This is an automated email from the ASF dual-hosted git repository.
github-bot pushed a commit to branch asf-site
in repository https://gitbox.apache.org/repos/asf/datafusion-comet.git
The following commit(s) were added to refs/heads/asf-site by this push:
new e73be6fe3 Publish built docs triggered by
b8d8fbe047adb34c574a7e8a17f28356cb7f9db8
e73be6fe3 is described below
commit e73be6fe3be89819efdd5dca19c22b4ced1f895f
Author: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
AuthorDate: Wed Feb 18 15:04:48 2026 +0000
Publish built docs triggered by b8d8fbe047adb34c574a7e8a17f28356cb7f9db8
---
_sources/contributor-guide/ffi.md.txt | 7 +-
_sources/contributor-guide/parquet_scans.md.txt | 120 +++++++++++-------------
_sources/contributor-guide/roadmap.md.txt | 14 ---
_sources/user-guide/latest/compatibility.md.txt | 2 +-
_sources/user-guide/latest/configs.md.txt | 1 +
contributor-guide/ffi.html | 5 +-
contributor-guide/parquet_scans.html | 118 ++++++++++-------------
contributor-guide/roadmap.html | 9 --
searchindex.js | 2 +-
user-guide/latest/compatibility.html | 16 ++--
user-guide/latest/configs.html | 4 +
11 files changed, 127 insertions(+), 171 deletions(-)
diff --git a/_sources/contributor-guide/ffi.md.txt
b/_sources/contributor-guide/ffi.md.txt
index b1a51ecb2..c40c189e9 100644
--- a/_sources/contributor-guide/ffi.md.txt
+++ b/_sources/contributor-guide/ffi.md.txt
@@ -177,9 +177,10 @@ message Scan {
#### When ownership is NOT transferred to native:
-If the data originates from `native_comet` scan (deprecated, will be removed
in a future release) or from
-`native_iceberg_compat` in some cases, then ownership is not transferred to
native and the JVM may re-use the
-underlying buffers in the future.
+If the data originates from a scan that uses mutable buffers (such as Iceberg
scans using the [hybrid Iceberg reader]),
+then ownership is not transferred to native and the JVM may re-use the
underlying buffers in the future.
+
+[hybrid Iceberg reader]:
https://datafusion.apache.org/comet/user-guide/latest/iceberg.html#hybrid-reader
It is critical that the native code performs a deep copy of the arrays if the
arrays are to be buffered by
operators such as `SortExec` or `ShuffleWriterExec`, otherwise data corruption
is likely to occur.
diff --git a/_sources/contributor-guide/parquet_scans.md.txt
b/_sources/contributor-guide/parquet_scans.md.txt
index bbacff4d9..7df939488 100644
--- a/_sources/contributor-guide/parquet_scans.md.txt
+++ b/_sources/contributor-guide/parquet_scans.md.txt
@@ -19,71 +19,60 @@ under the License.
# Comet Parquet Scan Implementations
-Comet currently has three distinct implementations of the Parquet scan
operator. The configuration property
-`spark.comet.scan.impl` is used to select an implementation. The default
setting is `spark.comet.scan.impl=auto`, and
-Comet will choose the most appropriate implementation based on the Parquet
schema and other Comet configuration
-settings. Most users should not need to change this setting. However, it is
possible to force Comet to try and use
-a particular implementation for all scan operations by setting this
configuration property to one of the following
-implementations.
-
-| Implementation | Description
|
-| ----------------------- |
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
|
-| `native_comet` | **Deprecated.** This implementation provides
strong compatibility with Spark but does not support complex types. This is the
original scan implementation in Comet and will be removed in a future release. |
-| `native_iceberg_compat` | This implementation delegates to DataFusion's
`DataSourceExec` but uses a hybrid approach of JVM and native code. This scan
is designed to be integrated with Iceberg in the future.
|
-| `native_datafusion` | This experimental implementation delegates to
DataFusion's `DataSourceExec` for full native execution. There are known
compatibility issues when using this scan.
|
-
-The `native_datafusion` and `native_iceberg_compat` scans provide the
following benefits over the `native_comet`
-implementation:
-
-- Leverages the DataFusion community's ongoing improvements to `DataSourceExec`
-- Provides support for reading complex types (structs, arrays, and maps)
-- Delegates Parquet decoding to native Rust code rather than JVM-side decoding
-- Improves performance
-
-> **Note on mutable buffers:** Both `native_comet` and `native_iceberg_compat`
use reusable mutable buffers
-> when transferring data from JVM to native code via Arrow FFI. The
`native_iceberg_compat` implementation uses DataFusion's native Parquet reader
for data columns, bypassing Comet's mutable buffer infrastructure entirely.
However, partition columns still use `ConstantColumnReader`, which relies on
Comet's mutable buffers that are reused across batches. This means native
operators that buffer data (such as `SortExec` or `ShuffleWriterExec`) must
perform deep copies to avoid data corruption.
-> See the [FFI documentation](ffi.md) for details on the `arrow_ffi_safe` flag
and ownership semantics.
-
-The `native_datafusion` and `native_iceberg_compat` scans share the following
limitations:
-
-- When reading Parquet files written by systems other than Spark that contain
columns with the logical type `UINT_8`
- (unsigned 8-bit integers), Comet may produce different results than Spark.
Spark maps `UINT_8` to `ShortType`, but
- Comet's Arrow-based readers respect the unsigned type and read the data as
unsigned rather than signed. Since Comet
- cannot distinguish `ShortType` columns that came from `UINT_8` versus signed
`INT16`, by default Comet falls back to
- Spark when scanning Parquet files containing `ShortType` columns. This
behavior can be disabled by setting
- `spark.comet.scan.unsignedSmallIntSafetyCheck=false`. Note that `ByteType`
columns are always safe because they can
- only come from signed `INT8`, where truncation preserves the signed value.
-- No support for default values that are nested types (e.g., maps, arrays,
structs). Literal default values are supported.
-- No support for datetime rebasing detection or the
`spark.comet.exceptionOnDatetimeRebase` configuration. When reading
- Parquet files containing dates or timestamps written before Spark 3.0 (which
used a hybrid Julian/Gregorian calendar),
- the `native_comet` implementation can detect these legacy values and either
throw an exception or read them without
- rebasing. The DataFusion-based implementations do not have this detection
capability and will read all dates/timestamps
- as if they were written using the Proleptic Gregorian calendar. This may
produce incorrect results for dates before
- October 15, 1582.
-- No support for Spark's Datasource V2 API. When
`spark.sql.sources.useV1SourceList` does not include `parquet`,
- Spark uses the V2 API for Parquet scans. The DataFusion-based
implementations only support the V1 API, so Comet
- will fall back to `native_comet` when V2 is enabled.
-
-The `native_datafusion` scan has some additional limitations:
+Comet currently has two distinct implementations of the Parquet scan operator.
+
+| Scan Implementation | Notes |
+| ----------------------- | ---------------------- |
+| `native_datafusion` | Fully native scan |
+| `native_iceberg_compat` | Hybrid JVM/native scan |
+
+The configuration property
+`spark.comet.scan.impl` is used to select an implementation. The default
setting is `spark.comet.scan.impl=auto`, which
+currently always uses the `native_iceberg_compat` implementation. Most users
should not need to change this setting.
+However, it is possible to force Comet to use a particular implementation for
all scan operations by setting
+this configuration property to one of the following implementations. For
example: `--conf spark.comet.scan.impl=native_datafusion`.
+
+The following features are not supported by either scan implementation, and
Comet will fall back to Spark in these scenarios:
+
+- `ShortType` columns, by default. When reading Parquet files written by
systems other than Spark that contain
+ columns with the logical type `UINT_8` (unsigned 8-bit integers), Comet may
produce different results than Spark.
+ Spark maps `UINT_8` to `ShortType`, but Comet's Arrow-based readers respect
the unsigned type and read the data as
+ unsigned rather than signed. Since Comet cannot distinguish `ShortType`
columns that came from `UINT_8` versus
+ signed `INT16`, by default Comet falls back to Spark when scanning Parquet
files containing `ShortType` columns.
+ This behavior can be disabled by setting
`spark.comet.scan.unsignedSmallIntSafetyCheck=false`. Note that `ByteType`
+ columns are always safe because they can only come from signed `INT8`, where
truncation preserves the signed value.
+- Default values that are nested types (e.g., maps, arrays, structs). Literal
default values are supported.
+- Spark's Datasource V2 API. When `spark.sql.sources.useV1SourceList` does not
include `parquet`, Spark uses the
+ V2 API for Parquet scans. The DataFusion-based implementations only support
the V1 API.
+- Spark metadata columns (e.g., `_metadata.file_path`)
+- No support for Dynamic Partition Pruning (DPP)
+
+The following shared limitation may produce incorrect results without falling
back to Spark:
+
+- No support for datetime rebasing detection or the
`spark.comet.exceptionOnDatetimeRebase` configuration. When
+ reading Parquet files containing dates or timestamps written before Spark
3.0 (which used a hybrid
+ Julian/Gregorian calendar), dates/timestamps will be read as if they were
written using the Proleptic Gregorian
+ calendar. This may produce incorrect results for dates before October 15,
1582.
+
+The `native_datafusion` scan has some additional limitations, mostly related
to Parquet metadata. All of these
+cause Comet to fall back to Spark.
- No support for row indexes
-- `PARQUET_FIELD_ID_READ_ENABLED` is not respected [#1758]
-- There are failures in the Spark SQL test suite [#1545]
-- Setting Spark configs `ignoreMissingFiles` or `ignoreCorruptFiles` to `true`
is not compatible with Spark
+- No support for reading Parquet field IDs
+- No support for `input_file_name()`, `input_file_block_start()`, or
`input_file_block_length()` SQL functions.
+ The `native_datafusion` scan does not use Spark's `FileScanRDD`, so these
functions cannot populate their values.
+- No support for `ignoreMissingFiles` or `ignoreCorruptFiles` being set to
`true`
-## S3 Support
-
-There are some differences in S3 support between the scan implementations.
-
-### `native_comet` (Deprecated)
+The `native_iceberg_compat` scan has the following additional limitation that
may produce incorrect results
+without falling back to Spark:
-> **Note:** The `native_comet` scan implementation is deprecated and will be
removed in a future release.
+- Some Spark configuration values are hard-coded to their defaults rather than
respecting user-specified values.
+ This may produce incorrect results when non-default values are set. The
affected configurations are
+ `spark.sql.parquet.binaryAsString`, `spark.sql.parquet.int96AsTimestamp`,
`spark.sql.caseSensitive`,
+ `spark.sql.parquet.inferTimestampNTZ.enabled`, and
`spark.sql.legacy.parquet.nanosAsLong`. See
+ [issue #1816](https://github.com/apache/datafusion-comet/issues/1816) for
more details.
-The `native_comet` Parquet scan implementation reads data from S3 using the
[Hadoop-AWS
module](https://hadoop.apache.org/docs/stable/hadoop-aws/tools/hadoop-aws/index.html),
which
-is identical to the approach commonly used with vanilla Spark. AWS credential
configuration and other Hadoop S3A
-configurations works the same way as in vanilla Spark.
-
-### `native_datafusion` and `native_iceberg_compat`
+## S3 Support
The `native_datafusion` and `native_iceberg_compat` Parquet scan
implementations completely offload data loading
to native code. They use the [`object_store`
crate](https://crates.io/crates/object_store) to read data from S3 and
@@ -95,7 +84,8 @@ continue to work as long as the configurations are supported
and can be translat
#### Additional S3 Configuration Options
-Beyond credential providers, the `native_datafusion` implementation supports
additional S3 configuration options:
+Beyond credential providers, the `native_datafusion` and
`native_iceberg_compat` implementations support additional
+S3 configuration options:
| Option | Description
|
| ------------------------------- |
--------------------------------------------------------------------------------------------------
|
@@ -108,7 +98,8 @@ All configuration options support bucket-specific overrides
using the pattern `f
#### Examples
-The following examples demonstrate how to configure S3 access with the
`native_datafusion` Parquet scan implementation using different authentication
methods.
+The following examples demonstrate how to configure S3 access with the
`native_datafusion` and `native_iceberg_compat`
+Parquet scan implementations using different authentication methods.
**Example 1: Simple Credentials**
@@ -140,11 +131,8 @@ $SPARK_HOME/bin/spark-shell \
#### Limitations
-The S3 support of `native_datafusion` has the following limitations:
+The S3 support of `native_datafusion` and `native_iceberg_compat` has the
following limitations:
1. **Partial Hadoop S3A configuration support**: Not all Hadoop S3A
configurations are currently supported. Only the configurations listed in the
tables above are translated and applied to the underlying `object_store` crate.
2. **Custom credential providers**: Custom implementations of AWS credential
providers are not supported. The implementation only supports the standard
credential providers listed in the table above. We are planning to add support
for custom credential providers through a JNI-based adapter that will allow
calling Java credential providers from native code. See [issue
#1829](https://github.com/apache/datafusion-comet/issues/1829) for more details.
-
-[#1545]: https://github.com/apache/datafusion-comet/issues/1545
-[#1758]: https://github.com/apache/datafusion-comet/issues/1758
diff --git a/_sources/contributor-guide/roadmap.md.txt
b/_sources/contributor-guide/roadmap.md.txt
index ce9c41416..6d99ee545 100644
--- a/_sources/contributor-guide/roadmap.md.txt
+++ b/_sources/contributor-guide/roadmap.md.txt
@@ -51,20 +51,6 @@ with benchmarks that benefit from this feature like TPC-DS.
This effort can be t
[#3349]: https://github.com/apache/datafusion-comet/pull/3349
[#3510]: https://github.com/apache/datafusion-comet/issues/3510
-### Removing the native_comet scan implementation
-
-The `native_comet` scan implementation is now deprecated and will be removed
in a future release ([#2186], [#2177]).
-This is the original scan implementation that uses mutable buffers (which is
incompatible with best practices around
-Arrow FFI) and does not support complex types.
-
-Now that the default `auto` scan mode uses `native_iceberg_compat` (which is
based on DataFusion's `DataSourceExec`),
-we can proceed with removing the `native_comet` scan implementation, and then
improve the efficiency of our use of
-Arrow FFI ([#2171]).
-
-[#2186]: https://github.com/apache/datafusion-comet/issues/2186
-[#2171]: https://github.com/apache/datafusion-comet/issues/2171
-[#2177]: https://github.com/apache/datafusion-comet/issues/2177
-
## Ongoing Improvements
In addition to the major initiatives above, we have the following ongoing
areas of work:
diff --git a/_sources/user-guide/latest/compatibility.md.txt
b/_sources/user-guide/latest/compatibility.md.txt
index fffa05509..0163efc4f 100644
--- a/_sources/user-guide/latest/compatibility.md.txt
+++ b/_sources/user-guide/latest/compatibility.md.txt
@@ -117,7 +117,7 @@ Cast operations in Comet fall into three levels of support:
| binary | - | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | C | N/A |
| boolean | N/A | - | C | N/A | C | C | C | C | C | C | C | U |
| byte | C | C | - | N/A | C | C | C | C | C | C | C | U |
-| date | N/A | U | U | - | U | U | U | U | U | U | C | C |
+| date | N/A | C | C | - | C | C | C | C | C | C | C | C |
| decimal | N/A | C | C | N/A | - | C | C | C | C | C | C | U |
| double | N/A | C | C | N/A | I | - | C | C | C | C | C | U |
| float | N/A | C | C | N/A | I | C | - | C | C | C | C | U |
diff --git a/_sources/user-guide/latest/configs.md.txt
b/_sources/user-guide/latest/configs.md.txt
index 6ae0ec6fb..7a0ed1dc0 100644
--- a/_sources/user-guide/latest/configs.md.txt
+++ b/_sources/user-guide/latest/configs.md.txt
@@ -49,6 +49,7 @@ Comet provides the following configuration settings.
| `spark.comet.parquet.read.parallel.io.enabled` | Whether to enable Comet's
parallel reader for Parquet files. The parallel reader reads ranges of
consecutive data in a file in parallel. It is faster for large files and row
groups but uses more resources. | true |
| `spark.comet.parquet.read.parallel.io.thread-pool.size` | The maximum number
of parallel threads the parallel reader will use in a single executor. For
executors configured with a smaller number of cores, use a smaller number. | 16
|
| `spark.comet.parquet.respectFilterPushdown` | Whether to respect Spark's
PARQUET_FILTER_PUSHDOWN_ENABLED config. This needs to be respected when running
the Spark SQL test suite but the default setting results in poor performance in
Comet when using the new native scans, disabled by default | false |
+| `spark.comet.scan.impl` | The implementation of Comet's Parquet scan to use.
Available scans are `native_datafusion`, and `native_iceberg_compat`.
`native_datafusion` is a fully native implementation, and
`native_iceberg_compat` is a hybrid implementation that supports some
additional features, such as row indexes and field ids. `auto` (default)
chooses the best available scan based on the scan schema. It can be overridden
by the environment variable `COMET_PARQUET_SCAN_IMPL`. | auto |
<!-- prettier-ignore-end -->
<!--END:CONFIG_TABLE-->
diff --git a/contributor-guide/ffi.html b/contributor-guide/ffi.html
index a03074a2d..fa6a7fb06 100644
--- a/contributor-guide/ffi.html
+++ b/contributor-guide/ffi.html
@@ -605,9 +605,8 @@ ownership is being transferred according to the Arrow C
data interface specifica
</div>
<section id="when-ownership-is-not-transferred-to-native">
<h4>When ownership is NOT transferred to native:<a class="headerlink"
href="#when-ownership-is-not-transferred-to-native" title="Link to this
heading">#</a></h4>
-<p>If the data originates from <code class="docutils literal
notranslate"><span class="pre">native_comet</span></code> scan (deprecated,
will be removed in a future release) or from
-<code class="docutils literal notranslate"><span
class="pre">native_iceberg_compat</span></code> in some cases, then ownership
is not transferred to native and the JVM may re-use the
-underlying buffers in the future.</p>
+<p>If the data originates from a scan that uses mutable buffers (such as
Iceberg scans using the <a class="reference external"
href="https://datafusion.apache.org/comet/user-guide/latest/iceberg.html#hybrid-reader">hybrid
Iceberg reader</a>),
+then ownership is not transferred to native and the JVM may re-use the
underlying buffers in the future.</p>
<p>It is critical that the native code performs a deep copy of the arrays if
the arrays are to be buffered by
operators such as <code class="docutils literal notranslate"><span
class="pre">SortExec</span></code> or <code class="docutils literal
notranslate"><span class="pre">ShuffleWriterExec</span></code>, otherwise data
corruption is likely to occur.</p>
</section>
diff --git a/contributor-guide/parquet_scans.html
b/contributor-guide/parquet_scans.html
index 2bb8ffb82..52544b2ea 100644
--- a/contributor-guide/parquet_scans.html
+++ b/contributor-guide/parquet_scans.html
@@ -457,85 +457,70 @@ under the License.
-->
<section id="comet-parquet-scan-implementations">
<h1>Comet Parquet Scan Implementations<a class="headerlink"
href="#comet-parquet-scan-implementations" title="Link to this
heading">#</a></h1>
-<p>Comet currently has three distinct implementations of the Parquet scan
operator. The configuration property
-<code class="docutils literal notranslate"><span
class="pre">spark.comet.scan.impl</span></code> is used to select an
implementation. The default setting is <code class="docutils literal
notranslate"><span class="pre">spark.comet.scan.impl=auto</span></code>, and
-Comet will choose the most appropriate implementation based on the Parquet
schema and other Comet configuration
-settings. Most users should not need to change this setting. However, it is
possible to force Comet to try and use
-a particular implementation for all scan operations by setting this
configuration property to one of the following
-implementations.</p>
+<p>Comet currently has two distinct implementations of the Parquet scan
operator.</p>
<div class="pst-scrollable-table-container"><table class="table">
<thead>
-<tr class="row-odd"><th class="head"><p>Implementation</p></th>
-<th class="head"><p>Description</p></th>
+<tr class="row-odd"><th class="head"><p>Scan Implementation</p></th>
+<th class="head"><p>Notes</p></th>
</tr>
</thead>
<tbody>
-<tr class="row-even"><td><p><code class="docutils literal notranslate"><span
class="pre">native_comet</span></code></p></td>
-<td><p><strong>Deprecated.</strong> This implementation provides strong
compatibility with Spark but does not support complex types. This is the
original scan implementation in Comet and will be removed in a future
release.</p></td>
+<tr class="row-even"><td><p><code class="docutils literal notranslate"><span
class="pre">native_datafusion</span></code></p></td>
+<td><p>Fully native scan</p></td>
</tr>
<tr class="row-odd"><td><p><code class="docutils literal notranslate"><span
class="pre">native_iceberg_compat</span></code></p></td>
-<td><p>This implementation delegates to DataFusion’s <code class="docutils
literal notranslate"><span class="pre">DataSourceExec</span></code> but uses a
hybrid approach of JVM and native code. This scan is designed to be integrated
with Iceberg in the future.</p></td>
-</tr>
-<tr class="row-even"><td><p><code class="docutils literal notranslate"><span
class="pre">native_datafusion</span></code></p></td>
-<td><p>This experimental implementation delegates to DataFusion’s <code
class="docutils literal notranslate"><span
class="pre">DataSourceExec</span></code> for full native execution. There are
known compatibility issues when using this scan.</p></td>
+<td><p>Hybrid JVM/native scan</p></td>
</tr>
</tbody>
</table>
</div>
-<p>The <code class="docutils literal notranslate"><span
class="pre">native_datafusion</span></code> and <code class="docutils literal
notranslate"><span class="pre">native_iceberg_compat</span></code> scans
provide the following benefits over the <code class="docutils literal
notranslate"><span class="pre">native_comet</span></code>
-implementation:</p>
+<p>The configuration property
+<code class="docutils literal notranslate"><span
class="pre">spark.comet.scan.impl</span></code> is used to select an
implementation. The default setting is <code class="docutils literal
notranslate"><span class="pre">spark.comet.scan.impl=auto</span></code>, which
+currently always uses the <code class="docutils literal notranslate"><span
class="pre">native_iceberg_compat</span></code> implementation. Most users
should not need to change this setting.
+However, it is possible to force Comet to use a particular implementation for
all scan operations by setting
+this configuration property to one of the following implementations. For
example: <code class="docutils literal notranslate"><span
class="pre">--conf</span> <span
class="pre">spark.comet.scan.impl=native_datafusion</span></code>.</p>
+<p>The following features are not supported by either scan implementation, and
Comet will fall back to Spark in these scenarios:</p>
<ul class="simple">
-<li><p>Leverages the DataFusion community’s ongoing improvements to <code
class="docutils literal notranslate"><span
class="pre">DataSourceExec</span></code></p></li>
-<li><p>Provides support for reading complex types (structs, arrays, and
maps)</p></li>
-<li><p>Delegates Parquet decoding to native Rust code rather than JVM-side
decoding</p></li>
-<li><p>Improves performance</p></li>
+<li><p><code class="docutils literal notranslate"><span
class="pre">ShortType</span></code> columns, by default. When reading Parquet
files written by systems other than Spark that contain
+columns with the logical type <code class="docutils literal notranslate"><span
class="pre">UINT_8</span></code> (unsigned 8-bit integers), Comet may produce
different results than Spark.
+Spark maps <code class="docutils literal notranslate"><span
class="pre">UINT_8</span></code> to <code class="docutils literal
notranslate"><span class="pre">ShortType</span></code>, but Comet’s Arrow-based
readers respect the unsigned type and read the data as
+unsigned rather than signed. Since Comet cannot distinguish <code
class="docutils literal notranslate"><span class="pre">ShortType</span></code>
columns that came from <code class="docutils literal notranslate"><span
class="pre">UINT_8</span></code> versus
+signed <code class="docutils literal notranslate"><span
class="pre">INT16</span></code>, by default Comet falls back to Spark when
scanning Parquet files containing <code class="docutils literal
notranslate"><span class="pre">ShortType</span></code> columns.
+This behavior can be disabled by setting <code class="docutils literal
notranslate"><span
class="pre">spark.comet.scan.unsignedSmallIntSafetyCheck=false</span></code>.
Note that <code class="docutils literal notranslate"><span
class="pre">ByteType</span></code>
+columns are always safe because they can only come from signed <code
class="docutils literal notranslate"><span class="pre">INT8</span></code>,
where truncation preserves the signed value.</p></li>
+<li><p>Default values that are nested types (e.g., maps, arrays, structs).
Literal default values are supported.</p></li>
+<li><p>Spark’s Datasource V2 API. When <code class="docutils literal
notranslate"><span class="pre">spark.sql.sources.useV1SourceList</span></code>
does not include <code class="docutils literal notranslate"><span
class="pre">parquet</span></code>, Spark uses the
+V2 API for Parquet scans. The DataFusion-based implementations only support
the V1 API.</p></li>
+<li><p>Spark metadata columns (e.g., <code class="docutils literal
notranslate"><span class="pre">_metadata.file_path</span></code>)</p></li>
+<li><p>No support for Dynamic Partition Pruning (DPP)</p></li>
</ul>
-<blockquote>
-<div><p><strong>Note on mutable buffers:</strong> Both <code class="docutils
literal notranslate"><span class="pre">native_comet</span></code> and <code
class="docutils literal notranslate"><span
class="pre">native_iceberg_compat</span></code> use reusable mutable buffers
-when transferring data from JVM to native code via Arrow FFI. The <code
class="docutils literal notranslate"><span
class="pre">native_iceberg_compat</span></code> implementation uses
DataFusion’s native Parquet reader for data columns, bypassing Comet’s mutable
buffer infrastructure entirely. However, partition columns still use <code
class="docutils literal notranslate"><span
class="pre">ConstantColumnReader</span></code>, which relies on Comet’s mutable
buffers that are reused across b [...]
-See the <a class="reference internal" href="ffi.html"><span class="std
std-doc">FFI documentation</span></a> for details on the <code class="docutils
literal notranslate"><span class="pre">arrow_ffi_safe</span></code> flag and
ownership semantics.</p>
-</div></blockquote>
-<p>The <code class="docutils literal notranslate"><span
class="pre">native_datafusion</span></code> and <code class="docutils literal
notranslate"><span class="pre">native_iceberg_compat</span></code> scans share
the following limitations:</p>
+<p>The following shared limitation may produce incorrect results without
falling back to Spark:</p>
<ul class="simple">
-<li><p>When reading Parquet files written by systems other than Spark that
contain columns with the logical type <code class="docutils literal
notranslate"><span class="pre">UINT_8</span></code>
-(unsigned 8-bit integers), Comet may produce different results than Spark.
Spark maps <code class="docutils literal notranslate"><span
class="pre">UINT_8</span></code> to <code class="docutils literal
notranslate"><span class="pre">ShortType</span></code>, but
-Comet’s Arrow-based readers respect the unsigned type and read the data as
unsigned rather than signed. Since Comet
-cannot distinguish <code class="docutils literal notranslate"><span
class="pre">ShortType</span></code> columns that came from <code
class="docutils literal notranslate"><span class="pre">UINT_8</span></code>
versus signed <code class="docutils literal notranslate"><span
class="pre">INT16</span></code>, by default Comet falls back to
-Spark when scanning Parquet files containing <code class="docutils literal
notranslate"><span class="pre">ShortType</span></code> columns. This behavior
can be disabled by setting
-<code class="docutils literal notranslate"><span
class="pre">spark.comet.scan.unsignedSmallIntSafetyCheck=false</span></code>.
Note that <code class="docutils literal notranslate"><span
class="pre">ByteType</span></code> columns are always safe because they can
-only come from signed <code class="docutils literal notranslate"><span
class="pre">INT8</span></code>, where truncation preserves the signed
value.</p></li>
-<li><p>No support for default values that are nested types (e.g., maps,
arrays, structs). Literal default values are supported.</p></li>
-<li><p>No support for datetime rebasing detection or the <code class="docutils
literal notranslate"><span
class="pre">spark.comet.exceptionOnDatetimeRebase</span></code> configuration.
When reading
-Parquet files containing dates or timestamps written before Spark 3.0 (which
used a hybrid Julian/Gregorian calendar),
-the <code class="docutils literal notranslate"><span
class="pre">native_comet</span></code> implementation can detect these legacy
values and either throw an exception or read them without
-rebasing. The DataFusion-based implementations do not have this detection
capability and will read all dates/timestamps
-as if they were written using the Proleptic Gregorian calendar. This may
produce incorrect results for dates before
-October 15, 1582.</p></li>
-<li><p>No support for Spark’s Datasource V2 API. When <code class="docutils
literal notranslate"><span
class="pre">spark.sql.sources.useV1SourceList</span></code> does not include
<code class="docutils literal notranslate"><span
class="pre">parquet</span></code>,
-Spark uses the V2 API for Parquet scans. The DataFusion-based implementations
only support the V1 API, so Comet
-will fall back to <code class="docutils literal notranslate"><span
class="pre">native_comet</span></code> when V2 is enabled.</p></li>
+<li><p>No support for datetime rebasing detection or the <code class="docutils
literal notranslate"><span
class="pre">spark.comet.exceptionOnDatetimeRebase</span></code> configuration.
When
+reading Parquet files containing dates or timestamps written before Spark 3.0
(which used a hybrid
+Julian/Gregorian calendar), dates/timestamps will be read as if they were
written using the Proleptic Gregorian
+calendar. This may produce incorrect results for dates before October 15,
1582.</p></li>
</ul>
-<p>The <code class="docutils literal notranslate"><span
class="pre">native_datafusion</span></code> scan has some additional
limitations:</p>
+<p>The <code class="docutils literal notranslate"><span
class="pre">native_datafusion</span></code> scan has some additional
limitations, mostly related to Parquet metadata. All of these
+cause Comet to fall back to Spark.</p>
<ul class="simple">
<li><p>No support for row indexes</p></li>
-<li><p><code class="docutils literal notranslate"><span
class="pre">PARQUET_FIELD_ID_READ_ENABLED</span></code> is not respected <a
class="reference external"
href="https://github.com/apache/datafusion-comet/issues/1758">#1758</a></p></li>
-<li><p>There are failures in the Spark SQL test suite <a class="reference
external"
href="https://github.com/apache/datafusion-comet/issues/1545">#1545</a></p></li>
-<li><p>Setting Spark configs <code class="docutils literal notranslate"><span
class="pre">ignoreMissingFiles</span></code> or <code class="docutils literal
notranslate"><span class="pre">ignoreCorruptFiles</span></code> to <code
class="docutils literal notranslate"><span class="pre">true</span></code> is
not compatible with Spark</p></li>
+<li><p>No support for reading Parquet field IDs</p></li>
+<li><p>No support for <code class="docutils literal notranslate"><span
class="pre">input_file_name()</span></code>, <code class="docutils literal
notranslate"><span class="pre">input_file_block_start()</span></code>, or <code
class="docutils literal notranslate"><span
class="pre">input_file_block_length()</span></code> SQL functions.
+The <code class="docutils literal notranslate"><span
class="pre">native_datafusion</span></code> scan does not use Spark’s <code
class="docutils literal notranslate"><span
class="pre">FileScanRDD</span></code>, so these functions cannot populate their
values.</p></li>
+<li><p>No support for <code class="docutils literal notranslate"><span
class="pre">ignoreMissingFiles</span></code> or <code class="docutils literal
notranslate"><span class="pre">ignoreCorruptFiles</span></code> being set to
<code class="docutils literal notranslate"><span
class="pre">true</span></code></p></li>
+</ul>
+<p>The <code class="docutils literal notranslate"><span
class="pre">native_iceberg_compat</span></code> scan has the following
additional limitation that may produce incorrect results
+without falling back to Spark:</p>
+<ul class="simple">
+<li><p>Some Spark configuration values are hard-coded to their defaults rather
than respecting user-specified values.
+This may produce incorrect results when non-default values are set. The
affected configurations are
+<code class="docutils literal notranslate"><span
class="pre">spark.sql.parquet.binaryAsString</span></code>, <code
class="docutils literal notranslate"><span
class="pre">spark.sql.parquet.int96AsTimestamp</span></code>, <code
class="docutils literal notranslate"><span
class="pre">spark.sql.caseSensitive</span></code>,
+<code class="docutils literal notranslate"><span
class="pre">spark.sql.parquet.inferTimestampNTZ.enabled</span></code>, and
<code class="docutils literal notranslate"><span
class="pre">spark.sql.legacy.parquet.nanosAsLong</span></code>. See
+<a class="reference external"
href="https://github.com/apache/datafusion-comet/issues/1816">issue #1816</a>
for more details.</p></li>
</ul>
<section id="s3-support">
<h2>S3 Support<a class="headerlink" href="#s3-support" title="Link to this
heading">#</a></h2>
-<p>There are some differences in S3 support between the scan
implementations.</p>
-<section id="native-comet-deprecated">
-<h3><code class="docutils literal notranslate"><span
class="pre">native_comet</span></code> (Deprecated)<a class="headerlink"
href="#native-comet-deprecated" title="Link to this heading">#</a></h3>
-<blockquote>
-<div><p><strong>Note:</strong> The <code class="docutils literal
notranslate"><span class="pre">native_comet</span></code> scan implementation
is deprecated and will be removed in a future release.</p>
-</div></blockquote>
-<p>The <code class="docutils literal notranslate"><span
class="pre">native_comet</span></code> Parquet scan implementation reads data
from S3 using the <a class="reference external"
href="https://hadoop.apache.org/docs/stable/hadoop-aws/tools/hadoop-aws/index.html">Hadoop-AWS
module</a>, which
-is identical to the approach commonly used with vanilla Spark. AWS credential
configuration and other Hadoop S3A
-configurations works the same way as in vanilla Spark.</p>
-</section>
-<section id="native-datafusion-and-native-iceberg-compat">
-<h3><code class="docutils literal notranslate"><span
class="pre">native_datafusion</span></code> and <code class="docutils literal
notranslate"><span class="pre">native_iceberg_compat</span></code><a
class="headerlink" href="#native-datafusion-and-native-iceberg-compat"
title="Link to this heading">#</a></h3>
<p>The <code class="docutils literal notranslate"><span
class="pre">native_datafusion</span></code> and <code class="docutils literal
notranslate"><span class="pre">native_iceberg_compat</span></code> Parquet scan
implementations completely offload data loading
to native code. They use the <a class="reference external"
href="https://crates.io/crates/object_store"><code class="docutils literal
notranslate"><span class="pre">object_store</span></code> crate</a> to read
data from S3 and
support configuring S3 access using standard <a class="reference external"
href="https://hadoop.apache.org/docs/stable/hadoop-aws/tools/hadoop-aws/index.html#General_S3A_Client_configuration">Hadoop
S3A configurations</a> by translating them to
@@ -543,8 +528,9 @@ the <code class="docutils literal notranslate"><span
class="pre">object_store</s
<p>This implementation maintains compatibility with existing Hadoop S3A
configurations, so existing code will
continue to work as long as the configurations are supported and can be
translated without loss of functionality.</p>
<section id="additional-s3-configuration-options">
-<h4>Additional S3 Configuration Options<a class="headerlink"
href="#additional-s3-configuration-options" title="Link to this
heading">#</a></h4>
-<p>Beyond credential providers, the <code class="docutils literal
notranslate"><span class="pre">native_datafusion</span></code> implementation
supports additional S3 configuration options:</p>
+<h3>Additional S3 Configuration Options<a class="headerlink"
href="#additional-s3-configuration-options" title="Link to this
heading">#</a></h3>
+<p>Beyond credential providers, the <code class="docutils literal
notranslate"><span class="pre">native_datafusion</span></code> and <code
class="docutils literal notranslate"><span
class="pre">native_iceberg_compat</span></code> implementations support
additional
+S3 configuration options:</p>
<div class="pst-scrollable-table-container"><table class="table">
<thead>
<tr class="row-odd"><th class="head"><p>Option</p></th>
@@ -570,8 +556,9 @@ continue to work as long as the configurations are
supported and can be translat
<p>All configuration options support bucket-specific overrides using the
pattern <code class="docutils literal notranslate"><span
class="pre">fs.s3a.bucket.{bucket-name}.{option}</span></code>.</p>
</section>
<section id="examples">
-<h4>Examples<a class="headerlink" href="#examples" title="Link to this
heading">#</a></h4>
-<p>The following examples demonstrate how to configure S3 access with the
<code class="docutils literal notranslate"><span
class="pre">native_datafusion</span></code> Parquet scan implementation using
different authentication methods.</p>
+<h3>Examples<a class="headerlink" href="#examples" title="Link to this
heading">#</a></h3>
+<p>The following examples demonstrate how to configure S3 access with the
<code class="docutils literal notranslate"><span
class="pre">native_datafusion</span></code> and <code class="docutils literal
notranslate"><span class="pre">native_iceberg_compat</span></code>
+Parquet scan implementations using different authentication methods.</p>
<p><strong>Example 1: Simple Credentials</strong></p>
<p>This example shows how to access a private S3 bucket using an access key
and secret key. The <code class="docutils literal notranslate"><span
class="pre">fs.s3a.aws.credentials.provider</span></code> configuration can be
omitted since <code class="docutils literal notranslate"><span
class="pre">org.apache.hadoop.fs.s3a.SimpleAWSCredentialsProvider</span></code>
is included in Hadoop S3A’s default credential provider chain.</p>
<div class="highlight-shell notranslate"><div
class="highlight"><pre><span></span><span
class="nv">$SPARK_HOME</span>/bin/spark-shell<span class="w"> </span><span
class="se">\</span>
@@ -596,15 +583,14 @@ continue to work as long as the configurations are
supported and can be translat
</div>
</section>
<section id="limitations">
-<h4>Limitations<a class="headerlink" href="#limitations" title="Link to this
heading">#</a></h4>
-<p>The S3 support of <code class="docutils literal notranslate"><span
class="pre">native_datafusion</span></code> has the following limitations:</p>
+<h3>Limitations<a class="headerlink" href="#limitations" title="Link to this
heading">#</a></h3>
+<p>The S3 support of <code class="docutils literal notranslate"><span
class="pre">native_datafusion</span></code> and <code class="docutils literal
notranslate"><span class="pre">native_iceberg_compat</span></code> has the
following limitations:</p>
<ol class="arabic simple">
<li><p><strong>Partial Hadoop S3A configuration support</strong>: Not all
Hadoop S3A configurations are currently supported. Only the configurations
listed in the tables above are translated and applied to the underlying <code
class="docutils literal notranslate"><span
class="pre">object_store</span></code> crate.</p></li>
<li><p><strong>Custom credential providers</strong>: Custom implementations of
AWS credential providers are not supported. The implementation only supports
the standard credential providers listed in the table above. We are planning to
add support for custom credential providers through a JNI-based adapter that
will allow calling Java credential providers from native code. See <a
class="reference external"
href="https://github.com/apache/datafusion-comet/issues/1829">issue #1829</a>
for [...]
</ol>
</section>
</section>
-</section>
</section>
diff --git a/contributor-guide/roadmap.html b/contributor-guide/roadmap.html
index be85cf9ef..9e5256a2b 100644
--- a/contributor-guide/roadmap.html
+++ b/contributor-guide/roadmap.html
@@ -480,15 +480,6 @@ Spark’s <code class="docutils literal notranslate"><span
class="pre">PlanAdapt
Execution requires a redesign of Comet’s plan translation. We are focused on
implementing DPP to keep Comet competitive
with benchmarks that benefit from this feature like TPC-DS. This effort can be
tracked at <a class="reference external"
href="https://github.com/apache/datafusion-comet/issues/3510">#3510</a>.</p>
</section>
-<section id="removing-the-native-comet-scan-implementation">
-<h3>Removing the native_comet scan implementation<a class="headerlink"
href="#removing-the-native-comet-scan-implementation" title="Link to this
heading">#</a></h3>
-<p>The <code class="docutils literal notranslate"><span
class="pre">native_comet</span></code> scan implementation is now deprecated
and will be removed in a future release (<a class="reference external"
href="https://github.com/apache/datafusion-comet/issues/2186">#2186</a>, <a
class="reference external"
href="https://github.com/apache/datafusion-comet/issues/2177">#2177</a>).
-This is the original scan implementation that uses mutable buffers (which is
incompatible with best practices around
-Arrow FFI) and does not support complex types.</p>
-<p>Now that the default <code class="docutils literal notranslate"><span
class="pre">auto</span></code> scan mode uses <code class="docutils literal
notranslate"><span class="pre">native_iceberg_compat</span></code> (which is
based on DataFusion’s <code class="docutils literal notranslate"><span
class="pre">DataSourceExec</span></code>),
-we can proceed with removing the <code class="docutils literal
notranslate"><span class="pre">native_comet</span></code> scan implementation,
and then improve the efficiency of our use of
-Arrow FFI (<a class="reference external"
href="https://github.com/apache/datafusion-comet/issues/2171">#2171</a>).</p>
-</section>
</section>
<section id="ongoing-improvements">
<h2>Ongoing Improvements<a class="headerlink" href="#ongoing-improvements"
title="Link to this heading">#</a></h2>
diff --git a/searchindex.js b/searchindex.js
index 1d278c792..1985b0dbe 100644
--- a/searchindex.js
+++ b/searchindex.js
@@ -1 +1 @@
-Search.setIndex({"alltitles": {"1. Format Your Code": [[12,
"format-your-code"]], "1. Install Comet": [[22, "install-comet"]], "1. Native
Operators (nativeExecs map)": [[4, "native-operators-nativeexecs-map"]], "2.
Build and Verify": [[12, "build-and-verify"]], "2. Clone Spark and Apply Diff":
[[22, "clone-spark-and-apply-diff"]], "2. Sink Operators (sinks map)": [[4,
"sink-operators-sinks-map"]], "3. Comet JVM Operators": [[4,
"comet-jvm-operators"]], "3. Run Clippy (Recommended)": [[12 [...]
\ No newline at end of file
+Search.setIndex({"alltitles": {"1. Format Your Code": [[12,
"format-your-code"]], "1. Install Comet": [[22, "install-comet"]], "1. Native
Operators (nativeExecs map)": [[4, "native-operators-nativeexecs-map"]], "2.
Build and Verify": [[12, "build-and-verify"]], "2. Clone Spark and Apply Diff":
[[22, "clone-spark-and-apply-diff"]], "2. Sink Operators (sinks map)": [[4,
"sink-operators-sinks-map"]], "3. Comet JVM Operators": [[4,
"comet-jvm-operators"]], "3. Run Clippy (Recommended)": [[12 [...]
\ No newline at end of file
diff --git a/user-guide/latest/compatibility.html
b/user-guide/latest/compatibility.html
index 755148812..33c007450 100644
--- a/user-guide/latest/compatibility.html
+++ b/user-guide/latest/compatibility.html
@@ -610,15 +610,15 @@ Spark.</p></li>
</tr>
<tr class="row-odd"><td><p>date</p></td>
<td><p>N/A</p></td>
-<td><p>U</p></td>
-<td><p>U</p></td>
+<td><p>C</p></td>
+<td><p>C</p></td>
<td><p>-</p></td>
-<td><p>U</p></td>
-<td><p>U</p></td>
-<td><p>U</p></td>
-<td><p>U</p></td>
-<td><p>U</p></td>
-<td><p>U</p></td>
+<td><p>C</p></td>
+<td><p>C</p></td>
+<td><p>C</p></td>
+<td><p>C</p></td>
+<td><p>C</p></td>
+<td><p>C</p></td>
<td><p>C</p></td>
<td><p>C</p></td>
</tr>
diff --git a/user-guide/latest/configs.html b/user-guide/latest/configs.html
index 465e3e6ba..fa21bce21 100644
--- a/user-guide/latest/configs.html
+++ b/user-guide/latest/configs.html
@@ -543,6 +543,10 @@ under the License.
<td><p>Whether to respect Spark’s PARQUET_FILTER_PUSHDOWN_ENABLED config. This
needs to be respected when running the Spark SQL test suite but the default
setting results in poor performance in Comet when using the new native scans,
disabled by default</p></td>
<td><p>false</p></td>
</tr>
+<tr class="row-odd"><td><p><code class="docutils literal notranslate"><span
class="pre">spark.comet.scan.impl</span></code></p></td>
+<td><p>The implementation of Comet’s Parquet scan to use. Available scans are
<code class="docutils literal notranslate"><span
class="pre">native_datafusion</span></code>, and <code class="docutils literal
notranslate"><span class="pre">native_iceberg_compat</span></code>. <code
class="docutils literal notranslate"><span
class="pre">native_datafusion</span></code> is a fully native implementation,
and <code class="docutils literal notranslate"><span
class="pre">native_iceberg_compat</spa [...]
+<td><p>auto</p></td>
+</tr>
</tbody>
</table>
</div>
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]