This is an automated email from the ASF dual-hosted git repository.

github-bot pushed a commit to branch main
in repository https://gitbox.apache.org/repos/asf/datafusion.git


The following commit(s) were added to refs/heads/main by this push:
     new 3b390d782e Refactor avg & sum signatures away from user defined 
(#18769)
3b390d782e is described below

commit 3b390d782ea390f3dd080aecf3ea6083b6406381
Author: Jeffrey Vo <[email protected]>
AuthorDate: Thu Nov 20 13:12:46 2025 +1100

    Refactor avg & sum signatures away from user defined (#18769)
    
    ## Which issue does this PR close?
    
    <!--
    We generally require a GitHub issue to be filed for all bug fixes and
    enhancements and this helps us generate change logs for our releases.
    You can link an issue to this PR using the GitHub syntax. For example
    `Closes #123` indicates that this PR will close issue #123.
    -->
    
    Part of #12725
    
    ## Rationale for this change
    
    <!--
    Why are you proposing this change? If this is already explained clearly
    in the issue then this section is not needed.
    Explaining clearly why changes are proposed helps reviewers understand
    your changes and offer better suggestions for fixes.
    -->
    
    Prefer to avoid user_defined for consistency in function definitions.
    
    ## What changes are included in this PR?
    
    <!--
    There is no need to duplicate the description in the issue here but it
    is sometimes worth providing a summary of the individual changes in this
    PR.
    -->
    
    Refactor signature of avg & sum away from user_defined.
    
    ## Are these changes tested?
    
    <!--
    We typically require tests for all PRs in order to:
    1. Prevent the code from being accidentally broken by subsequent changes
    2. Serve as another way to document the expected behavior of the code
    
    If tests are not included in your PR, please explain why (for example,
    are they covered by existing tests)?
    -->
    
    Existing tests.
    
    ## Are there any user-facing changes?
    
    <!--
    If there are user-facing changes then we may require documentation to be
    updated before approving the PR.
    -->
    
    No.
    
    <!--
    If there are any breaking changes to public APIs, please add the `api
    change` label.
    -->
---
 datafusion/functions-aggregate/src/average.rs  |  55 ++++++-------
 datafusion/functions-aggregate/src/sum.rs      | 110 ++++++++++++-------------
 datafusion/spark/src/function/aggregate/avg.rs |  35 +++-----
 3 files changed, 91 insertions(+), 109 deletions(-)

diff --git a/datafusion/functions-aggregate/src/average.rs 
b/datafusion/functions-aggregate/src/average.rs
index bec1734e2e..f4b3e598c3 100644
--- a/datafusion/functions-aggregate/src/average.rs
+++ b/datafusion/functions-aggregate/src/average.rs
@@ -31,18 +31,15 @@ use arrow::datatypes::{
     DECIMAL256_MAX_SCALE, DECIMAL32_MAX_PRECISION, DECIMAL32_MAX_SCALE,
     DECIMAL64_MAX_PRECISION, DECIMAL64_MAX_SCALE,
 };
-use datafusion_common::plan_err;
-use datafusion_common::{
-    exec_err, not_impl_err, utils::take_function_args, Result, ScalarValue,
-};
+use datafusion_common::types::{logical_float64, NativeType};
+use datafusion_common::{exec_err, not_impl_err, Result, ScalarValue};
 use datafusion_expr::function::{AccumulatorArgs, StateFieldsArgs};
 use datafusion_expr::utils::format_state_name;
-use datafusion_expr::Volatility::Immutable;
 use datafusion_expr::{
-    Accumulator, AggregateUDFImpl, Documentation, EmitTo, Expr, 
GroupsAccumulator,
-    ReversedUDAF, Signature,
+    Accumulator, AggregateUDFImpl, Coercion, Documentation, EmitTo, Expr,
+    GroupsAccumulator, ReversedUDAF, Signature, TypeSignature, 
TypeSignatureClass,
+    Volatility,
 };
-
 use datafusion_functions_aggregate_common::aggregate::avg_distinct::{
     DecimalDistinctAvgAccumulator, Float64DistinctAvgAccumulator,
 };
@@ -50,7 +47,6 @@ use 
datafusion_functions_aggregate_common::aggregate::groups_accumulator::accumu
 use 
datafusion_functions_aggregate_common::aggregate::groups_accumulator::nulls::{
     filtered_null_mask, set_nulls,
 };
-
 use datafusion_functions_aggregate_common::utils::DecimalAverager;
 use datafusion_macros::user_doc;
 use log::debug;
@@ -101,7 +97,24 @@ pub struct Avg {
 impl Avg {
     pub fn new() -> Self {
         Self {
-            signature: Signature::user_defined(Immutable),
+            // Supported types smallint, int, bigint, real, double precision, 
decimal, or interval
+            // Refer to 
https://www.postgresql.org/docs/8.2/functions-aggregate.html doc
+            signature: Signature::one_of(
+                vec![
+                    TypeSignature::Coercible(vec![Coercion::new_exact(
+                        TypeSignatureClass::Decimal,
+                    )]),
+                    TypeSignature::Coercible(vec![Coercion::new_exact(
+                        TypeSignatureClass::Duration,
+                    )]),
+                    TypeSignature::Coercible(vec![Coercion::new_implicit(
+                        TypeSignatureClass::Native(logical_float64()),
+                        vec![TypeSignatureClass::Integer, 
TypeSignatureClass::Float],
+                        NativeType::Float64,
+                    )]),
+                ],
+                Volatility::Immutable,
+            ),
             aliases: vec![String::from("mean")],
         }
     }
@@ -126,28 +139,6 @@ impl AggregateUDFImpl for Avg {
         &self.signature
     }
 
-    fn coerce_types(&self, arg_types: &[DataType]) -> Result<Vec<DataType>> {
-        let [args] = take_function_args(self.name(), arg_types)?;
-
-        // Supported types smallint, int, bigint, real, double precision, 
decimal, or interval
-        // Refer to 
https://www.postgresql.org/docs/8.2/functions-aggregate.html doc
-        fn coerced_type(data_type: &DataType) -> Result<DataType> {
-            match &data_type {
-                DataType::Decimal32(p, s) => Ok(DataType::Decimal32(*p, *s)),
-                DataType::Decimal64(p, s) => Ok(DataType::Decimal64(*p, *s)),
-                DataType::Decimal128(p, s) => Ok(DataType::Decimal128(*p, *s)),
-                DataType::Decimal256(p, s) => Ok(DataType::Decimal256(*p, *s)),
-                d if d.is_numeric() => Ok(DataType::Float64),
-                DataType::Duration(time_unit) => 
Ok(DataType::Duration(*time_unit)),
-                DataType::Dictionary(_, v) => coerced_type(v.as_ref()),
-                _ => {
-                    plan_err!("Avg does not support inputs of type 
{data_type}.")
-                }
-            }
-        }
-        Ok(vec![coerced_type(args)?])
-    }
-
     fn return_type(&self, arg_types: &[DataType]) -> Result<DataType> {
         match &arg_types[0] {
             DataType::Decimal32(precision, scale) => {
diff --git a/datafusion/functions-aggregate/src/sum.rs 
b/datafusion/functions-aggregate/src/sum.rs
index 958553d78c..d726b9fad1 100644
--- a/datafusion/functions-aggregate/src/sum.rs
+++ b/datafusion/functions-aggregate/src/sum.rs
@@ -18,35 +18,31 @@
 //! Defines `SUM` and `SUM DISTINCT` aggregate accumulators
 
 use ahash::RandomState;
-use arrow::datatypes::DECIMAL32_MAX_PRECISION;
-use arrow::datatypes::DECIMAL64_MAX_PRECISION;
-use datafusion_expr::utils::AggregateOrderSensitivity;
-use datafusion_expr::Expr;
-use std::any::Any;
-use std::mem::size_of_val;
-
-use arrow::array::Array;
-use arrow::array::ArrowNativeTypeOp;
-use arrow::array::{ArrowNumericType, AsArray};
-use arrow::datatypes::{ArrowNativeType, FieldRef};
+use arrow::array::{Array, ArrayRef, ArrowNativeTypeOp, ArrowNumericType, 
AsArray};
+use arrow::datatypes::Field;
 use arrow::datatypes::{
-    DataType, Decimal128Type, Decimal256Type, Decimal32Type, Decimal64Type, 
Float64Type,
-    Int64Type, UInt64Type, DECIMAL128_MAX_PRECISION, DECIMAL256_MAX_PRECISION,
+    ArrowNativeType, DataType, Decimal128Type, Decimal256Type, Decimal32Type,
+    Decimal64Type, FieldRef, Float64Type, Int64Type, UInt64Type,
+    DECIMAL128_MAX_PRECISION, DECIMAL256_MAX_PRECISION, 
DECIMAL32_MAX_PRECISION,
+    DECIMAL64_MAX_PRECISION,
 };
-use arrow::{array::ArrayRef, datatypes::Field};
-use datafusion_common::{
-    exec_err, not_impl_err, utils::take_function_args, HashMap, Result, 
ScalarValue,
+use datafusion_common::types::{
+    logical_float64, logical_int16, logical_int32, logical_int64, logical_int8,
+    logical_uint16, logical_uint32, logical_uint64, logical_uint8, NativeType,
 };
-use datafusion_expr::function::AccumulatorArgs;
-use datafusion_expr::function::StateFieldsArgs;
-use datafusion_expr::utils::format_state_name;
+use datafusion_common::{exec_err, not_impl_err, HashMap, Result, ScalarValue};
+use datafusion_expr::function::{AccumulatorArgs, StateFieldsArgs};
+use datafusion_expr::utils::{format_state_name, AggregateOrderSensitivity};
 use datafusion_expr::{
-    Accumulator, AggregateUDFImpl, Documentation, GroupsAccumulator, 
ReversedUDAF,
-    SetMonotonicity, Signature, Volatility,
+    Accumulator, AggregateUDFImpl, Coercion, Documentation, Expr, 
GroupsAccumulator,
+    ReversedUDAF, SetMonotonicity, Signature, TypeSignature, 
TypeSignatureClass,
+    Volatility,
 };
 use 
datafusion_functions_aggregate_common::aggregate::groups_accumulator::prim_op::PrimitiveGroupsAccumulator;
 use 
datafusion_functions_aggregate_common::aggregate::sum_distinct::DistinctSumAccumulator;
 use datafusion_macros::user_doc;
+use std::any::Any;
+use std::mem::size_of_val;
 
 make_udaf_expr_and_func!(
     Sum,
@@ -130,7 +126,42 @@ pub struct Sum {
 impl Sum {
     pub fn new() -> Self {
         Self {
-            signature: Signature::user_defined(Volatility::Immutable),
+            // Refer to 
https://www.postgresql.org/docs/8.2/functions-aggregate.html doc
+            // smallint, int, bigint, real, double precision, decimal, or 
interval.
+            signature: Signature::one_of(
+                vec![
+                    TypeSignature::Coercible(vec![Coercion::new_exact(
+                        TypeSignatureClass::Decimal,
+                    )]),
+                    // Unsigned to u64
+                    TypeSignature::Coercible(vec![Coercion::new_implicit(
+                        TypeSignatureClass::Native(logical_uint64()),
+                        vec![
+                            TypeSignatureClass::Native(logical_uint8()),
+                            TypeSignatureClass::Native(logical_uint16()),
+                            TypeSignatureClass::Native(logical_uint32()),
+                        ],
+                        NativeType::UInt64,
+                    )]),
+                    // Signed to i64
+                    TypeSignature::Coercible(vec![Coercion::new_implicit(
+                        TypeSignatureClass::Native(logical_int64()),
+                        vec![
+                            TypeSignatureClass::Native(logical_int8()),
+                            TypeSignatureClass::Native(logical_int16()),
+                            TypeSignatureClass::Native(logical_int32()),
+                        ],
+                        NativeType::Int64,
+                    )]),
+                    // Floats to f64
+                    TypeSignature::Coercible(vec![Coercion::new_implicit(
+                        TypeSignatureClass::Native(logical_float64()),
+                        vec![TypeSignatureClass::Float],
+                        NativeType::Float64,
+                    )]),
+                ],
+                Volatility::Immutable,
+            ),
         }
     }
 }
@@ -154,57 +185,26 @@ impl AggregateUDFImpl for Sum {
         &self.signature
     }
 
-    fn coerce_types(&self, arg_types: &[DataType]) -> Result<Vec<DataType>> {
-        let [args] = take_function_args(self.name(), arg_types)?;
-
-        // Refer to 
https://www.postgresql.org/docs/8.2/functions-aggregate.html doc
-        // smallint, int, bigint, real, double precision, decimal, or interval.
-
-        fn coerced_type(data_type: &DataType) -> Result<DataType> {
-            match data_type {
-                DataType::Dictionary(_, v) => coerced_type(v),
-                // in the spark, the result type is 
DECIMAL(min(38,precision+10), s)
-                // ref: 
https://github.com/apache/spark/blob/fcf636d9eb8d645c24be3db2d599aba2d7e2955a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/aggregate/Sum.scala#L66
-                DataType::Decimal32(_, _)
-                | DataType::Decimal64(_, _)
-                | DataType::Decimal128(_, _)
-                | DataType::Decimal256(_, _) => Ok(data_type.clone()),
-                dt if dt.is_signed_integer() => Ok(DataType::Int64),
-                dt if dt.is_unsigned_integer() => Ok(DataType::UInt64),
-                dt if dt.is_floating() => Ok(DataType::Float64),
-                _ => exec_err!("Sum not supported for {data_type}"),
-            }
-        }
-
-        Ok(vec![coerced_type(args)?])
-    }
-
     fn return_type(&self, arg_types: &[DataType]) -> Result<DataType> {
         match &arg_types[0] {
             DataType::Int64 => Ok(DataType::Int64),
             DataType::UInt64 => Ok(DataType::UInt64),
             DataType::Float64 => Ok(DataType::Float64),
+            // In the spark, the result type is DECIMAL(min(38,precision+10), 
s)
+            // ref: 
https://github.com/apache/spark/blob/fcf636d9eb8d645c24be3db2d599aba2d7e2955a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/aggregate/Sum.scala#L66
             DataType::Decimal32(precision, scale) => {
-                // in the spark, the result type is 
DECIMAL(min(38,precision+10), s)
-                // ref: 
https://github.com/apache/spark/blob/fcf636d9eb8d645c24be3db2d599aba2d7e2955a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/aggregate/Sum.scala#L66
                 let new_precision = DECIMAL32_MAX_PRECISION.min(*precision + 
10);
                 Ok(DataType::Decimal32(new_precision, *scale))
             }
             DataType::Decimal64(precision, scale) => {
-                // in the spark, the result type is 
DECIMAL(min(38,precision+10), s)
-                // ref: 
https://github.com/apache/spark/blob/fcf636d9eb8d645c24be3db2d599aba2d7e2955a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/aggregate/Sum.scala#L66
                 let new_precision = DECIMAL64_MAX_PRECISION.min(*precision + 
10);
                 Ok(DataType::Decimal64(new_precision, *scale))
             }
             DataType::Decimal128(precision, scale) => {
-                // in the spark, the result type is 
DECIMAL(min(38,precision+10), s)
-                // ref: 
https://github.com/apache/spark/blob/fcf636d9eb8d645c24be3db2d599aba2d7e2955a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/aggregate/Sum.scala#L66
                 let new_precision = DECIMAL128_MAX_PRECISION.min(*precision + 
10);
                 Ok(DataType::Decimal128(new_precision, *scale))
             }
             DataType::Decimal256(precision, scale) => {
-                // in the spark, the result type is 
DECIMAL(min(38,precision+10), s)
-                // ref: 
https://github.com/apache/spark/blob/fcf636d9eb8d645c24be3db2d599aba2d7e2955a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/aggregate/Sum.scala#L66
                 let new_precision = DECIMAL256_MAX_PRECISION.min(*precision + 
10);
                 Ok(DataType::Decimal256(new_precision, *scale))
             }
diff --git a/datafusion/spark/src/function/aggregate/avg.rs 
b/datafusion/spark/src/function/aggregate/avg.rs
index 65736815fe..4a7adc515b 100644
--- a/datafusion/spark/src/function/aggregate/avg.rs
+++ b/datafusion/spark/src/function/aggregate/avg.rs
@@ -15,22 +15,21 @@
 // specific language governing permissions and limitations
 // under the License.
 
-use arrow::array::ArrowNativeTypeOp;
 use arrow::array::{
     builder::PrimitiveBuilder,
     cast::AsArray,
     types::{Float64Type, Int64Type},
-    Array, ArrayRef, ArrowNumericType, Int64Array, PrimitiveArray,
+    Array, ArrayRef, ArrowNativeTypeOp, ArrowNumericType, Int64Array, 
PrimitiveArray,
 };
 use arrow::compute::sum;
 use arrow::datatypes::{DataType, Field, FieldRef};
-use datafusion_common::utils::take_function_args;
-use datafusion_common::{not_impl_err, plan_err, Result, ScalarValue};
+use datafusion_common::types::{logical_float64, NativeType};
+use datafusion_common::{not_impl_err, Result, ScalarValue};
 use datafusion_expr::function::{AccumulatorArgs, StateFieldsArgs};
 use datafusion_expr::utils::format_state_name;
-use datafusion_expr::Volatility::Immutable;
 use datafusion_expr::{
-    Accumulator, AggregateUDFImpl, EmitTo, GroupsAccumulator, ReversedUDAF, 
Signature,
+    Accumulator, AggregateUDFImpl, Coercion, EmitTo, GroupsAccumulator, 
ReversedUDAF,
+    Signature, TypeSignatureClass, Volatility,
 };
 use std::{any::Any, sync::Arc};
 
@@ -56,7 +55,14 @@ impl SparkAvg {
     /// Implement AVG aggregate function
     pub fn new() -> Self {
         Self {
-            signature: Signature::user_defined(Immutable),
+            signature: Signature::coercible(
+                vec![Coercion::new_implicit(
+                    TypeSignatureClass::Native(logical_float64()),
+                    vec![TypeSignatureClass::Numeric],
+                    NativeType::Float64,
+                )],
+                Volatility::Immutable,
+            ),
         }
     }
 }
@@ -66,21 +72,6 @@ impl AggregateUDFImpl for SparkAvg {
         self
     }
 
-    fn coerce_types(&self, arg_types: &[DataType]) -> Result<Vec<DataType>> {
-        let [args] = take_function_args(self.name(), arg_types)?;
-
-        fn coerced_type(data_type: &DataType) -> Result<DataType> {
-            match &data_type {
-                d if d.is_numeric() => Ok(DataType::Float64),
-                DataType::Dictionary(_, v) => coerced_type(v.as_ref()),
-                _ => {
-                    plan_err!("Avg does not support inputs of type 
{data_type}.")
-                }
-            }
-        }
-        Ok(vec![coerced_type(args)?])
-    }
-
     fn return_type(&self, _arg_types: &[DataType]) -> Result<DataType> {
         Ok(DataType::Float64)
     }


---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to