This is an automated email from the ASF dual-hosted git repository.

sunlan pushed a commit to branch danielsun/tweak-ManagedIdentityConcurrentMap
in repository https://gitbox.apache.org/repos/asf/groovy.git

commit e113c6f412c2454ef99285d81a6e6b32e756bb8f
Author: Daniel Sun <sun...@apache.org>
AuthorDate: Fri Jul 31 07:29:45 2020 +0800

    Add `ConcurrentIdentityHashMap`
---
 .../groovy/util/ConcurrentReferenceHashMap.java    | 2046 ++++++++++++++++++++
 1 file changed, 2046 insertions(+)

diff --git 
a/src/main/java/org/codehaus/groovy/util/ConcurrentReferenceHashMap.java 
b/src/main/java/org/codehaus/groovy/util/ConcurrentReferenceHashMap.java
new file mode 100644
index 0000000..171e4f1
--- /dev/null
+++ b/src/main/java/org/codehaus/groovy/util/ConcurrentReferenceHashMap.java
@@ -0,0 +1,2046 @@
+/*
+ * Copyright (c) 2008-2020, Hazelcast, Inc. All Rights Reserved.
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.codehaus.groovy.util;
+
+/*
+ * Written by Doug Lea with assistance from members of JCP JSR-166
+ * Expert Group and released to the public domain, as explained at
+ * http://creativecommons.org/licenses/publicdomain
+ */
+
+import com.hazelcast.internal.serialization.SerializableByConvention;
+import edu.umd.cs.findbugs.annotations.SuppressFBWarnings;
+
+import java.io.IOException;
+import java.io.Serializable;
+import java.lang.ref.Reference;
+import java.lang.ref.ReferenceQueue;
+import java.lang.ref.SoftReference;
+import java.lang.ref.WeakReference;
+import java.util.AbstractCollection;
+import java.util.AbstractMap;
+import java.util.AbstractSet;
+import java.util.Collection;
+import java.util.ConcurrentModificationException;
+import java.util.EnumSet;
+import java.util.Enumeration;
+import java.util.HashMap;
+import java.util.Hashtable;
+import java.util.IdentityHashMap;
+import java.util.Iterator;
+import java.util.Map;
+import java.util.NoSuchElementException;
+import java.util.Set;
+import java.util.concurrent.locks.ReentrantLock;
+import java.util.function.BiFunction;
+import java.util.function.Function;
+
+import static com.hazelcast.internal.util.Preconditions.checkNotNull;
+
+/**
+ * An advanced hash table supporting configurable garbage collection semantics
+ * of keys and values, optional referential-equality, full concurrency of
+ * retrievals, and adjustable expected concurrency for updates.
+ * <p>
+ * This table is designed around specific advanced use-cases. If there is any
+ * doubt whether this table is for you, you most likely should be using
+ * {@link java.util.concurrent.ConcurrentHashMap} instead.
+ * <p>
+ * This table supports strong, weak, and soft keys and values. By default keys
+ * are weak, and values are strong. Such a configuration offers similar 
behavior
+ * to {@link java.util.WeakHashMap}, entries of this table are periodically
+ * removed once their corresponding keys are no longer referenced outside of
+ * this table. In other words, this table will not prevent a key from being
+ * discarded by the garbage collector. Once a key has been discarded by the
+ * collector, the corresponding entry is no longer visible to this table;
+ * however, the entry may occupy space until a future table operation decides 
to
+ * reclaim it. For this reason, summary functions such as <tt>size</tt> and
+ * <tt>isEmpty</tt> might return a value greater than the observed number of
+ * entries. In order to support a high level of concurrency, stale entries are
+ * only reclaimed during blocking (usually mutating) operations.
+ * <p>
+ * Enabling soft keys allows entries in this table to remain until their space
+ * is absolutely needed by the garbage collector. This is unlike weak keys 
which
+ * can be reclaimed as soon as they are no longer referenced by a normal strong
+ * reference. The primary use case for soft keys is a cache, which ideally
+ * occupies memory that is not in use for as long as possible.
+ * <p>
+ * By default, values are held using a normal strong reference. This provides
+ * the commonly desired guarantee that a value will always have at least the
+ * same life-span as it's key. For this reason, care should be taken to ensure
+ * that a value never refers, either directly or indirectly, to its key, 
thereby
+ * preventing reclamation. If this is unavoidable, then it is recommended to 
use
+ * the same reference type in use for the key. However, it should be noted that
+ * non-strong values may disappear before their corresponding key.
+ * <p>
+ * While this table does allow the use of both strong keys and values, it is
+ * recommended you use {@link java.util.concurrent.ConcurrentHashMap} for such 
a
+ * configuration, since it is optimized for that case.
+ * <p>
+ * Just like {@link java.util.concurrent.ConcurrentHashMap}, this class obeys
+ * the same functional specification as {@link Hashtable}, and
+ * includes versions of methods corresponding to each method of
+ * <tt>Hashtable</tt>. However, even though all operations are thread-safe,
+ * retrieval operations do <em>not</em> entail locking, and there is
+ * <em>not</em> any support for locking the entire table in a way that
+ * prevents all access. This class is fully interoperable with
+ * <tt>Hashtable</tt> in programs that rely on its thread safety but not on
+ * its synchronization details.
+ * <p>
+ * <p>
+ * Retrieval operations (including <tt>get</tt>) generally do not block, so 
they
+ * may overlap with update operations (including <tt>put</tt> and
+ * <tt>remove</tt>). Retrievals reflect the results of the most recently
+ * <em>completed</em> update operations holding upon their onset. For
+ * aggregate operations such as <tt>putAll</tt> and <tt>clear</tt>,
+ * concurrent retrievals may reflect insertion or removal of only some entries.
+ * Similarly, Iterators and Enumerations return elements reflecting the state 
of
+ * the hash table at some point at or since the creation of the
+ * iterator/enumeration. They do <em>not</em> throw
+ * {@link ConcurrentModificationException}. However, iterators are designed to
+ * be used by only one thread at a time.
+ * <p>
+ * <p>
+ * The allowed concurrency among update operations is guided by the optional
+ * <tt>concurrencyLevel</tt> constructor argument (default <tt>16</tt>),
+ * which is used as a hint for internal sizing. The table is internally
+ * partitioned to try to permit the indicated number of concurrent updates
+ * without contention. Because placement in hash tables is essentially random,
+ * the actual concurrency will vary. Ideally, you should choose a value to
+ * accommodate as many threads as will ever concurrently modify the table. 
Using
+ * a significantly higher value than you need can waste space and time, and a
+ * significantly lower value can lead to thread contention. But overestimates
+ * and underestimates within an order of magnitude do not usually have much
+ * noticeable impact. A value of one is appropriate when it is known that only
+ * one thread will modify and all others will only read. Also, resizing this or
+ * any other kind of hash table is a relatively slow operation, so, when
+ * possible, it is a good idea that you provide estimates of expected table 
sizes in
+ * constructors.
+ * <p>
+ * <p>
+ * This class and its views and iterators implement all of the 
<em>optional</em>
+ * methods of the {@link Map} and {@link Iterator} interfaces.
+ * <p>
+ * <p>
+ * Like {@link Hashtable} but unlike {@link HashMap}, this class does
+ * <em>not</em> allow <tt>null</tt> to be used as a key or value.
+ * <p>
+ * <p>
+ * This class is a member of the <a 
href="{@docRoot}/../technotes/guides/collections/index.html">
+ * Java Collections Framework</a>.
+ *
+ * @param <K> the type of keys maintained by this map
+ * @param <V> the type of mapped values
+ * @author Doug Lea
+ * @author Jason T. Greene
+ */
+@SuppressWarnings("all")
+@SerializableByConvention
+public class ConcurrentReferenceHashMap<K, V> extends AbstractMap<K, V>
+        implements com.hazelcast.internal.util.IConcurrentMap<K, V>, 
Serializable {
+
+    /*
+     * The basic strategy is to subdivide the table among Segments,
+     * each of which itself is a concurrently readable hash table.
+     */
+
+    /**
+     * An option specifying which Java reference type should be used to refer
+     * to a key and/or value.
+     */
+    public static enum ReferenceType {
+        /**
+         * Indicates a normal Java strong reference should be used
+         */
+        STRONG,
+        /**
+         * Indicates a {@link WeakReference} should be used
+         */
+        WEAK,
+        /**
+         * Indicates a {@link SoftReference} should be used
+         */
+        SOFT
+    }
+
+    ;
+
+    /**
+     * Behavior-changing configuration options for the map
+     */
+    public static enum Option {
+        /**
+         * Indicates that referential-equality (== instead of .equals()) should
+         * be used when locating keys. This offers similar behavior to {@link 
IdentityHashMap}
+         */
+        IDENTITY_COMPARISONS
+    }
+
+    ;
+
+    /* ---------------- Constants -------------- */
+
+    static final ReferenceType DEFAULT_KEY_TYPE = ReferenceType.WEAK;
+
+    static final ReferenceType DEFAULT_VALUE_TYPE = ReferenceType.STRONG;
+
+
+    /**
+     * The default initial capacity for this table,
+     * used when not otherwise specified in a constructor.
+     */
+    static final int DEFAULT_INITIAL_CAPACITY = 16;
+
+    /**
+     * The default load factor for this table, used when not
+     * otherwise specified in a constructor.
+     */
+    static final float DEFAULT_LOAD_FACTOR = 0.75f;
+
+    /**
+     * The default concurrency level for this table, used when not
+     * otherwise specified in a constructor.
+     */
+    static final int DEFAULT_CONCURRENCY_LEVEL = 16;
+
+    /**
+     * The maximum capacity, used if a higher value is implicitly
+     * specified by either of the constructors with arguments.  MUST
+     * be a power of two &lt;= 1&lt;&lt;30 to ensure that entries are indexable
+     * using ints.
+     */
+    static final int MAXIMUM_CAPACITY = 1 << 30;
+
+    /**
+     * The maximum number of segments to allow; used to bound
+     * constructor arguments.
+     */
+    static final int MAX_SEGMENTS = 1 << 16;
+
+    /**
+     * Number of unsynchronized retries in size and containsValue
+     * methods before resorting to locking. This is used to avoid
+     * unbounded retries if tables undergo continuous modification
+     * which would make it impossible to obtain an accurate result.
+     */
+    static final int RETRIES_BEFORE_LOCK = 2;
+
+    private static final long serialVersionUID = 7249069246763182397L;
+
+    /* ---------------- Fields -------------- */
+
+    /**
+     * Mask value for indexing into segments. The upper bits of a
+     * key's hash code are used to choose the segment.
+     */
+    final int segmentMask;
+
+    /**
+     * Shift value for indexing within segments.
+     */
+    final int segmentShift;
+
+    /**
+     * The segments, each of which is a specialized hash table
+     */
+    final Segment<K, V>[] segments;
+
+    boolean identityComparisons;
+
+    transient Set<K> keySet;
+    transient Set<Entry<K, V>> entrySet;
+    transient Collection<V> values;
+
+    /* ---------------- Small Utilities -------------- */
+
+    /**
+     * Applies a supplemental hash function to a given hashCode, which
+     * defends against poor quality hash functions.  This is critical
+     * because ConcurrentReferenceHashMap uses power-of-two length hash tables,
+     * that otherwise encounter collisions for hashCodes that do not
+     * differ in lower or upper bits.
+     */
+    private static int hash(int h) {
+        // Spread bits to regularize both segment and index locations,
+        // using variant of single-word Wang/Jenkins hash.
+        h += (h << 15) ^ 0xffffcd7d;
+        h ^= (h >>> 10);
+        h += (h << 3);
+        h ^= (h >>> 6);
+        h += (h << 2) + (h << 14);
+        return h ^ (h >>> 16);
+    }
+
+    /**
+     * Returns the segment that should be used for key with given hash
+     *
+     * @param hash the hash code for the key
+     * @return the segment
+     */
+    final Segment<K, V> segmentFor(int hash) {
+        return segments[(hash >>> segmentShift) & segmentMask];
+    }
+
+    protected int hashOf(Object key) {
+        return hash(identityComparisons ? System.identityHashCode(key) : 
key.hashCode());
+    }
+
+    /* ---------------- Inner Classes -------------- */
+
+    interface KeyReference {
+        int keyHash();
+
+        Object keyRef();
+    }
+
+    /**
+     * A weak-key reference which stores the key hash needed for reclamation.
+     */
+    static final class WeakKeyReference<K> extends WeakReference<K> implements 
KeyReference {
+        final int hash;
+
+        WeakKeyReference(K key, int hash, ReferenceQueue<Object> refQueue) {
+            super(key, refQueue);
+            this.hash = hash;
+        }
+
+        public final int keyHash() {
+            return hash;
+        }
+
+        public final Object keyRef() {
+            return this;
+        }
+    }
+
+    /**
+     * A soft-key reference which stores the key hash needed for reclamation.
+     */
+    static final class SoftKeyReference<K> extends SoftReference<K> implements 
KeyReference {
+        final int hash;
+
+        SoftKeyReference(K key, int hash, ReferenceQueue<Object> refQueue) {
+            super(key, refQueue);
+            this.hash = hash;
+        }
+
+        public final int keyHash() {
+            return hash;
+        }
+
+        public final Object keyRef() {
+            return this;
+        }
+    }
+
+    static final class WeakValueReference<V> extends WeakReference<V> 
implements KeyReference {
+        final Object keyRef;
+        final int hash;
+
+        WeakValueReference(V value, Object keyRef, int hash, 
ReferenceQueue<Object> refQueue) {
+            super(value, refQueue);
+            this.keyRef = keyRef;
+            this.hash = hash;
+        }
+
+        public final int keyHash() {
+            return hash;
+        }
+
+        public final Object keyRef() {
+            return keyRef;
+        }
+    }
+
+    static final class SoftValueReference<V> extends SoftReference<V> 
implements KeyReference {
+        final Object keyRef;
+        final int hash;
+
+        SoftValueReference(V value, Object keyRef, int hash, 
ReferenceQueue<Object> refQueue) {
+            super(value, refQueue);
+            this.keyRef = keyRef;
+            this.hash = hash;
+        }
+
+        public final int keyHash() {
+            return hash;
+        }
+
+        public final Object keyRef() {
+            return keyRef;
+        }
+    }
+
+    /**
+     * ConcurrentReferenceHashMap list entry. Note that this is never exported
+     * out as a user-visible Map.Entry.
+     * <p>
+     * Because the value field is volatile, not final, it is legal wrt
+     * the Java Memory Model for an unsynchronized reader to see null
+     * instead of initial value when read via a data race.  Although a
+     * reordering leading to this is not likely to ever actually
+     * occur, the Segment.readValueUnderLock method is used as a
+     * backup in case a null (pre-initialized) value is ever seen in
+     * an unsynchronized access method.
+     */
+    static final class HashEntry<K, V> {
+        final Object keyRef;
+        final int hash;
+        volatile Object valueRef;
+        final HashEntry<K, V> next;
+
+        HashEntry(K key, int hash, HashEntry<K, V> next, V value,
+                  ReferenceType keyType, ReferenceType valueType,
+                  ReferenceQueue<Object> refQueue) {
+            this.hash = hash;
+            this.next = next;
+            this.keyRef = newKeyReference(key, keyType, refQueue);
+            this.valueRef = newValueReference(value, valueType, refQueue);
+        }
+
+        final Object newKeyReference(K key, ReferenceType keyType,
+                                     ReferenceQueue<Object> refQueue) {
+            if (keyType == ReferenceType.WEAK) {
+                return new WeakKeyReference<K>(key, hash, refQueue);
+            }
+            if (keyType == ReferenceType.SOFT) {
+                return new SoftKeyReference<K>(key, hash, refQueue);
+            }
+
+            return key;
+        }
+
+        final Object newValueReference(V value, ReferenceType valueType,
+                                       ReferenceQueue<Object> refQueue) {
+            if (valueType == ReferenceType.WEAK) {
+                return new WeakValueReference<V>(value, keyRef, hash, 
refQueue);
+            }
+            if (valueType == ReferenceType.SOFT) {
+                return new SoftValueReference<V>(value, keyRef, hash, 
refQueue);
+            }
+
+            return value;
+        }
+
+        @SuppressWarnings("unchecked")
+        final K key() {
+            if (keyRef instanceof KeyReference) {
+                return ((Reference<K>) keyRef).get();
+            }
+            return (K) keyRef;
+        }
+
+        final V value() {
+            return dereferenceValue(valueRef);
+        }
+
+        @SuppressWarnings("unchecked")
+        final V dereferenceValue(Object value) {
+            if (value instanceof KeyReference) {
+                return ((Reference<V>) value).get();
+            }
+            return (V) value;
+        }
+
+        final void setValue(V value, ReferenceType valueType, 
ReferenceQueue<Object> refQueue) {
+            this.valueRef = newValueReference(value, valueType, refQueue);
+        }
+
+        @SuppressWarnings("unchecked")
+        static final <K, V> HashEntry<K, V>[] newArray(int i) {
+            return new HashEntry[i];
+        }
+    }
+
+    /**
+     * Segments are specialized versions of hash tables.  This
+     * subclasses from ReentrantLock opportunistically, just to
+     * simplify some locking and avoid separate construction.
+     */
+    @SerializableByConvention
+    static final class Segment<K, V> extends ReentrantLock implements 
Serializable {
+        /*
+         * Segments maintain a table of entry lists that are ALWAYS
+         * kept in a consistent state, so they can be read without locking.
+         * Next fields of nodes are immutable (final).  All list
+         * additions are performed at the front of each bin. This
+         * makes it easy to check changes, and also fast to traverse.
+         * When nodes would otherwise be changed, new nodes are
+         * created to replace them. This works well for hash tables
+         * since the bin lists tend to be short. (The average length
+         * is less than two for the default load factor threshold.)
+         *
+         * Read operations can thus proceed without locking, but rely
+         * on selected uses of volatiles to ensure that completed
+         * write operations performed by other threads are
+         * noticed. For most purposes, the "count" field, tracking the
+         * number of elements, serves as that volatile variable
+         * ensuring visibility.  This is convenient because this field
+         * needs to be read in many read operations anyway:
+         *
+         *   - All (unsynchronized) read operations must first read the
+         *     "count" field, and should not look at table entries if
+         *     it is 0.
+         *
+         *   - All (synchronized) write operations should write to
+         *     the "count" field after structurally changing any bin.
+         *     The operations must not take any action that could even
+         *     momentarily cause a concurrent read operation to see
+         *     inconsistent data. This is made easier by the nature of
+         *     the read operations in Map. For example, no operation
+         *     can reveal that the table has grown but the threshold
+         *     has not yet been updated, so there are no atomicity
+         *     requirements for this with respect to reads.
+         *
+         * As a guide, all critical volatile reads and writes to the
+         * count field are marked in code comments.
+         */
+
+        private static final long serialVersionUID = 2249069246763182397L;
+
+        /**
+         * The number of elements in this segment's region.
+         */
+        @SuppressFBWarnings(value = "SE_TRANSIENT_FIELD_NOT_RESTORED", 
justification =
+                "I trust Doug Lea's technical decision")
+        transient volatile int count;
+
+        /**
+         * Number of updates that alter the size of the table. This is
+         * used during bulk-read methods to make sure they see a
+         * consistent snapshot: If modCounts change during a traversal
+         * of segments computing size or checking containsValue, then
+         * we might have an inconsistent view of state so (usually) we
+         * must retry.
+         */
+        @SuppressFBWarnings(value = "SE_TRANSIENT_FIELD_NOT_RESTORED", 
justification =
+                "I trust Doug Lea's technical decision")
+        transient int modCount;
+
+        /**
+         * The table is rehashed when its size exceeds this threshold.
+         * (The value of this field is always <tt>(int)(capacity *
+         * loadFactor)</tt>.)
+         */
+        transient int threshold;
+
+        /**
+         * The per-segment table.
+         */
+        transient volatile HashEntry<K, V>[] table;
+
+        /**
+         * The load factor for the hash table.  Even though this value
+         * is same for all segments, it is replicated to avoid needing
+         * links to outer object.
+         *
+         * @serial
+         */
+        final float loadFactor;
+
+        /**
+         * The collected weak-key reference queue for this segment.
+         * This should be (re)initialized whenever table is assigned,
+         */
+        transient volatile ReferenceQueue<Object> refQueue;
+
+        final ReferenceType keyType;
+
+        final ReferenceType valueType;
+
+        final boolean identityComparisons;
+
+        Segment(int initialCapacity, float lf, ReferenceType keyType,
+                ReferenceType valueType, boolean identityComparisons) {
+            loadFactor = lf;
+            this.keyType = keyType;
+            this.valueType = valueType;
+            this.identityComparisons = identityComparisons;
+            setTable(HashEntry.<K, V>newArray(initialCapacity));
+        }
+
+        @SuppressWarnings("unchecked")
+        static final <K, V> Segment<K, V>[] newArray(int i) {
+            return new Segment[i];
+        }
+
+        private boolean keyEq(Object src, Object dest) {
+            return identityComparisons ? src == dest : src.equals(dest);
+        }
+
+        /**
+         * Sets table to new HashEntry array.
+         * Call only while holding lock or in constructor.
+         */
+        void setTable(HashEntry<K, V>[] newTable) {
+            threshold = (int) (newTable.length * loadFactor);
+            table = newTable;
+            refQueue = new ReferenceQueue<Object>();
+        }
+
+        /**
+         * Returns properly casted first entry of bin for given hash.
+         */
+        HashEntry<K, V> getFirst(int hash) {
+            HashEntry<K, V>[] tab = table;
+            return tab[hash & (tab.length - 1)];
+        }
+
+        HashEntry<K, V> newHashEntry(K key, int hash, HashEntry<K, V> next, V 
value) {
+            return new HashEntry<K, V>(key, hash, next, value, keyType, 
valueType, refQueue);
+        }
+
+        /**
+         * Reads value field of an entry under lock. Called if value
+         * field ever appears to be null. This is possible only if a
+         * compiler happens to reorder a HashEntry initialization with
+         * its table assignment, which is legal under memory model
+         * but is not known to ever occur.
+         */
+        V readValueUnderLock(HashEntry<K, V> e) {
+            lock();
+            try {
+                removeStale();
+                return e.value();
+            } finally {
+                unlock();
+            }
+        }
+
+        /* Specialized implementations of map methods */
+
+        V get(Object key, int hash) {
+            // read-volatile
+            if (count != 0) {
+                HashEntry<K, V> e = getFirst(hash);
+                while (e != null) {
+                    if (e.hash == hash && keyEq(key, e.key())) {
+                        Object opaque = e.valueRef;
+                        if (opaque != null) {
+                            return e.dereferenceValue(opaque);
+                        }
+                        // recheck
+                        return readValueUnderLock(e);
+                    }
+                    e = e.next;
+                }
+            }
+            return null;
+        }
+
+        boolean containsKey(Object key, int hash) {
+            // read-volatile
+            if (count != 0) {
+                HashEntry<K, V> e = getFirst(hash);
+                while (e != null) {
+                    if (e.hash == hash && keyEq(key, e.key())) {
+                        return true;
+                    }
+                    e = e.next;
+                }
+            }
+            return false;
+        }
+
+        boolean containsValue(Object value) {
+            // read-volatile
+            if (count != 0) {
+                HashEntry<K, V>[] tab = table;
+                int len = tab.length;
+                for (int i = 0; i < len; i++) {
+                    for (HashEntry<K, V> e = tab[i]; e != null; e = e.next) {
+                        Object opaque = e.valueRef;
+                        V v;
+                        if (opaque == null) {
+                            // recheck
+                            v = readValueUnderLock(e);
+                        } else {
+                            v = e.dereferenceValue(opaque);
+                        }
+                        if (value.equals(v)) {
+                            return true;
+                        }
+                    }
+                }
+            }
+            return false;
+        }
+
+        boolean replace(K key, int hash, V oldValue, V newValue) {
+            lock();
+            try {
+                return replaceInternal2(key, hash, oldValue, newValue);
+            } finally {
+                unlock();
+            }
+        }
+
+        private boolean replaceInternal2(K key, int hash, V oldValue, V 
newValue) {
+            removeStale();
+            HashEntry<K, V> e = getFirst(hash);
+            while (e != null && (e.hash != hash || !keyEq(key, e.key()))) {
+                e = e.next;
+            }
+            boolean replaced = false;
+            if (e != null && oldValue.equals(e.value())) {
+                replaced = true;
+                e.setValue(newValue, valueType, refQueue);
+            }
+            return replaced;
+        }
+
+        V replace(K key, int hash, V newValue) {
+            lock();
+            try {
+                return replaceInternal(key, hash, newValue);
+            } finally {
+                unlock();
+            }
+        }
+
+        private V replaceInternal(K key, int hash, V newValue) {
+            removeStale();
+            HashEntry<K, V> e = getFirst(hash);
+            while (e != null && (e.hash != hash || !keyEq(key, e.key()))) {
+                e = e.next;
+            }
+            V oldValue = null;
+            if (e != null) {
+                oldValue = e.value();
+                e.setValue(newValue, valueType, refQueue);
+            }
+            return oldValue;
+        }
+
+        V applyIfPresent(K key, int hash, BiFunction<? super K, ? super V, ? 
extends V> remappingFunction) {
+            lock();
+            try {
+                V oldValue = get(key, hash);
+                if (oldValue == null) {
+                    return null;
+                }
+
+                V newValue = remappingFunction.apply(key, oldValue);
+
+                if (newValue == null) {
+                    removeInternal(key, hash, oldValue, false);
+                    return null;
+                } else {
+                    putInternal(key, hash, newValue, null, false);
+                    return newValue;
+                }
+            } finally {
+                unlock();
+            }
+        }
+
+        V apply(K key, int hash, BiFunction<? super K, ? super V, ? extends V> 
remappingFunction) {
+            lock();
+            try {
+                V oldValue = get(key, hash);
+                V newValue = remappingFunction.apply(key, oldValue);
+
+                if (newValue == null) {
+                    // delete mapping
+                    if (oldValue != null) {
+                        // something to remove
+                        removeInternal(key, hash, oldValue, false);
+                        return null;
+                    } else {
+                        // nothing to do. Leave things as they were.
+                        return null;
+                    }
+                } else {
+                    // add or replace old mapping
+                    putInternal(key, hash, newValue, null, false);
+                    return newValue;
+                }
+            } finally {
+                unlock();
+            }
+        }
+
+
+        V merge(K key, V value, int hash, BiFunction<? super V, ? super V, ? 
extends V> remappingFunction) {
+            lock();
+            try {
+                V oldValue = get(key, hash);
+                V newValue = (oldValue == null) ? value : 
remappingFunction.apply(oldValue, value);
+
+                if (newValue == null) {
+                    removeInternal(key, hash, oldValue, false);
+                    return null;
+                } else {
+                    putInternal(key, hash, newValue, null, false);
+                    return newValue;
+                }
+            } finally {
+                unlock();
+            }
+        }
+
+        /**
+         * This method must be called with exactly one of <code>value</code> 
and
+         * <code>function</code> non-null.
+         **/
+        V put(K key, int hash, V value, Function<? super K, ? extends V> 
function, boolean onlyIfAbsent) {
+            lock();
+            try {
+                return putInternal(key, hash, value, function, onlyIfAbsent);
+            } finally {
+                unlock();
+            }
+        }
+
+        private V putInternal(K key, int hash, V value, Function<? super K, ? 
extends V> function, boolean onlyIfAbsent) {
+            removeStale();
+            int c = count;
+            // ensure capacity
+            if (c++ > threshold) {
+                int reduced = rehash();
+                // adjust from possible weak cleanups
+                if (reduced > 0) {
+                    // write-volatile
+                    count = (c -= reduced) - 1;
+                }
+            }
+            HashEntry<K, V>[] tab = table;
+            int index = hash & (tab.length - 1);
+            HashEntry<K, V> first = tab[index];
+            HashEntry<K, V> e = first;
+            while (e != null && (e.hash != hash || !keyEq(key, e.key()))) {
+                e = e.next;
+            }
+            V resultValue;
+            if (e != null) {
+                resultValue = e.value();
+                if (!onlyIfAbsent) {
+                    e.setValue(getValue(key, value, function), valueType, 
refQueue);
+                }
+            } else {
+                V v = getValue(key, value, function);
+                resultValue = function != null ? v : null;
+
+                if (v != null) {
+                    ++modCount;
+                    tab[index] = newHashEntry(key, hash, first, v);
+                    // write-volatile
+                    count = c;
+                }
+            }
+            return resultValue;
+        }
+
+        V getValue(K key, V value, Function<? super K, ? extends V> function) {
+            return value != null ? value : function.apply(key);
+        }
+
+        int rehash() {
+            HashEntry<K, V>[] oldTable = table;
+            int oldCapacity = oldTable.length;
+            if (oldCapacity >= MAXIMUM_CAPACITY) {
+                return 0;
+            }
+
+            /*
+             * Reclassify nodes in each list to new Map.  Because we are
+             * using power-of-two expansion, the elements from each bin
+             * must either stay at the same index, or move with a power of two
+             * offset. We eliminate unnecessary node creation by catching
+             * cases where old nodes can be reused because their next
+             * fields won't change. Statistically, at the default
+             * threshold, only about one-sixth of them need cloning when
+             * a table doubles. The nodes they replace will be garbage
+             * collectable as soon as they are no longer referenced by any
+             * reader thread that may be in the midst of traversing table
+             * right now.
+             */
+
+            HashEntry<K, V>[] newTable = HashEntry.newArray(oldCapacity << 1);
+            threshold = (int) (newTable.length * loadFactor);
+            int sizeMask = newTable.length - 1;
+            int reduce = 0;
+            for (int i = 0; i < oldCapacity; i++) {
+                // We need to guarantee that any existing reads of old Map can
+                //  proceed. So we cannot yet null out each bin.
+                HashEntry<K, V> e = oldTable[i];
+                if (e != null) {
+                    HashEntry<K, V> next = e.next;
+                    int idx = e.hash & sizeMask;
+                    //  Single node on list
+                    if (next == null) {
+                        newTable[idx] = e;
+                    } else {
+                        // Reuse trailing consecutive sequence at same slot
+                        HashEntry<K, V> lastRun = e;
+                        int lastIdx = idx;
+                        for (HashEntry<K, V> last = next;
+                             last != null;
+                             last = last.next) {
+                            int k = last.hash & sizeMask;
+                            if (k != lastIdx) {
+                                lastIdx = k;
+                                lastRun = last;
+                            }
+                        }
+                        newTable[lastIdx] = lastRun;
+                        // Clone all remaining nodes
+                        for (HashEntry<K, V> p = e; p != lastRun; p = p.next) {
+                            // Skip GC'd weak refs
+                            K key = p.key();
+                            if (key == null) {
+                                reduce++;
+                                continue;
+                            }
+                            int k = p.hash & sizeMask;
+                            HashEntry<K, V> n = newTable[k];
+                            newTable[k] = newHashEntry(key, p.hash, n, 
p.value());
+                        }
+                    }
+                }
+            }
+            table = newTable;
+            return reduce;
+        }
+
+        /**
+         * Remove: match on key only if value is null, else match both.
+         */
+        V remove(Object key, int hash, Object value, boolean refRemove) {
+            lock();
+            try {
+                return removeInternal(key, hash, value, refRemove);
+            } finally {
+                unlock();
+            }
+        }
+
+        private V removeInternal(Object key, int hash, Object value, boolean 
refRemove) {
+            if (!refRemove) {
+                removeStale();
+            }
+            int c = count - 1;
+            HashEntry<K, V>[] tab = table;
+            int index = hash & (tab.length - 1);
+            HashEntry<K, V> first = tab[index];
+            HashEntry<K, V> e = first;
+            // a ref remove operation compares the Reference instance
+            while (e != null && key != e.keyRef && (refRemove || hash != 
e.hash || !keyEq(key, e.key()))) {
+                e = e.next;
+            }
+
+            V oldValue = null;
+            if (e != null) {
+                V v = e.value();
+                if (value == null || value.equals(v)) {
+                    oldValue = v;
+                    // All entries following removed node can stay
+                    // in list, but all preceding ones need to be
+                    // cloned.
+                    ++modCount;
+                    HashEntry<K, V> newFirst = e.next;
+                    for (HashEntry<K, V> p = first; p != e; p = p.next) {
+                        K pKey = p.key();
+                        // Skip GC'd keys
+                        if (pKey == null) {
+                            c--;
+                            continue;
+                        }
+                        newFirst = newHashEntry(pKey, p.hash, newFirst, 
p.value());
+                    }
+                    tab[index] = newFirst;
+                    // write-volatile
+                    count = c;
+                }
+            }
+            return oldValue;
+        }
+
+        final void removeStale() {
+            KeyReference ref;
+            while ((ref = (KeyReference) refQueue.poll()) != null) {
+                remove(ref.keyRef(), ref.keyHash(), null, true);
+            }
+        }
+
+        void clear() {
+            if (count != 0) {
+                lock();
+                try {
+                    HashEntry<K, V>[] tab = table;
+                    for (int i = 0; i < tab.length; i++) {
+                        tab[i] = null;
+                    }
+                    ++modCount;
+                    // replace the reference queue to avoid unnecessary stale 
cleanups
+                    refQueue = new ReferenceQueue<Object>();
+                    // write-volatile
+                    count = 0;
+                } finally {
+                    unlock();
+                }
+            }
+        }
+    }
+
+    /* ---------------- Public operations -------------- */
+
+    /**
+     * Creates a new, empty map with the specified initial
+     * capacity, reference types, load factor, and concurrency level.
+     * <p>
+     * Behavioral changing options such as {@link Option#IDENTITY_COMPARISONS}
+     * can also be specified.
+     *
+     * @param initialCapacity  the initial capacity. The implementation
+     *                         performs internal sizing to accommodate this 
many elements.
+     * @param loadFactor       the load factor threshold, used to control 
resizing.
+     *                         Resizing may be performed when the average 
number of elements per
+     *                         bin exceeds this threshold.
+     * @param concurrencyLevel the estimated number of concurrently
+     *                         updating threads. The implementation performs 
internal sizing
+     *                         to try to accommodate this many threads.
+     * @param keyType          the reference type to use for keys
+     * @param valueType        the reference type to use for values
+     * @param options          the behavioral options
+     * @throws IllegalArgumentException if the initial capacity is
+     *                                  negative or the load factor or 
concurrencyLevel are
+     *                                  nonpositive.
+     */
+    public ConcurrentReferenceHashMap(int initialCapacity,
+                                      float loadFactor, int concurrencyLevel,
+                                      ReferenceType keyType, ReferenceType 
valueType,
+                                      EnumSet<Option> options) {
+        if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0) 
{
+            throw new IllegalArgumentException();
+        }
+        if (concurrencyLevel > MAX_SEGMENTS) {
+            concurrencyLevel = MAX_SEGMENTS;
+        }
+        // Find power-of-two sizes best matching arguments
+        int sshift = 0;
+        int ssize = 1;
+        while (ssize < concurrencyLevel) {
+            ++sshift;
+            ssize <<= 1;
+        }
+        segmentShift = 32 - sshift;
+        segmentMask = ssize - 1;
+        this.segments = Segment.newArray(ssize);
+        if (initialCapacity > MAXIMUM_CAPACITY) {
+            initialCapacity = MAXIMUM_CAPACITY;
+        }
+        int c = initialCapacity / ssize;
+        if (c * ssize < initialCapacity) {
+            ++c;
+        }
+        int cap = 1;
+        while (cap < c) {
+            cap <<= 1;
+        }
+        identityComparisons = options != null && 
options.contains(Option.IDENTITY_COMPARISONS);
+        for (int i = 0; i < this.segments.length; ++i) {
+            this.segments[i] = new Segment<K, V>(cap, loadFactor, keyType, 
valueType, identityComparisons);
+        }
+    }
+
+    /**
+     * Creates a new, empty map with the specified initial
+     * capacity, load factor, and concurrency level.
+     *
+     * @param initialCapacity  the initial capacity. The implementation
+     *                         performs internal sizing to accommodate this 
number of elements.
+     * @param loadFactor       the load factor threshold, used to control 
resizing.
+     *                         Resizing may be performed when the average 
number of elements per
+     *                         bin exceeds this threshold.
+     * @param concurrencyLevel the estimated number of concurrently
+     *                         updating threads. The implementation performs 
internal sizing
+     *                         to try to accommodate this many threads.
+     * @throws IllegalArgumentException if the initial capacity is
+     *                                  negative or the load factor or 
concurrencyLevel are
+     *                                  nonpositive.
+     */
+    public ConcurrentReferenceHashMap(int initialCapacity, float loadFactor, 
int concurrencyLevel) {
+        this(initialCapacity, loadFactor, concurrencyLevel, DEFAULT_KEY_TYPE, 
DEFAULT_VALUE_TYPE, null);
+    }
+
+    /**
+     * Creates a new, empty map with the specified initial capacity
+     * and load factor and with the default reference types (weak keys,
+     * strong values), and concurrencyLevel (16).
+     *
+     * @param initialCapacity The implementation performs internal
+     *                        sizing to accommodate this number of elements.
+     * @param loadFactor      the load factor threshold, used to control 
resizing.
+     *                        Resizing may be performed when the average 
number of elements per
+     *                        bin exceeds this threshold.
+     * @throws IllegalArgumentException if the initial capacity of
+     *                                  elements is negative or the load 
factor is nonpositive
+     * @since 1.6
+     */
+    public ConcurrentReferenceHashMap(int initialCapacity, float loadFactor) {
+        this(initialCapacity, loadFactor, DEFAULT_CONCURRENCY_LEVEL);
+    }
+
+
+    /**
+     * Creates a new, empty map with the specified initial capacity,
+     * reference types, and with a default load factor (0.75) and 
concurrencyLevel (16).
+     *
+     * @param initialCapacity the initial capacity. The implementation
+     *                        performs internal sizing to accommodate this 
many elements.
+     * @param keyType         the reference type to use for keys
+     * @param valueType       the reference type to use for values
+     * @throws IllegalArgumentException if the initial capacity of
+     *                                  elements is negative.
+     */
+    public ConcurrentReferenceHashMap(int initialCapacity,
+                                      ReferenceType keyType, ReferenceType 
valueType) {
+        this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL,
+                keyType, valueType, null);
+    }
+
+    /**
+     * Creates a new, empty reference map with the specified key
+     * and value reference types.
+     *
+     * @param keyType   the reference type to use for keys
+     * @param valueType the reference type to use for values
+     * @throws IllegalArgumentException if the initial capacity of
+     *                                  elements is negative.
+     */
+    public ConcurrentReferenceHashMap(ReferenceType keyType, ReferenceType 
valueType) {
+        this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, 
DEFAULT_CONCURRENCY_LEVEL,
+                keyType, valueType, null);
+    }
+
+    /**
+     * Creates a new, empty reference map with the specified reference types
+     * and behavioral options.
+     *
+     * @param keyType   the reference type to use for keys
+     * @param valueType the reference type to use for values
+     * @throws IllegalArgumentException if the initial capacity of
+     *                                  elements is negative.
+     */
+    public ConcurrentReferenceHashMap(ReferenceType keyType, ReferenceType 
valueType, EnumSet<Option> options) {
+        this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, 
DEFAULT_CONCURRENCY_LEVEL,
+                keyType, valueType, options);
+    }
+
+
+    /**
+     * Creates a new, empty map with the specified initial capacity,
+     * and with default reference types (weak keys, strong values),
+     * load factor (0.75) and concurrencyLevel (16).
+     *
+     * @param initialCapacity the initial capacity. The implementation
+     *                        performs internal sizing to accommodate this 
many elements.
+     * @throws IllegalArgumentException if the initial capacity of
+     *                                  elements is negative.
+     */
+    public ConcurrentReferenceHashMap(int initialCapacity) {
+        this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
+    }
+
+    /**
+     * Creates a new, empty map with a default initial capacity (16),
+     * reference types (weak keys, strong values), default
+     * load factor (0.75) and concurrencyLevel (16).
+     */
+    public ConcurrentReferenceHashMap() {
+        this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, 
DEFAULT_CONCURRENCY_LEVEL);
+    }
+
+    /**
+     * Creates a new map with the same mappings as the given map.
+     * The map is created with a capacity of 1.5 times the number
+     * of mappings in the given map or 16 (whichever is greater),
+     * and a default load factor (0.75) and concurrencyLevel (16).
+     *
+     * @param m the map
+     */
+    public ConcurrentReferenceHashMap(Map<? extends K, ? extends V> m) {
+        this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
+                DEFAULT_INITIAL_CAPACITY),
+                DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL
+        );
+        putAll(m);
+    }
+
+    /**
+     * Returns <tt>true</tt> if this map contains no key-value mappings.
+     *
+     * @return <tt>true</tt> if this map contains no key-value mappings
+     */
+    public boolean isEmpty() {
+        final Segment<K, V>[] segments = this.segments;
+        /*
+         * We keep track of per-segment modCounts to avoid ABA
+         * problems in which an element in one segment was added and
+         * in another removed during traversal, in which case the
+         * table was never actually empty at any point. Note the
+         * similar use of modCounts in the size() and containsValue()
+         * methods, which are the only other methods also susceptible
+         * to ABA problems.
+         */
+        int[] mc = new int[segments.length];
+        int mcsum = 0;
+        for (int i = 0; i < segments.length; ++i) {
+            if (segments[i].count != 0) {
+                return false;
+            } else {
+                mcsum += mc[i] = segments[i].modCount;
+            }
+        }
+        // If mcsum happens to be zero, then we know we got a snapshot
+        // before any modifications at all were made.  This is
+        // probably common enough to bother tracking.
+        if (mcsum != 0) {
+            for (int i = 0; i < segments.length; ++i) {
+                if (segments[i].count != 0 || mc[i] != segments[i].modCount) {
+                    return false;
+                }
+            }
+        }
+        return true;
+    }
+
+    /**
+     * Returns the number of key-value mappings in this map.  If the
+     * map contains more than <tt>Integer.MAX_VALUE</tt> elements, returns
+     * <tt>Integer.MAX_VALUE</tt>.
+     *
+     * @return the number of key-value mappings in this map
+     */
+    public int size() {
+        final Segment<K, V>[] segments = this.segments;
+        long sum = 0;
+        long check = 0;
+        int[] mc = new int[segments.length];
+        // Try a few times to get accurate count. On failure due to
+        // continuous async changes in table, resort to locking.
+        for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) {
+            check = 0;
+            sum = 0;
+            int mcsum = 0;
+            for (int i = 0; i < segments.length; ++i) {
+                sum += segments[i].count;
+                mcsum += mc[i] = segments[i].modCount;
+            }
+            if (mcsum != 0) {
+                for (int i = 0; i < segments.length; ++i) {
+                    check += segments[i].count;
+                    if (mc[i] != segments[i].modCount) {
+                        // force retry
+                        check = -1;
+                        break;
+                    }
+                }
+            }
+            if (check == sum) {
+                break;
+            }
+        }
+        if (check != sum) {
+            // Resort to locking all segments
+            sum = 0;
+            for (int i = 0; i < segments.length; ++i) {
+                segments[i].lock();
+            }
+            for (int i = 0; i < segments.length; ++i) {
+                sum += segments[i].count;
+            }
+            for (int i = 0; i < segments.length; ++i) {
+                segments[i].unlock();
+            }
+        }
+        return sum > Integer.MAX_VALUE ? Integer.MAX_VALUE : (int) sum;
+    }
+
+    /**
+     * Returns the value to which the specified key is mapped,
+     * or {@code null} if this map contains no mapping for the key.
+     * <p>
+     * <p>If this map contains a mapping from a key
+     * {@code k} to a value {@code v} such that {@code key.equals(k)},
+     * then this method returns {@code v}; otherwise it returns
+     * {@code null}.  (There can be at most one such mapping.)
+     *
+     * @throws NullPointerException if the specified key is null
+     */
+    public V get(Object key) {
+        int hash = hashOf(key);
+        return segmentFor(hash).get(key, hash);
+    }
+
+    /**
+     * Tests if the specified object is a key in this table.
+     *
+     * @param key possible key
+     * @return <tt>true</tt> if and only if the specified object
+     * is a key in this table, as determined by the
+     * <tt>equals</tt> method; <tt>false</tt> otherwise.
+     * @throws NullPointerException if the specified key is null
+     */
+    public boolean containsKey(Object key) {
+        int hash = hashOf(key);
+        return segmentFor(hash).containsKey(key, hash);
+    }
+
+    /**
+     * Returns <tt>true</tt> if this map maps one or more keys to the
+     * specified value. Note: This method requires a full internal
+     * traversal of the hash table, therefore it is much slower than the
+     * method <tt>containsKey</tt>.
+     *
+     * @param value value whose presence in this map is to be tested
+     * @return <tt>true</tt> if this map maps one or more keys to the
+     * specified value
+     * @throws NullPointerException if the specified value is null
+     */
+    public boolean containsValue(Object value) {
+        if (value == null) {
+            throw new NullPointerException();
+        }
+        // See explanation of modCount use above
+        final Segment<K, V>[] segments = this.segments;
+        int[] mc = new int[segments.length];
+        // Try a few times without locking
+        for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) {
+            int sum = 0;
+            int mcsum = 0;
+            for (int i = 0; i < segments.length; ++i) {
+                int c = segments[i].count;
+                mcsum += mc[i] = segments[i].modCount;
+                if (segments[i].containsValue(value)) {
+                    return true;
+                }
+            }
+            boolean cleanSweep = true;
+            if (mcsum != 0) {
+                for (int i = 0; i < segments.length; ++i) {
+                    int c = segments[i].count;
+                    if (mc[i] != segments[i].modCount) {
+                        cleanSweep = false;
+                        break;
+                    }
+                }
+            }
+            if (cleanSweep) {
+                return false;
+            }
+        }
+        // Resort to locking all segments
+        for (int i = 0; i < segments.length; ++i) {
+            segments[i].lock();
+        }
+        boolean found = false;
+        try {
+            for (int i = 0; i < segments.length; ++i) {
+                if (segments[i].containsValue(value)) {
+                    found = true;
+                    break;
+                }
+            }
+        } finally {
+            for (int i = 0; i < segments.length; ++i) {
+                segments[i].unlock();
+            }
+        }
+        return found;
+    }
+
+    /**
+     * Legacy method testing if some key maps into the specified value
+     * in this table.  This method is identical in functionality to
+     * {@link #containsValue}, and exists solely to ensure
+     * full compatibility with class {@link Hashtable},
+     * which supported this method prior to introduction of the
+     * Java Collections framework.
+     *
+     * @param value a value to search for
+     * @return <tt>true</tt> if and only if some key maps to the
+     * <tt>value</tt> argument in this table as
+     * determined by the <tt>equals</tt> method;
+     * <tt>false</tt> otherwise
+     * @throws NullPointerException if the specified value is null
+     */
+    public boolean contains(Object value) {
+        return containsValue(value);
+    }
+
+    /**
+     * Maps the specified key to the specified value in this table.
+     * Neither the key nor the value can be null.
+     * <p>
+     * <p> The value can be retrieved by calling the <tt>get</tt> method
+     * with a key that is equal to the original key.
+     *
+     * @param key   key with which the specified value is to be associated
+     * @param value value to be associated with the specified key
+     * @return the previous value associated with <tt>key</tt>, or
+     * <tt>null</tt> if there was no mapping for <tt>key</tt>
+     * @throws NullPointerException if the specified key or value is null
+     */
+    public V put(K key, V value) {
+        if (value == null) {
+            throw new NullPointerException();
+        }
+        int hash = hashOf(key);
+        return segmentFor(hash).put(key, hash, value, null, false);
+    }
+
+    /**
+     * {@inheritDoc}
+     *
+     * @return the previous value associated with the specified key,
+     * or <tt>null</tt> if there was no mapping for the key
+     * @throws NullPointerException if the specified key or value is null
+     */
+    public V putIfAbsent(K key, V value) {
+        if (value == null) {
+            throw new NullPointerException();
+        }
+        int hash = hashOf(key);
+        return segmentFor(hash).put(key, hash, value, null, true);
+    }
+
+    /***
+     * {@inheritDoc}
+     *
+     * @throws UnsupportedOperationException {@inheritDoc}
+     * @throws ClassCastException            {@inheritDoc}
+     * @throws NullPointerException          {@inheritDoc}
+     * @implSpec The default implementation is equivalent to the following 
steps for this
+     * {@code map}, then returning the current value or {@code null} if now
+     * absent:
+     * <p>
+     * <pre> {@code
+     * if (map.get(key) == null) {
+     *     V newValue = mappingFunction.apply(key);
+     *     if (newValue != null)
+     *         return map.putIfAbsent(key, newValue);
+     * }
+     * }</pre>
+     * <p>
+     * The default implementation may retry these steps when multiple
+     * threads attempt updates including potentially calling the mapping
+     * function multiple times.
+     * <p>
+     * <p>This implementation assumes that the ConcurrentMap cannot contain 
null
+     * values and {@code get()} returning null unambiguously means the key is
+     * absent. Implementations which support null values <strong>must</strong>
+     * override this default implementation.
+     */
+    @Override
+    public V applyIfAbsent(K key, Function<? super K, ? extends V> 
mappingFunction) {
+        checkNotNull(key);
+        checkNotNull(mappingFunction);
+
+        int hash = hashOf(key);
+        Segment<K, V> segment = segmentFor(hash);
+        V v = segment.get(key, hash);
+        return v == null ? segment.put(key, hash, null, mappingFunction, true) 
: v;
+    }
+
+    @Override
+    public V applyIfPresent(K key, BiFunction<? super K, ? super V, ? extends 
V> remappingFunction) {
+        checkNotNull(key);
+        checkNotNull(remappingFunction);
+
+        int hash = hashOf(key);
+        Segment<K, V> segment = segmentFor(hash);
+        V v = segment.get(key, hash);
+        if (v == null) {
+            return null;
+        }
+
+        return segmentFor(hash).applyIfPresent(key, hash, remappingFunction);
+    }
+
+    @Override
+    public V apply(K key, BiFunction<? super K, ? super V, ? extends V> 
remappingFunction) {
+        checkNotNull(key);
+        checkNotNull(remappingFunction);
+
+        int hash = hashOf(key);
+        Segment<K, V> segment = segmentFor(hash);
+        return segment.apply(key, hash, remappingFunction);
+    }
+
+    /**
+     * Copies all of the mappings from the specified map to this one.
+     * These mappings replace any mappings that this map had for any of the
+     * keys currently in the specified map.
+     *
+     * @param m mappings to be stored in this map
+     */
+    public void putAll(Map<? extends K, ? extends V> m) {
+        for (Entry<? extends K, ? extends V> e : m.entrySet()) {
+            put(e.getKey(), e.getValue());
+        }
+    }
+
+    /**
+     * Removes the key (and its corresponding value) from this map.
+     * This method does nothing if the key is not in the map.
+     *
+     * @param key the key that needs to be removed
+     * @return the previous value associated with <tt>key</tt>, or
+     * <tt>null</tt> if there was no mapping for <tt>key</tt>
+     * @throws NullPointerException if the specified key is null
+     */
+    public V remove(Object key) {
+        int hash = hashOf(key);
+        return segmentFor(hash).remove(key, hash, null, false);
+    }
+
+    /**
+     * {@inheritDoc}
+     *
+     * @throws NullPointerException if the specified key is null
+     */
+    public boolean remove(Object key, Object value) {
+        int hash = hashOf(key);
+        if (value == null) {
+            return false;
+        }
+        return segmentFor(hash).remove(key, hash, value, false) != null;
+    }
+
+    /**
+     * {@inheritDoc}
+     *
+     * @throws NullPointerException if any of the arguments are null
+     */
+    public boolean replace(K key, V oldValue, V newValue) {
+        if (oldValue == null || newValue == null) {
+            throw new NullPointerException();
+        }
+        int hash = hashOf(key);
+        return segmentFor(hash).replace(key, hash, oldValue, newValue);
+    }
+
+    /**
+     * {@inheritDoc}
+     *
+     * @return the previous value associated with the specified key,
+     * or <tt>null</tt> if there was no mapping for the key
+     * @throws NullPointerException if the specified key or value is null
+     */
+    public V replace(K key, V value) {
+        if (value == null) {
+            throw new NullPointerException();
+        }
+        int hash = hashOf(key);
+        return segmentFor(hash).replace(key, hash, value);
+    }
+
+    /**
+     * Removes all of the mappings from this map.
+     */
+    public void clear() {
+        for (int i = 0; i < segments.length; ++i) {
+            segments[i].clear();
+        }
+    }
+
+    /**
+     * Removes any stale entries whose keys have been finalized. Use of this
+     * method is normally not necessary since stale entries are automatically
+     * removed lazily, when blocking operations are required. However, there
+     * are some cases where this operation should be performed eagerly, such
+     * as cleaning up old references to a ClassLoader in a multi-classloader
+     * environment.
+     * <p>
+     * Note: this method will acquire locks one at a time across all segments
+     * of this table, so this method should be used sparingly.
+     */
+    public void purgeStaleEntries() {
+        for (int i = 0; i < segments.length; ++i) {
+            segments[i].removeStale();
+        }
+    }
+
+
+    /**
+     * Returns a {@link Set} view of the keys contained in this map.
+     * The set is backed by the map, so changes to the map are
+     * reflected in the set, and vice-versa.  The set supports element
+     * removal, which removes the corresponding mapping from this map,
+     * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
+     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
+     * operations.  It does not support the <tt>add</tt> or
+     * <tt>addAll</tt> operations.
+     * <p>
+     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
+     * that will never throw {@link ConcurrentModificationException},
+     * and guarantees to traverse elements as they existed upon
+     * construction of the iterator, and may (but is not guaranteed to)
+     * reflect any modifications subsequent to construction.
+     */
+    public Set<K> keySet() {
+        Set<K> ks = keySet;
+        return (ks != null) ? ks : (keySet = new KeySet());
+    }
+
+    /**
+     * Returns a {@link Collection} view of the values contained in this map.
+     * The collection is backed by the map, so changes to the map are
+     * reflected in the collection, and vice-versa.  The collection
+     * supports element removal, which removes the corresponding
+     * mapping from this map, via the <tt>Iterator.remove</tt>,
+     * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
+     * <tt>retainAll</tt>, and <tt>clear</tt> operations.  It does not
+     * support the <tt>add</tt> or <tt>addAll</tt> operations.
+     * <p>
+     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
+     * that will never throw {@link ConcurrentModificationException},
+     * and guarantees to traverse elements as they existed upon
+     * construction of the iterator, and may (but is not guaranteed to)
+     * reflect any modifications subsequent to construction.
+     */
+    public Collection<V> values() {
+        Collection<V> vs = values;
+        return (vs != null) ? vs : (values = new Values());
+    }
+
+    /**
+     * Returns a {@link Set} view of the mappings contained in this map.
+     * The set is backed by the map, so changes to the map are
+     * reflected in the set, and vice-versa.  The set supports element
+     * removal, which removes the corresponding mapping from the map,
+     * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
+     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
+     * operations.  It does not support the <tt>add</tt> or
+     * <tt>addAll</tt> operations.
+     * <p>
+     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
+     * that will never throw {@link ConcurrentModificationException},
+     * and is guaranteed to traverse elements as they existed upon
+     * construction of the iterator, and may (but is not guaranteed to)
+     * reflect any modifications subsequent to construction.
+     */
+    public Set<Entry<K, V>> entrySet() {
+        Set<Entry<K, V>> es = entrySet;
+        return (es != null) ? es : (entrySet = new EntrySet(false));
+    }
+
+    public Set<Entry<K, V>> cachedEntrySet() {
+        Set<Entry<K, V>> es = entrySet;
+        return (es != null) ? es : (entrySet = new EntrySet(true));
+    }
+
+    /**
+     * Returns an enumeration of the keys in this table.
+     *
+     * @return an enumeration of the keys in this table
+     * @see #keySet()
+     */
+    public Enumeration<K> keys() {
+        return new KeyIterator();
+    }
+
+    /**
+     * Returns an enumeration of the values in this table.
+     *
+     * @return an enumeration of the values in this table
+     * @see #values()
+     */
+    public Enumeration<V> elements() {
+        return new ValueIterator();
+    }
+
+    /* ---------------- Iterator Support -------------- */
+
+    protected abstract class HashIterator {
+        int nextSegmentIndex;
+        int nextTableIndex;
+        HashEntry<K, V>[] currentTable;
+        HashEntry<K, V> nextEntry;
+        HashEntry<K, V> lastReturned;
+        // Strong reference to weak key (prevents gc)
+        K currentKey;
+
+        HashIterator() {
+            nextSegmentIndex = segments.length - 1;
+            nextTableIndex = -1;
+            advance();
+        }
+
+        public boolean hasMoreElements() {
+            return hasNext();
+        }
+
+        final void advance() {
+            if (nextEntry != null && (nextEntry = nextEntry.next) != null) {
+                return;
+            }
+            while (nextTableIndex >= 0) {
+                if ((nextEntry = currentTable[nextTableIndex--]) != null) {
+                    return;
+                }
+            }
+            while (nextSegmentIndex >= 0) {
+                Segment<K, V> seg = segments[nextSegmentIndex--];
+                if (seg.count != 0) {
+                    currentTable = seg.table;
+                    for (int j = currentTable.length - 1; j >= 0; --j) {
+                        if ((nextEntry = currentTable[j]) != null) {
+                            nextTableIndex = j - 1;
+                            return;
+                        }
+                    }
+                }
+            }
+        }
+
+        public boolean hasNext() {
+            while (nextEntry != null) {
+                if (nextEntry.key() != null) {
+                    return true;
+                }
+                advance();
+            }
+            return false;
+        }
+
+        HashEntry<K, V> nextEntry() {
+            do {
+                if (nextEntry == null) {
+                    throw new NoSuchElementException();
+                }
+                lastReturned = nextEntry;
+                currentKey = lastReturned.key();
+                advance();
+            } while /* Skip GC'd keys */ (currentKey == null);
+            return lastReturned;
+        }
+
+        public void remove() {
+            if (lastReturned == null) {
+                throw new IllegalStateException();
+            }
+            ConcurrentReferenceHashMap.this.remove(currentKey);
+            lastReturned = null;
+        }
+    }
+
+    final class KeyIterator extends HashIterator implements Iterator<K>, 
Enumeration<K> {
+        public K next() {
+            return super.nextEntry().key();
+        }
+
+        public K nextElement() {
+            return super.nextEntry().key();
+        }
+    }
+
+    final class ValueIterator extends HashIterator implements Iterator<V>, 
Enumeration<V> {
+        public V next() {
+            return super.nextEntry().value();
+        }
+
+        public V nextElement() {
+            return super.nextEntry().value();
+        }
+    }
+
+    /*
+     * This class is needed for JDK5 compatibility.
+     */
+    @SerializableByConvention
+    protected static class SimpleEntry<K, V> implements Entry<K, V>, 
Serializable {
+        private static final long serialVersionUID = -8499721149061103585L;
+
+        protected final K key;
+        protected V value;
+
+        public SimpleEntry(K key, V value) {
+            this.key = key;
+            this.value = value;
+        }
+
+        public SimpleEntry(Entry<? extends K, ? extends V> entry) {
+            this.key = entry.getKey();
+            this.value = entry.getValue();
+        }
+
+        public K getKey() {
+            return key;
+        }
+
+        public V getValue() {
+            return value;
+        }
+
+        public V setValue(V value) {
+            V oldValue = this.value;
+            this.value = value;
+            return oldValue;
+        }
+
+        public boolean equals(Object o) {
+            if (!(o instanceof Map.Entry)) {
+                return false;
+            }
+            @SuppressWarnings("unchecked")
+            Entry e = (Entry) o;
+            return eq(key, e.getKey()) && eq(value, e.getValue());
+        }
+
+        public int hashCode() {
+            return (key == null ? 0 : key.hashCode()) ^ (value == null ? 0 : 
value.hashCode());
+        }
+
+        public String toString() {
+            return key + "=" + value;
+        }
+
+        private static boolean eq(Object o1, Object o2) {
+            return o1 == null ? o2 == null : o1.equals(o2);
+        }
+    }
+
+
+    /**
+     * Custom Entry class used by EntryIterator.next(), that relays setValue
+     * changes to the underlying map.
+     */
+    @SerializableByConvention
+    protected class WriteThroughEntry extends SimpleEntry<K, V> {
+        private static final long serialVersionUID = -7900634345345313646L;
+
+        protected WriteThroughEntry(K k, V v) {
+            super(k, v);
+        }
+
+        /**
+         * Set our entry's value and writes it through to the map. The
+         * value to return is somewhat arbitrary: since a
+         * WriteThroughEntry does not necessarily track asynchronous
+         * changes, the most recent "previous" value could be
+         * different from what we return (or could even have been
+         * removed in which case the put will re-establish). We do not
+         * and cannot guarantee more.
+         */
+        public V setValue(V value) {
+            if (value == null) {
+                throw new NullPointerException();
+            }
+            V v = super.setValue(value);
+            ConcurrentReferenceHashMap.this.put(getKey(), value);
+            return v;
+        }
+    }
+
+    final class EntryIterator extends HashIterator implements 
Iterator<Entry<K, V>> {
+        public Entry<K, V> next() {
+            HashEntry<K, V> e = super.nextEntry();
+            return new WriteThroughEntry(e.key(), e.value());
+        }
+    }
+
+    final class CachedEntryIterator extends HashIterator implements 
Iterator<Entry<K, V>> {
+        private InitializableEntry entry = new InitializableEntry();
+
+        public Entry<K, V> next() {
+            HashEntry<K, V> e = super.nextEntry();
+            return entry.init(e.key(), e.value());
+        }
+    }
+
+    protected static class InitializableEntry<K, V> implements Entry<K, V> {
+        private K key;
+        private V value;
+
+        @Override
+        public K getKey() {
+            return key;
+        }
+
+        @Override
+        public V getValue() {
+            return value;
+        }
+
+        public Entry<K, V> init(K key, V value) {
+            this.key = key;
+            this.value = value;
+            return this;
+        }
+
+        @Override
+        public V setValue(V value) {
+            throw new UnsupportedOperationException();
+        }
+    }
+
+    final class KeySet extends AbstractSet<K> {
+        public Iterator<K> iterator() {
+            return new KeyIterator();
+        }
+
+        public int size() {
+            return ConcurrentReferenceHashMap.this.size();
+        }
+
+        public boolean isEmpty() {
+            return ConcurrentReferenceHashMap.this.isEmpty();
+        }
+
+        public boolean contains(Object o) {
+            return ConcurrentReferenceHashMap.this.containsKey(o);
+        }
+
+        public boolean remove(Object o) {
+            return ConcurrentReferenceHashMap.this.remove(o) != null;
+        }
+
+        public void clear() {
+            ConcurrentReferenceHashMap.this.clear();
+        }
+    }
+
+    final class Values extends AbstractCollection<V> {
+        public Iterator<V> iterator() {
+            return new ValueIterator();
+        }
+
+        public int size() {
+            return ConcurrentReferenceHashMap.this.size();
+        }
+
+        public boolean isEmpty() {
+            return ConcurrentReferenceHashMap.this.isEmpty();
+        }
+
+        public boolean contains(Object o) {
+            return ConcurrentReferenceHashMap.this.containsValue(o);
+        }
+
+        public void clear() {
+            ConcurrentReferenceHashMap.this.clear();
+        }
+    }
+
+    final class EntrySet extends AbstractSet<Entry<K, V>> {
+        private final boolean cached;
+
+        public EntrySet(boolean cached) {
+            this.cached = cached;
+        }
+
+        public Iterator<Entry<K, V>> iterator() {
+            return cached ? new CachedEntryIterator() : new EntryIterator();
+        }
+
+        public boolean contains(Object o) {
+            if (!(o instanceof Map.Entry)) {
+                return false;
+            }
+            Entry<?, ?> e = (Entry<?, ?>) o;
+            V v = ConcurrentReferenceHashMap.this.get(e.getKey());
+            return v != null && v.equals(e.getValue());
+        }
+
+        public boolean remove(Object o) {
+            if (!(o instanceof Map.Entry)) {
+                return false;
+            }
+            Entry<?, ?> e = (Entry<?, ?>) o;
+            return ConcurrentReferenceHashMap.this.remove(e.getKey(), 
e.getValue());
+        }
+
+        public int size() {
+            return ConcurrentReferenceHashMap.this.size();
+        }
+
+        public boolean isEmpty() {
+            return ConcurrentReferenceHashMap.this.isEmpty();
+        }
+
+        public void clear() {
+            ConcurrentReferenceHashMap.this.clear();
+        }
+    }
+
+    /* ---------------- Serialization Support -------------- */
+
+    /**
+     * Save the state of the <tt>ConcurrentReferenceHashMap</tt> instance to a
+     * stream (i.e., serialize it).
+     *
+     * @param s the stream
+     * @serialData the key (Object) and value (Object)
+     * for each key-value mapping, followed by a null pair.
+     * The key-value mappings are emitted in no particular order.
+     */
+    private void writeObject(java.io.ObjectOutputStream s) throws IOException {
+        s.defaultWriteObject();
+
+        for (int k = 0; k < segments.length; ++k) {
+            Segment<K, V> seg = segments[k];
+            seg.lock();
+            try {
+                HashEntry<K, V>[] tab = seg.table;
+                for (int i = 0; i < tab.length; ++i) {
+                    for (HashEntry<K, V> e = tab[i]; e != null; e = e.next) {
+                        K key = e.key();
+                        // Skip GC'd keys
+                        if (key == null) {
+                            continue;
+                        }
+                        s.writeObject(key);
+                        s.writeObject(e.value());
+                    }
+                }
+            } finally {
+                seg.unlock();
+            }
+        }
+        s.writeObject(null);
+        s.writeObject(null);
+    }
+
+    /**
+     * Reconstitute the <tt>ConcurrentReferenceHashMap</tt> instance from a
+     * stream (i.e., deserialize it).
+     *
+     * @param s the stream
+     */
+    @SuppressWarnings("unchecked")
+    private void readObject(java.io.ObjectInputStream s) throws IOException, 
ClassNotFoundException {
+        s.defaultReadObject();
+
+        // Initialize each segment to be minimally sized, and let grow.
+        for (int i = 0; i < segments.length; ++i) {
+            segments[i].setTable(new HashEntry[1]);
+        }
+
+        // Read the keys and values, and put the mappings in the table
+        while (true) {
+            K key = (K) s.readObject();
+            V value = (V) s.readObject();
+            if (key == null) {
+                break;
+            }
+            put(key, value);
+        }
+    }
+}

Reply via email to