(Arc::new(date_array)),
                     ColumnarValue::Array(Arc::new(format_array)),
                 ],
-                batch_len,
-            );
+                number_rows: batch_len,
+                return_type: &DataType::Date32,
+            };
+            let to_date_result = ToDateFunc::new().invoke_with_args(args);
 
             match to_date_result {
                 Ok(ColumnarValue::Array(a)) => {
@@ -389,15 +398,16 @@ mod tests {
         let format1_scalar = ScalarValue::Utf8(Some("%Y-%m-%d".into()));
         let format2_scalar = ScalarValue::Utf8(Some("%Y/%m/%d".into()));
 
-        #[allow(deprecated)] // TODO migrate UDF to invoke from invoke_batch
-        let to_date_result = ToDateFunc::new().invoke_batch(
-            &[
+        let args = datafusion_expr::ScalarFunctionArgs {
+            args: vec![
                 ColumnarValue::Scalar(formatted_date_scalar),
                 ColumnarValue::Scalar(format1_scalar),
                 ColumnarValue::Scalar(format2_scalar),
             ],
-            1,
-        );
+            number_rows: 1,
+            return_type: &DataType::Date32,
+        };
+        let to_date_result = ToDateFunc::new().invoke_with_args(args);
 
         match to_date_result {
             Ok(ColumnarValue::Scalar(ScalarValue::Date32(date_val))) => {
@@ -421,9 +431,12 @@ mod tests {
         for date_str in test_cases {
             let formatted_date_scalar = 
ScalarValue::Utf8(Some(date_str.into()));
 
-            #[allow(deprecated)] // TODO migrate UDF to invoke from 
invoke_batch
-            let to_date_result = ToDateFunc::new()
-                .invoke_batch(&[ColumnarValue::Scalar(formatted_date_scalar)], 
1);
+            let args = datafusion_expr::ScalarFunctionArgs {
+                args: vec![ColumnarValue::Scalar(formatted_date_scalar)],
+                number_rows: 1,
+                return_type: &DataType::Date32,
+            };
+            let to_date_result = ToDateFunc::new().invoke_with_args(args);
 
             match to_date_result {
                 Ok(ColumnarValue::Scalar(ScalarValue::Date32(date_val))) => {
@@ -440,9 +453,12 @@ mod tests {
         let date_str = "20241231";
         let date_scalar = ScalarValue::Utf8(Some(date_str.into()));
 
-        #[allow(deprecated)] // TODO migrate UDF to invoke from invoke_batch
-        let to_date_result =
-            
ToDateFunc::new().invoke_batch(&[ColumnarValue::Scalar(date_scalar)], 1);
+        let args = datafusion_expr::ScalarFunctionArgs {
+            args: vec![ColumnarValue::Scalar(date_scalar)],
+            number_rows: 1,
+            return_type: &DataType::Date32,
+        };
+        let to_date_result = ToDateFunc::new().invoke_with_args(args);
 
         match to_date_result {
             Ok(ColumnarValue::Scalar(ScalarValue::Date32(date_val))) => {
@@ -462,9 +478,12 @@ mod tests {
         let date_str = "202412311";
         let date_scalar = ScalarValue::Utf8(Some(date_str.into()));
 
-        #[allow(deprecated)] // TODO migrate UDF to invoke from invoke_batch
-        let to_date_result =
-            
ToDateFunc::new().invoke_batch(&[ColumnarValue::Scalar(date_scalar)], 1);
+        let args = datafusion_expr::ScalarFunctionArgs {
+            args: vec![ColumnarValue::Scalar(date_scalar)],
+            number_rows: 1,
+            return_type: &DataType::Date32,
+        };
+        let to_date_result = ToDateFunc::new().invoke_with_args(args);
 
         if let Ok(ColumnarValue::Scalar(ScalarValue::Date32(_))) = 
to_date_result {
             panic!(
diff --git a/datafusion/functions/src/datetime/to_local_time.rs 
b/datafusion/functions/src/datetime/to_local_time.rs
index 0e235735e2..8dbef90cdc 100644
--- a/datafusion/functions/src/datetime/to_local_time.rs
+++ b/datafusion/functions/src/datetime/to_local_time.rs
@@ -366,12 +366,11 @@ impl ScalarUDFImpl for ToLocalTimeFunc {
         }
     }
 
-    fn invoke_batch(
+    fn invoke_with_args(
         &self,
-        args: &[ColumnarValue],
-        _number_rows: usize,
+        args: datafusion_expr::ScalarFunctionArgs,
     ) -> Result<ColumnarValue> {
-        let [time_value] = take_function_args(self.name(), args)?;
+        let [time_value] = take_function_args(self.name(), args.args)?;
 
         self.to_local_time(&[time_value.clone()])
     }
@@ -603,10 +602,12 @@ mod tests {
                 .map(|s| Some(string_to_timestamp_nanos(s).unwrap()))
                 .collect::<TimestampNanosecondArray>();
             let batch_size = input.len();
-            #[allow(deprecated)] // TODO: migrate to invoke_with_args
-            let result = ToLocalTimeFunc::new()
-                .invoke_batch(&[ColumnarValue::Array(Arc::new(input))], 
batch_size)
-                .unwrap();
+            let args = ScalarFunctionArgs {
+                args: vec![ColumnarValue::Array(Arc::new(input))],
+                number_rows: batch_size,
+                return_type: &DataType::Timestamp(TimeUnit::Nanosecond, None),
+            };
+            let result = 
ToLocalTimeFunc::new().invoke_with_args(args).unwrap();
             if let ColumnarValue::Array(result) = result {
                 assert_eq!(
                     result.data_type(),
diff --git a/datafusion/functions/src/datetime/to_timestamp.rs 
b/datafusion/functions/src/datetime/to_timestamp.rs
index 9d88fc00b9..f1c61fe2b9 100644
--- a/datafusion/functions/src/datetime/to_timestamp.rs
+++ b/datafusion/functions/src/datetime/to_timestamp.rs
@@ -299,11 +299,11 @@ impl ScalarUDFImpl for ToTimestampFunc {
         Ok(return_type_for(&arg_types[0], Nanosecond))
     }
 
-    fn invoke_batch(
+    fn invoke_with_args(
         &self,
-        args: &[ColumnarValue],
-        _number_rows: usize,
+        args: datafusion_expr::ScalarFunctionArgs,
     ) -> Result<ColumnarValue> {
+        let args = args.args;
         if args.is_empty() {
             return exec_err!(
                 "to_timestamp function requires 1 or more arguments, got {}",
@@ -313,7 +313,7 @@ impl ScalarUDFImpl for ToTimestampFunc {
 
         // validate that any args after the first one are Utf8
         if args.len() > 1 {
-            validate_data_types(args, "to_timestamp")?;
+            validate_data_types(&args, "to_timestamp")?;
         }
 
         match args[0].data_type() {
@@ -327,7 +327,7 @@ impl ScalarUDFImpl for ToTimestampFunc {
                 args[0].cast_to(&Timestamp(Nanosecond, Some(tz)), None)
             }
             Utf8View | LargeUtf8 | Utf8 => {
-                to_timestamp_impl::<TimestampNanosecondType>(args, 
"to_timestamp")
+                to_timestamp_impl::<TimestampNanosecondType>(&args, 
"to_timestamp")
             }
             other => {
                 exec_err!(
@@ -359,11 +359,11 @@ impl ScalarUDFImpl for ToTimestampSecondsFunc {
         Ok(return_type_for(&arg_types[0], Second))
     }
 
-    fn invoke_batch(
+    fn invoke_with_args(
         &self,
-        args: &[ColumnarValue],
-        _number_rows: usize,
+        args: datafusion_expr::ScalarFunctionArgs,
     ) -> Result<ColumnarValue> {
+        let args = args.args;
         if args.is_empty() {
             return exec_err!(
                 "to_timestamp_seconds function requires 1 or more arguments, 
got {}",
@@ -373,7 +373,7 @@ impl ScalarUDFImpl for ToTimestampSecondsFunc {
 
         // validate that any args after the first one are Utf8
         if args.len() > 1 {
-            validate_data_types(args, "to_timestamp")?;
+            validate_data_types(&args, "to_timestamp")?;
         }
 
         match args[0].data_type() {
@@ -382,7 +382,7 @@ impl ScalarUDFImpl for ToTimestampSecondsFunc {
             }
             Timestamp(_, Some(tz)) => args[0].cast_to(&Timestamp(Second, 
Some(tz)), None),
             Utf8View | LargeUtf8 | Utf8 => {
-                to_timestamp_impl::<TimestampSecondType>(args, 
"to_timestamp_seconds")
+                to_timestamp_impl::<TimestampSecondType>(&args, 
"to_timestamp_seconds")
             }
             other => {
                 exec_err!(
@@ -414,11 +414,11 @@ impl ScalarUDFImpl for ToTimestampMillisFunc {
         Ok(return_type_for(&arg_types[0], Millisecond))
     }
 
-    fn invoke_batch(
+    fn invoke_with_args(
         &self,
-        args: &[ColumnarValue],
-        _number_rows: usize,
+        args: datafusion_expr::ScalarFunctionArgs,
     ) -> Result<ColumnarValue> {
+        let args = args.args;
         if args.is_empty() {
             return exec_err!(
                 "to_timestamp_millis function requires 1 or more arguments, 
got {}",
@@ -428,7 +428,7 @@ impl ScalarUDFImpl for ToTimestampMillisFunc {
 
         // validate that any args after the first one are Utf8
         if args.len() > 1 {
-            validate_data_types(args, "to_timestamp")?;
+            validate_data_types(&args, "to_timestamp")?;
         }
 
         match args[0].data_type() {
@@ -438,9 +438,10 @@ impl ScalarUDFImpl for ToTimestampMillisFunc {
             Timestamp(_, Some(tz)) => {
                 args[0].cast_to(&Timestamp(Millisecond, Some(tz)), None)
             }
-            Utf8View | LargeUtf8 | Utf8 => {
-                to_timestamp_impl::<TimestampMillisecondType>(args, 
"to_timestamp_millis")
-            }
+            Utf8View | LargeUtf8 | Utf8 => 
to_timestamp_impl::<TimestampMillisecondType>(
+                &args,
+                "to_timestamp_millis",
+            ),
             other => {
                 exec_err!(
                     "Unsupported data type {:?} for function 
to_timestamp_millis",
@@ -471,11 +472,11 @@ impl ScalarUDFImpl for ToTimestampMicrosFunc {
         Ok(return_type_for(&arg_types[0], Microsecond))
     }
 
-    fn invoke_batch(
+    fn invoke_with_args(
         &self,
-        args: &[ColumnarValue],
-        _number_rows: usize,
+        args: datafusion_expr::ScalarFunctionArgs,
     ) -> Result<ColumnarValue> {
+        let args = args.args;
         if args.is_empty() {
             return exec_err!(
                 "to_timestamp_micros function requires 1 or more arguments, 
got {}",
@@ -485,7 +486,7 @@ impl ScalarUDFImpl for ToTimestampMicrosFunc {
 
         // validate that any args after the first one are Utf8
         if args.len() > 1 {
-            validate_data_types(args, "to_timestamp")?;
+            validate_data_types(&args, "to_timestamp")?;
         }
 
         match args[0].data_type() {
@@ -495,9 +496,10 @@ impl ScalarUDFImpl for ToTimestampMicrosFunc {
             Timestamp(_, Some(tz)) => {
                 args[0].cast_to(&Timestamp(Microsecond, Some(tz)), None)
             }
-            Utf8View | LargeUtf8 | Utf8 => {
-                to_timestamp_impl::<TimestampMicrosecondType>(args, 
"to_timestamp_micros")
-            }
+            Utf8View | LargeUtf8 | Utf8 => 
to_timestamp_impl::<TimestampMicrosecondType>(
+                &args,
+                "to_timestamp_micros",
+            ),
             other => {
                 exec_err!(
                     "Unsupported data type {:?} for function 
to_timestamp_micros",
@@ -528,11 +530,11 @@ impl ScalarUDFImpl for ToTimestampNanosFunc {
         Ok(return_type_for(&arg_types[0], Nanosecond))
     }
 
-    fn invoke_batch(
+    fn invoke_with_args(
         &self,
-        args: &[ColumnarValue],
-        _number_rows: usize,
+        args: datafusion_expr::ScalarFunctionArgs,
     ) -> Result<ColumnarValue> {
+        let args = args.args;
         if args.is_empty() {
             return exec_err!(
                 "to_timestamp_nanos function requires 1 or more arguments, got 
{}",
@@ -542,7 +544,7 @@ impl ScalarUDFImpl for ToTimestampNanosFunc {
 
         // validate that any args after the first one are Utf8
         if args.len() > 1 {
-            validate_data_types(args, "to_timestamp")?;
+            validate_data_types(&args, "to_timestamp")?;
         }
 
         match args[0].data_type() {
@@ -553,7 +555,7 @@ impl ScalarUDFImpl for ToTimestampNanosFunc {
                 args[0].cast_to(&Timestamp(Nanosecond, Some(tz)), None)
             }
             Utf8View | LargeUtf8 | Utf8 => {
-                to_timestamp_impl::<TimestampNanosecondType>(args, 
"to_timestamp_nanos")
+                to_timestamp_impl::<TimestampNanosecondType>(&args, 
"to_timestamp_nanos")
             }
             other => {
                 exec_err!(
@@ -988,9 +990,13 @@ mod tests {
             for array in arrays {
                 let rt = udf.return_type(&[array.data_type()]).unwrap();
                 assert!(matches!(rt, Timestamp(_, Some(_))));
-                #[allow(deprecated)] // TODO: migrate to invoke_with_args
+                let args = datafusion_expr::ScalarFunctionArgs {
+                    args: vec![array.clone()],
+                    number_rows: 4,
+                    return_type: &rt,
+                };
                 let res = udf
-                    .invoke_batch(&[array.clone()], 1)
+                    .invoke_with_args(args)
                     .expect("that to_timestamp parsed values without error");
                 let array = match res {
                     ColumnarValue::Array(res) => res,
@@ -1031,9 +1037,13 @@ mod tests {
             for array in arrays {
                 let rt = udf.return_type(&[array.data_type()]).unwrap();
                 assert!(matches!(rt, Timestamp(_, None)));
-                #[allow(deprecated)] // TODO: migrate to invoke_with_args
+                let args = datafusion_expr::ScalarFunctionArgs {
+                    args: vec![array.clone()],
+                    number_rows: 5,
+                    return_type: &rt,
+                };
                 let res = udf
-                    .invoke_batch(&[array.clone()], 1)
+                    .invoke_with_args(args)
                     .expect("that to_timestamp parsed values without error");
                 let array = match res {
                     ColumnarValue::Array(res) => res,
diff --git a/datafusion/functions/src/datetime/to_unixtime.rs 
b/datafusion/functions/src/datetime/to_unixtime.rs
index 265fa7b59c..653ec10851 100644
--- a/datafusion/functions/src/datetime/to_unixtime.rs
+++ b/datafusion/functions/src/datetime/to_unixtime.rs
@@ -90,33 +90,32 @@ impl ScalarUDFImpl for ToUnixtimeFunc {
         Ok(DataType::Int64)
     }
 
-    fn invoke_batch(
+    fn invoke_with_args(
         &self,
-        args: &[ColumnarValue],
-        batch_size: usize,
+        args: datafusion_expr::ScalarFunctionArgs,
     ) -> Result<ColumnarValue> {
-        if args.is_empty() {
+        let arg_args = &args.args;
+        if arg_args.is_empty() {
             return exec_err!("to_unixtime function requires 1 or more 
arguments, got 0");
         }
 
         // validate that any args after the first one are Utf8
-        if args.len() > 1 {
-            validate_data_types(args, "to_unixtime")?;
+        if arg_args.len() > 1 {
+            validate_data_types(arg_args, "to_unixtime")?;
         }
 
-        match args[0].data_type() {
+        match arg_args[0].data_type() {
             DataType::Int32 | DataType::Int64 | DataType::Null | 
DataType::Float64 => {
-                args[0].cast_to(&DataType::Int64, None)
+                arg_args[0].cast_to(&DataType::Int64, None)
             }
-            DataType::Date64 | DataType::Date32 => args[0]
+            DataType::Date64 | DataType::Date32 => arg_args[0]
                 .cast_to(&DataType::Timestamp(TimeUnit::Second, None), None)?
                 .cast_to(&DataType::Int64, None),
-            DataType::Timestamp(_, tz) => args[0]
+            DataType::Timestamp(_, tz) => arg_args[0]
                 .cast_to(&DataType::Timestamp(TimeUnit::Second, tz), None)?
                 .cast_to(&DataType::Int64, None),
-            #[allow(deprecated)] // TODO: migrate to invoke_with_args
             DataType::Utf8 => ToTimestampSecondsFunc::new()
-                .invoke_batch(args, batch_size)?
+                .invoke_with_args(args)?
                 .cast_to(&DataType::Int64, None),
             other => {
                 exec_err!("Unsupported data type {:?} for function 
to_unixtime", other)


---------------------------------------------------------------------
To unsubscribe, e-mail: commits-unsubscr...@datafusion.apache.org
For additional commands, e-mail: commits-h...@datafusion.apache.org

Reply via email to