This is an automated email from the ASF dual-hosted git repository. sunlan pushed a commit to branch danielsun/tweak-ManagedIdentityConcurrentMap in repository https://gitbox.apache.org/repos/asf/groovy.git
commit e113c6f412c2454ef99285d81a6e6b32e756bb8f Author: Daniel Sun <sun...@apache.org> AuthorDate: Fri Jul 31 07:29:45 2020 +0800 Add `ConcurrentIdentityHashMap` --- .../groovy/util/ConcurrentReferenceHashMap.java | 2046 ++++++++++++++++++++ 1 file changed, 2046 insertions(+) diff --git a/src/main/java/org/codehaus/groovy/util/ConcurrentReferenceHashMap.java b/src/main/java/org/codehaus/groovy/util/ConcurrentReferenceHashMap.java new file mode 100644 index 0000000..171e4f1 --- /dev/null +++ b/src/main/java/org/codehaus/groovy/util/ConcurrentReferenceHashMap.java @@ -0,0 +1,2046 @@ +/* + * Copyright (c) 2008-2020, Hazelcast, Inc. All Rights Reserved. + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.codehaus.groovy.util; + +/* + * Written by Doug Lea with assistance from members of JCP JSR-166 + * Expert Group and released to the public domain, as explained at + * http://creativecommons.org/licenses/publicdomain + */ + +import com.hazelcast.internal.serialization.SerializableByConvention; +import edu.umd.cs.findbugs.annotations.SuppressFBWarnings; + +import java.io.IOException; +import java.io.Serializable; +import java.lang.ref.Reference; +import java.lang.ref.ReferenceQueue; +import java.lang.ref.SoftReference; +import java.lang.ref.WeakReference; +import java.util.AbstractCollection; +import java.util.AbstractMap; +import java.util.AbstractSet; +import java.util.Collection; +import java.util.ConcurrentModificationException; +import java.util.EnumSet; +import java.util.Enumeration; +import java.util.HashMap; +import java.util.Hashtable; +import java.util.IdentityHashMap; +import java.util.Iterator; +import java.util.Map; +import java.util.NoSuchElementException; +import java.util.Set; +import java.util.concurrent.locks.ReentrantLock; +import java.util.function.BiFunction; +import java.util.function.Function; + +import static com.hazelcast.internal.util.Preconditions.checkNotNull; + +/** + * An advanced hash table supporting configurable garbage collection semantics + * of keys and values, optional referential-equality, full concurrency of + * retrievals, and adjustable expected concurrency for updates. + * <p> + * This table is designed around specific advanced use-cases. If there is any + * doubt whether this table is for you, you most likely should be using + * {@link java.util.concurrent.ConcurrentHashMap} instead. + * <p> + * This table supports strong, weak, and soft keys and values. By default keys + * are weak, and values are strong. Such a configuration offers similar behavior + * to {@link java.util.WeakHashMap}, entries of this table are periodically + * removed once their corresponding keys are no longer referenced outside of + * this table. In other words, this table will not prevent a key from being + * discarded by the garbage collector. Once a key has been discarded by the + * collector, the corresponding entry is no longer visible to this table; + * however, the entry may occupy space until a future table operation decides to + * reclaim it. For this reason, summary functions such as <tt>size</tt> and + * <tt>isEmpty</tt> might return a value greater than the observed number of + * entries. In order to support a high level of concurrency, stale entries are + * only reclaimed during blocking (usually mutating) operations. + * <p> + * Enabling soft keys allows entries in this table to remain until their space + * is absolutely needed by the garbage collector. This is unlike weak keys which + * can be reclaimed as soon as they are no longer referenced by a normal strong + * reference. The primary use case for soft keys is a cache, which ideally + * occupies memory that is not in use for as long as possible. + * <p> + * By default, values are held using a normal strong reference. This provides + * the commonly desired guarantee that a value will always have at least the + * same life-span as it's key. For this reason, care should be taken to ensure + * that a value never refers, either directly or indirectly, to its key, thereby + * preventing reclamation. If this is unavoidable, then it is recommended to use + * the same reference type in use for the key. However, it should be noted that + * non-strong values may disappear before their corresponding key. + * <p> + * While this table does allow the use of both strong keys and values, it is + * recommended you use {@link java.util.concurrent.ConcurrentHashMap} for such a + * configuration, since it is optimized for that case. + * <p> + * Just like {@link java.util.concurrent.ConcurrentHashMap}, this class obeys + * the same functional specification as {@link Hashtable}, and + * includes versions of methods corresponding to each method of + * <tt>Hashtable</tt>. However, even though all operations are thread-safe, + * retrieval operations do <em>not</em> entail locking, and there is + * <em>not</em> any support for locking the entire table in a way that + * prevents all access. This class is fully interoperable with + * <tt>Hashtable</tt> in programs that rely on its thread safety but not on + * its synchronization details. + * <p> + * <p> + * Retrieval operations (including <tt>get</tt>) generally do not block, so they + * may overlap with update operations (including <tt>put</tt> and + * <tt>remove</tt>). Retrievals reflect the results of the most recently + * <em>completed</em> update operations holding upon their onset. For + * aggregate operations such as <tt>putAll</tt> and <tt>clear</tt>, + * concurrent retrievals may reflect insertion or removal of only some entries. + * Similarly, Iterators and Enumerations return elements reflecting the state of + * the hash table at some point at or since the creation of the + * iterator/enumeration. They do <em>not</em> throw + * {@link ConcurrentModificationException}. However, iterators are designed to + * be used by only one thread at a time. + * <p> + * <p> + * The allowed concurrency among update operations is guided by the optional + * <tt>concurrencyLevel</tt> constructor argument (default <tt>16</tt>), + * which is used as a hint for internal sizing. The table is internally + * partitioned to try to permit the indicated number of concurrent updates + * without contention. Because placement in hash tables is essentially random, + * the actual concurrency will vary. Ideally, you should choose a value to + * accommodate as many threads as will ever concurrently modify the table. Using + * a significantly higher value than you need can waste space and time, and a + * significantly lower value can lead to thread contention. But overestimates + * and underestimates within an order of magnitude do not usually have much + * noticeable impact. A value of one is appropriate when it is known that only + * one thread will modify and all others will only read. Also, resizing this or + * any other kind of hash table is a relatively slow operation, so, when + * possible, it is a good idea that you provide estimates of expected table sizes in + * constructors. + * <p> + * <p> + * This class and its views and iterators implement all of the <em>optional</em> + * methods of the {@link Map} and {@link Iterator} interfaces. + * <p> + * <p> + * Like {@link Hashtable} but unlike {@link HashMap}, this class does + * <em>not</em> allow <tt>null</tt> to be used as a key or value. + * <p> + * <p> + * This class is a member of the <a href="{@docRoot}/../technotes/guides/collections/index.html"> + * Java Collections Framework</a>. + * + * @param <K> the type of keys maintained by this map + * @param <V> the type of mapped values + * @author Doug Lea + * @author Jason T. Greene + */ +@SuppressWarnings("all") +@SerializableByConvention +public class ConcurrentReferenceHashMap<K, V> extends AbstractMap<K, V> + implements com.hazelcast.internal.util.IConcurrentMap<K, V>, Serializable { + + /* + * The basic strategy is to subdivide the table among Segments, + * each of which itself is a concurrently readable hash table. + */ + + /** + * An option specifying which Java reference type should be used to refer + * to a key and/or value. + */ + public static enum ReferenceType { + /** + * Indicates a normal Java strong reference should be used + */ + STRONG, + /** + * Indicates a {@link WeakReference} should be used + */ + WEAK, + /** + * Indicates a {@link SoftReference} should be used + */ + SOFT + } + + ; + + /** + * Behavior-changing configuration options for the map + */ + public static enum Option { + /** + * Indicates that referential-equality (== instead of .equals()) should + * be used when locating keys. This offers similar behavior to {@link IdentityHashMap} + */ + IDENTITY_COMPARISONS + } + + ; + + /* ---------------- Constants -------------- */ + + static final ReferenceType DEFAULT_KEY_TYPE = ReferenceType.WEAK; + + static final ReferenceType DEFAULT_VALUE_TYPE = ReferenceType.STRONG; + + + /** + * The default initial capacity for this table, + * used when not otherwise specified in a constructor. + */ + static final int DEFAULT_INITIAL_CAPACITY = 16; + + /** + * The default load factor for this table, used when not + * otherwise specified in a constructor. + */ + static final float DEFAULT_LOAD_FACTOR = 0.75f; + + /** + * The default concurrency level for this table, used when not + * otherwise specified in a constructor. + */ + static final int DEFAULT_CONCURRENCY_LEVEL = 16; + + /** + * The maximum capacity, used if a higher value is implicitly + * specified by either of the constructors with arguments. MUST + * be a power of two <= 1<<30 to ensure that entries are indexable + * using ints. + */ + static final int MAXIMUM_CAPACITY = 1 << 30; + + /** + * The maximum number of segments to allow; used to bound + * constructor arguments. + */ + static final int MAX_SEGMENTS = 1 << 16; + + /** + * Number of unsynchronized retries in size and containsValue + * methods before resorting to locking. This is used to avoid + * unbounded retries if tables undergo continuous modification + * which would make it impossible to obtain an accurate result. + */ + static final int RETRIES_BEFORE_LOCK = 2; + + private static final long serialVersionUID = 7249069246763182397L; + + /* ---------------- Fields -------------- */ + + /** + * Mask value for indexing into segments. The upper bits of a + * key's hash code are used to choose the segment. + */ + final int segmentMask; + + /** + * Shift value for indexing within segments. + */ + final int segmentShift; + + /** + * The segments, each of which is a specialized hash table + */ + final Segment<K, V>[] segments; + + boolean identityComparisons; + + transient Set<K> keySet; + transient Set<Entry<K, V>> entrySet; + transient Collection<V> values; + + /* ---------------- Small Utilities -------------- */ + + /** + * Applies a supplemental hash function to a given hashCode, which + * defends against poor quality hash functions. This is critical + * because ConcurrentReferenceHashMap uses power-of-two length hash tables, + * that otherwise encounter collisions for hashCodes that do not + * differ in lower or upper bits. + */ + private static int hash(int h) { + // Spread bits to regularize both segment and index locations, + // using variant of single-word Wang/Jenkins hash. + h += (h << 15) ^ 0xffffcd7d; + h ^= (h >>> 10); + h += (h << 3); + h ^= (h >>> 6); + h += (h << 2) + (h << 14); + return h ^ (h >>> 16); + } + + /** + * Returns the segment that should be used for key with given hash + * + * @param hash the hash code for the key + * @return the segment + */ + final Segment<K, V> segmentFor(int hash) { + return segments[(hash >>> segmentShift) & segmentMask]; + } + + protected int hashOf(Object key) { + return hash(identityComparisons ? System.identityHashCode(key) : key.hashCode()); + } + + /* ---------------- Inner Classes -------------- */ + + interface KeyReference { + int keyHash(); + + Object keyRef(); + } + + /** + * A weak-key reference which stores the key hash needed for reclamation. + */ + static final class WeakKeyReference<K> extends WeakReference<K> implements KeyReference { + final int hash; + + WeakKeyReference(K key, int hash, ReferenceQueue<Object> refQueue) { + super(key, refQueue); + this.hash = hash; + } + + public final int keyHash() { + return hash; + } + + public final Object keyRef() { + return this; + } + } + + /** + * A soft-key reference which stores the key hash needed for reclamation. + */ + static final class SoftKeyReference<K> extends SoftReference<K> implements KeyReference { + final int hash; + + SoftKeyReference(K key, int hash, ReferenceQueue<Object> refQueue) { + super(key, refQueue); + this.hash = hash; + } + + public final int keyHash() { + return hash; + } + + public final Object keyRef() { + return this; + } + } + + static final class WeakValueReference<V> extends WeakReference<V> implements KeyReference { + final Object keyRef; + final int hash; + + WeakValueReference(V value, Object keyRef, int hash, ReferenceQueue<Object> refQueue) { + super(value, refQueue); + this.keyRef = keyRef; + this.hash = hash; + } + + public final int keyHash() { + return hash; + } + + public final Object keyRef() { + return keyRef; + } + } + + static final class SoftValueReference<V> extends SoftReference<V> implements KeyReference { + final Object keyRef; + final int hash; + + SoftValueReference(V value, Object keyRef, int hash, ReferenceQueue<Object> refQueue) { + super(value, refQueue); + this.keyRef = keyRef; + this.hash = hash; + } + + public final int keyHash() { + return hash; + } + + public final Object keyRef() { + return keyRef; + } + } + + /** + * ConcurrentReferenceHashMap list entry. Note that this is never exported + * out as a user-visible Map.Entry. + * <p> + * Because the value field is volatile, not final, it is legal wrt + * the Java Memory Model for an unsynchronized reader to see null + * instead of initial value when read via a data race. Although a + * reordering leading to this is not likely to ever actually + * occur, the Segment.readValueUnderLock method is used as a + * backup in case a null (pre-initialized) value is ever seen in + * an unsynchronized access method. + */ + static final class HashEntry<K, V> { + final Object keyRef; + final int hash; + volatile Object valueRef; + final HashEntry<K, V> next; + + HashEntry(K key, int hash, HashEntry<K, V> next, V value, + ReferenceType keyType, ReferenceType valueType, + ReferenceQueue<Object> refQueue) { + this.hash = hash; + this.next = next; + this.keyRef = newKeyReference(key, keyType, refQueue); + this.valueRef = newValueReference(value, valueType, refQueue); + } + + final Object newKeyReference(K key, ReferenceType keyType, + ReferenceQueue<Object> refQueue) { + if (keyType == ReferenceType.WEAK) { + return new WeakKeyReference<K>(key, hash, refQueue); + } + if (keyType == ReferenceType.SOFT) { + return new SoftKeyReference<K>(key, hash, refQueue); + } + + return key; + } + + final Object newValueReference(V value, ReferenceType valueType, + ReferenceQueue<Object> refQueue) { + if (valueType == ReferenceType.WEAK) { + return new WeakValueReference<V>(value, keyRef, hash, refQueue); + } + if (valueType == ReferenceType.SOFT) { + return new SoftValueReference<V>(value, keyRef, hash, refQueue); + } + + return value; + } + + @SuppressWarnings("unchecked") + final K key() { + if (keyRef instanceof KeyReference) { + return ((Reference<K>) keyRef).get(); + } + return (K) keyRef; + } + + final V value() { + return dereferenceValue(valueRef); + } + + @SuppressWarnings("unchecked") + final V dereferenceValue(Object value) { + if (value instanceof KeyReference) { + return ((Reference<V>) value).get(); + } + return (V) value; + } + + final void setValue(V value, ReferenceType valueType, ReferenceQueue<Object> refQueue) { + this.valueRef = newValueReference(value, valueType, refQueue); + } + + @SuppressWarnings("unchecked") + static final <K, V> HashEntry<K, V>[] newArray(int i) { + return new HashEntry[i]; + } + } + + /** + * Segments are specialized versions of hash tables. This + * subclasses from ReentrantLock opportunistically, just to + * simplify some locking and avoid separate construction. + */ + @SerializableByConvention + static final class Segment<K, V> extends ReentrantLock implements Serializable { + /* + * Segments maintain a table of entry lists that are ALWAYS + * kept in a consistent state, so they can be read without locking. + * Next fields of nodes are immutable (final). All list + * additions are performed at the front of each bin. This + * makes it easy to check changes, and also fast to traverse. + * When nodes would otherwise be changed, new nodes are + * created to replace them. This works well for hash tables + * since the bin lists tend to be short. (The average length + * is less than two for the default load factor threshold.) + * + * Read operations can thus proceed without locking, but rely + * on selected uses of volatiles to ensure that completed + * write operations performed by other threads are + * noticed. For most purposes, the "count" field, tracking the + * number of elements, serves as that volatile variable + * ensuring visibility. This is convenient because this field + * needs to be read in many read operations anyway: + * + * - All (unsynchronized) read operations must first read the + * "count" field, and should not look at table entries if + * it is 0. + * + * - All (synchronized) write operations should write to + * the "count" field after structurally changing any bin. + * The operations must not take any action that could even + * momentarily cause a concurrent read operation to see + * inconsistent data. This is made easier by the nature of + * the read operations in Map. For example, no operation + * can reveal that the table has grown but the threshold + * has not yet been updated, so there are no atomicity + * requirements for this with respect to reads. + * + * As a guide, all critical volatile reads and writes to the + * count field are marked in code comments. + */ + + private static final long serialVersionUID = 2249069246763182397L; + + /** + * The number of elements in this segment's region. + */ + @SuppressFBWarnings(value = "SE_TRANSIENT_FIELD_NOT_RESTORED", justification = + "I trust Doug Lea's technical decision") + transient volatile int count; + + /** + * Number of updates that alter the size of the table. This is + * used during bulk-read methods to make sure they see a + * consistent snapshot: If modCounts change during a traversal + * of segments computing size or checking containsValue, then + * we might have an inconsistent view of state so (usually) we + * must retry. + */ + @SuppressFBWarnings(value = "SE_TRANSIENT_FIELD_NOT_RESTORED", justification = + "I trust Doug Lea's technical decision") + transient int modCount; + + /** + * The table is rehashed when its size exceeds this threshold. + * (The value of this field is always <tt>(int)(capacity * + * loadFactor)</tt>.) + */ + transient int threshold; + + /** + * The per-segment table. + */ + transient volatile HashEntry<K, V>[] table; + + /** + * The load factor for the hash table. Even though this value + * is same for all segments, it is replicated to avoid needing + * links to outer object. + * + * @serial + */ + final float loadFactor; + + /** + * The collected weak-key reference queue for this segment. + * This should be (re)initialized whenever table is assigned, + */ + transient volatile ReferenceQueue<Object> refQueue; + + final ReferenceType keyType; + + final ReferenceType valueType; + + final boolean identityComparisons; + + Segment(int initialCapacity, float lf, ReferenceType keyType, + ReferenceType valueType, boolean identityComparisons) { + loadFactor = lf; + this.keyType = keyType; + this.valueType = valueType; + this.identityComparisons = identityComparisons; + setTable(HashEntry.<K, V>newArray(initialCapacity)); + } + + @SuppressWarnings("unchecked") + static final <K, V> Segment<K, V>[] newArray(int i) { + return new Segment[i]; + } + + private boolean keyEq(Object src, Object dest) { + return identityComparisons ? src == dest : src.equals(dest); + } + + /** + * Sets table to new HashEntry array. + * Call only while holding lock or in constructor. + */ + void setTable(HashEntry<K, V>[] newTable) { + threshold = (int) (newTable.length * loadFactor); + table = newTable; + refQueue = new ReferenceQueue<Object>(); + } + + /** + * Returns properly casted first entry of bin for given hash. + */ + HashEntry<K, V> getFirst(int hash) { + HashEntry<K, V>[] tab = table; + return tab[hash & (tab.length - 1)]; + } + + HashEntry<K, V> newHashEntry(K key, int hash, HashEntry<K, V> next, V value) { + return new HashEntry<K, V>(key, hash, next, value, keyType, valueType, refQueue); + } + + /** + * Reads value field of an entry under lock. Called if value + * field ever appears to be null. This is possible only if a + * compiler happens to reorder a HashEntry initialization with + * its table assignment, which is legal under memory model + * but is not known to ever occur. + */ + V readValueUnderLock(HashEntry<K, V> e) { + lock(); + try { + removeStale(); + return e.value(); + } finally { + unlock(); + } + } + + /* Specialized implementations of map methods */ + + V get(Object key, int hash) { + // read-volatile + if (count != 0) { + HashEntry<K, V> e = getFirst(hash); + while (e != null) { + if (e.hash == hash && keyEq(key, e.key())) { + Object opaque = e.valueRef; + if (opaque != null) { + return e.dereferenceValue(opaque); + } + // recheck + return readValueUnderLock(e); + } + e = e.next; + } + } + return null; + } + + boolean containsKey(Object key, int hash) { + // read-volatile + if (count != 0) { + HashEntry<K, V> e = getFirst(hash); + while (e != null) { + if (e.hash == hash && keyEq(key, e.key())) { + return true; + } + e = e.next; + } + } + return false; + } + + boolean containsValue(Object value) { + // read-volatile + if (count != 0) { + HashEntry<K, V>[] tab = table; + int len = tab.length; + for (int i = 0; i < len; i++) { + for (HashEntry<K, V> e = tab[i]; e != null; e = e.next) { + Object opaque = e.valueRef; + V v; + if (opaque == null) { + // recheck + v = readValueUnderLock(e); + } else { + v = e.dereferenceValue(opaque); + } + if (value.equals(v)) { + return true; + } + } + } + } + return false; + } + + boolean replace(K key, int hash, V oldValue, V newValue) { + lock(); + try { + return replaceInternal2(key, hash, oldValue, newValue); + } finally { + unlock(); + } + } + + private boolean replaceInternal2(K key, int hash, V oldValue, V newValue) { + removeStale(); + HashEntry<K, V> e = getFirst(hash); + while (e != null && (e.hash != hash || !keyEq(key, e.key()))) { + e = e.next; + } + boolean replaced = false; + if (e != null && oldValue.equals(e.value())) { + replaced = true; + e.setValue(newValue, valueType, refQueue); + } + return replaced; + } + + V replace(K key, int hash, V newValue) { + lock(); + try { + return replaceInternal(key, hash, newValue); + } finally { + unlock(); + } + } + + private V replaceInternal(K key, int hash, V newValue) { + removeStale(); + HashEntry<K, V> e = getFirst(hash); + while (e != null && (e.hash != hash || !keyEq(key, e.key()))) { + e = e.next; + } + V oldValue = null; + if (e != null) { + oldValue = e.value(); + e.setValue(newValue, valueType, refQueue); + } + return oldValue; + } + + V applyIfPresent(K key, int hash, BiFunction<? super K, ? super V, ? extends V> remappingFunction) { + lock(); + try { + V oldValue = get(key, hash); + if (oldValue == null) { + return null; + } + + V newValue = remappingFunction.apply(key, oldValue); + + if (newValue == null) { + removeInternal(key, hash, oldValue, false); + return null; + } else { + putInternal(key, hash, newValue, null, false); + return newValue; + } + } finally { + unlock(); + } + } + + V apply(K key, int hash, BiFunction<? super K, ? super V, ? extends V> remappingFunction) { + lock(); + try { + V oldValue = get(key, hash); + V newValue = remappingFunction.apply(key, oldValue); + + if (newValue == null) { + // delete mapping + if (oldValue != null) { + // something to remove + removeInternal(key, hash, oldValue, false); + return null; + } else { + // nothing to do. Leave things as they were. + return null; + } + } else { + // add or replace old mapping + putInternal(key, hash, newValue, null, false); + return newValue; + } + } finally { + unlock(); + } + } + + + V merge(K key, V value, int hash, BiFunction<? super V, ? super V, ? extends V> remappingFunction) { + lock(); + try { + V oldValue = get(key, hash); + V newValue = (oldValue == null) ? value : remappingFunction.apply(oldValue, value); + + if (newValue == null) { + removeInternal(key, hash, oldValue, false); + return null; + } else { + putInternal(key, hash, newValue, null, false); + return newValue; + } + } finally { + unlock(); + } + } + + /** + * This method must be called with exactly one of <code>value</code> and + * <code>function</code> non-null. + **/ + V put(K key, int hash, V value, Function<? super K, ? extends V> function, boolean onlyIfAbsent) { + lock(); + try { + return putInternal(key, hash, value, function, onlyIfAbsent); + } finally { + unlock(); + } + } + + private V putInternal(K key, int hash, V value, Function<? super K, ? extends V> function, boolean onlyIfAbsent) { + removeStale(); + int c = count; + // ensure capacity + if (c++ > threshold) { + int reduced = rehash(); + // adjust from possible weak cleanups + if (reduced > 0) { + // write-volatile + count = (c -= reduced) - 1; + } + } + HashEntry<K, V>[] tab = table; + int index = hash & (tab.length - 1); + HashEntry<K, V> first = tab[index]; + HashEntry<K, V> e = first; + while (e != null && (e.hash != hash || !keyEq(key, e.key()))) { + e = e.next; + } + V resultValue; + if (e != null) { + resultValue = e.value(); + if (!onlyIfAbsent) { + e.setValue(getValue(key, value, function), valueType, refQueue); + } + } else { + V v = getValue(key, value, function); + resultValue = function != null ? v : null; + + if (v != null) { + ++modCount; + tab[index] = newHashEntry(key, hash, first, v); + // write-volatile + count = c; + } + } + return resultValue; + } + + V getValue(K key, V value, Function<? super K, ? extends V> function) { + return value != null ? value : function.apply(key); + } + + int rehash() { + HashEntry<K, V>[] oldTable = table; + int oldCapacity = oldTable.length; + if (oldCapacity >= MAXIMUM_CAPACITY) { + return 0; + } + + /* + * Reclassify nodes in each list to new Map. Because we are + * using power-of-two expansion, the elements from each bin + * must either stay at the same index, or move with a power of two + * offset. We eliminate unnecessary node creation by catching + * cases where old nodes can be reused because their next + * fields won't change. Statistically, at the default + * threshold, only about one-sixth of them need cloning when + * a table doubles. The nodes they replace will be garbage + * collectable as soon as they are no longer referenced by any + * reader thread that may be in the midst of traversing table + * right now. + */ + + HashEntry<K, V>[] newTable = HashEntry.newArray(oldCapacity << 1); + threshold = (int) (newTable.length * loadFactor); + int sizeMask = newTable.length - 1; + int reduce = 0; + for (int i = 0; i < oldCapacity; i++) { + // We need to guarantee that any existing reads of old Map can + // proceed. So we cannot yet null out each bin. + HashEntry<K, V> e = oldTable[i]; + if (e != null) { + HashEntry<K, V> next = e.next; + int idx = e.hash & sizeMask; + // Single node on list + if (next == null) { + newTable[idx] = e; + } else { + // Reuse trailing consecutive sequence at same slot + HashEntry<K, V> lastRun = e; + int lastIdx = idx; + for (HashEntry<K, V> last = next; + last != null; + last = last.next) { + int k = last.hash & sizeMask; + if (k != lastIdx) { + lastIdx = k; + lastRun = last; + } + } + newTable[lastIdx] = lastRun; + // Clone all remaining nodes + for (HashEntry<K, V> p = e; p != lastRun; p = p.next) { + // Skip GC'd weak refs + K key = p.key(); + if (key == null) { + reduce++; + continue; + } + int k = p.hash & sizeMask; + HashEntry<K, V> n = newTable[k]; + newTable[k] = newHashEntry(key, p.hash, n, p.value()); + } + } + } + } + table = newTable; + return reduce; + } + + /** + * Remove: match on key only if value is null, else match both. + */ + V remove(Object key, int hash, Object value, boolean refRemove) { + lock(); + try { + return removeInternal(key, hash, value, refRemove); + } finally { + unlock(); + } + } + + private V removeInternal(Object key, int hash, Object value, boolean refRemove) { + if (!refRemove) { + removeStale(); + } + int c = count - 1; + HashEntry<K, V>[] tab = table; + int index = hash & (tab.length - 1); + HashEntry<K, V> first = tab[index]; + HashEntry<K, V> e = first; + // a ref remove operation compares the Reference instance + while (e != null && key != e.keyRef && (refRemove || hash != e.hash || !keyEq(key, e.key()))) { + e = e.next; + } + + V oldValue = null; + if (e != null) { + V v = e.value(); + if (value == null || value.equals(v)) { + oldValue = v; + // All entries following removed node can stay + // in list, but all preceding ones need to be + // cloned. + ++modCount; + HashEntry<K, V> newFirst = e.next; + for (HashEntry<K, V> p = first; p != e; p = p.next) { + K pKey = p.key(); + // Skip GC'd keys + if (pKey == null) { + c--; + continue; + } + newFirst = newHashEntry(pKey, p.hash, newFirst, p.value()); + } + tab[index] = newFirst; + // write-volatile + count = c; + } + } + return oldValue; + } + + final void removeStale() { + KeyReference ref; + while ((ref = (KeyReference) refQueue.poll()) != null) { + remove(ref.keyRef(), ref.keyHash(), null, true); + } + } + + void clear() { + if (count != 0) { + lock(); + try { + HashEntry<K, V>[] tab = table; + for (int i = 0; i < tab.length; i++) { + tab[i] = null; + } + ++modCount; + // replace the reference queue to avoid unnecessary stale cleanups + refQueue = new ReferenceQueue<Object>(); + // write-volatile + count = 0; + } finally { + unlock(); + } + } + } + } + + /* ---------------- Public operations -------------- */ + + /** + * Creates a new, empty map with the specified initial + * capacity, reference types, load factor, and concurrency level. + * <p> + * Behavioral changing options such as {@link Option#IDENTITY_COMPARISONS} + * can also be specified. + * + * @param initialCapacity the initial capacity. The implementation + * performs internal sizing to accommodate this many elements. + * @param loadFactor the load factor threshold, used to control resizing. + * Resizing may be performed when the average number of elements per + * bin exceeds this threshold. + * @param concurrencyLevel the estimated number of concurrently + * updating threads. The implementation performs internal sizing + * to try to accommodate this many threads. + * @param keyType the reference type to use for keys + * @param valueType the reference type to use for values + * @param options the behavioral options + * @throws IllegalArgumentException if the initial capacity is + * negative or the load factor or concurrencyLevel are + * nonpositive. + */ + public ConcurrentReferenceHashMap(int initialCapacity, + float loadFactor, int concurrencyLevel, + ReferenceType keyType, ReferenceType valueType, + EnumSet<Option> options) { + if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0) { + throw new IllegalArgumentException(); + } + if (concurrencyLevel > MAX_SEGMENTS) { + concurrencyLevel = MAX_SEGMENTS; + } + // Find power-of-two sizes best matching arguments + int sshift = 0; + int ssize = 1; + while (ssize < concurrencyLevel) { + ++sshift; + ssize <<= 1; + } + segmentShift = 32 - sshift; + segmentMask = ssize - 1; + this.segments = Segment.newArray(ssize); + if (initialCapacity > MAXIMUM_CAPACITY) { + initialCapacity = MAXIMUM_CAPACITY; + } + int c = initialCapacity / ssize; + if (c * ssize < initialCapacity) { + ++c; + } + int cap = 1; + while (cap < c) { + cap <<= 1; + } + identityComparisons = options != null && options.contains(Option.IDENTITY_COMPARISONS); + for (int i = 0; i < this.segments.length; ++i) { + this.segments[i] = new Segment<K, V>(cap, loadFactor, keyType, valueType, identityComparisons); + } + } + + /** + * Creates a new, empty map with the specified initial + * capacity, load factor, and concurrency level. + * + * @param initialCapacity the initial capacity. The implementation + * performs internal sizing to accommodate this number of elements. + * @param loadFactor the load factor threshold, used to control resizing. + * Resizing may be performed when the average number of elements per + * bin exceeds this threshold. + * @param concurrencyLevel the estimated number of concurrently + * updating threads. The implementation performs internal sizing + * to try to accommodate this many threads. + * @throws IllegalArgumentException if the initial capacity is + * negative or the load factor or concurrencyLevel are + * nonpositive. + */ + public ConcurrentReferenceHashMap(int initialCapacity, float loadFactor, int concurrencyLevel) { + this(initialCapacity, loadFactor, concurrencyLevel, DEFAULT_KEY_TYPE, DEFAULT_VALUE_TYPE, null); + } + + /** + * Creates a new, empty map with the specified initial capacity + * and load factor and with the default reference types (weak keys, + * strong values), and concurrencyLevel (16). + * + * @param initialCapacity The implementation performs internal + * sizing to accommodate this number of elements. + * @param loadFactor the load factor threshold, used to control resizing. + * Resizing may be performed when the average number of elements per + * bin exceeds this threshold. + * @throws IllegalArgumentException if the initial capacity of + * elements is negative or the load factor is nonpositive + * @since 1.6 + */ + public ConcurrentReferenceHashMap(int initialCapacity, float loadFactor) { + this(initialCapacity, loadFactor, DEFAULT_CONCURRENCY_LEVEL); + } + + + /** + * Creates a new, empty map with the specified initial capacity, + * reference types, and with a default load factor (0.75) and concurrencyLevel (16). + * + * @param initialCapacity the initial capacity. The implementation + * performs internal sizing to accommodate this many elements. + * @param keyType the reference type to use for keys + * @param valueType the reference type to use for values + * @throws IllegalArgumentException if the initial capacity of + * elements is negative. + */ + public ConcurrentReferenceHashMap(int initialCapacity, + ReferenceType keyType, ReferenceType valueType) { + this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL, + keyType, valueType, null); + } + + /** + * Creates a new, empty reference map with the specified key + * and value reference types. + * + * @param keyType the reference type to use for keys + * @param valueType the reference type to use for values + * @throws IllegalArgumentException if the initial capacity of + * elements is negative. + */ + public ConcurrentReferenceHashMap(ReferenceType keyType, ReferenceType valueType) { + this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL, + keyType, valueType, null); + } + + /** + * Creates a new, empty reference map with the specified reference types + * and behavioral options. + * + * @param keyType the reference type to use for keys + * @param valueType the reference type to use for values + * @throws IllegalArgumentException if the initial capacity of + * elements is negative. + */ + public ConcurrentReferenceHashMap(ReferenceType keyType, ReferenceType valueType, EnumSet<Option> options) { + this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL, + keyType, valueType, options); + } + + + /** + * Creates a new, empty map with the specified initial capacity, + * and with default reference types (weak keys, strong values), + * load factor (0.75) and concurrencyLevel (16). + * + * @param initialCapacity the initial capacity. The implementation + * performs internal sizing to accommodate this many elements. + * @throws IllegalArgumentException if the initial capacity of + * elements is negative. + */ + public ConcurrentReferenceHashMap(int initialCapacity) { + this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL); + } + + /** + * Creates a new, empty map with a default initial capacity (16), + * reference types (weak keys, strong values), default + * load factor (0.75) and concurrencyLevel (16). + */ + public ConcurrentReferenceHashMap() { + this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL); + } + + /** + * Creates a new map with the same mappings as the given map. + * The map is created with a capacity of 1.5 times the number + * of mappings in the given map or 16 (whichever is greater), + * and a default load factor (0.75) and concurrencyLevel (16). + * + * @param m the map + */ + public ConcurrentReferenceHashMap(Map<? extends K, ? extends V> m) { + this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1, + DEFAULT_INITIAL_CAPACITY), + DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL + ); + putAll(m); + } + + /** + * Returns <tt>true</tt> if this map contains no key-value mappings. + * + * @return <tt>true</tt> if this map contains no key-value mappings + */ + public boolean isEmpty() { + final Segment<K, V>[] segments = this.segments; + /* + * We keep track of per-segment modCounts to avoid ABA + * problems in which an element in one segment was added and + * in another removed during traversal, in which case the + * table was never actually empty at any point. Note the + * similar use of modCounts in the size() and containsValue() + * methods, which are the only other methods also susceptible + * to ABA problems. + */ + int[] mc = new int[segments.length]; + int mcsum = 0; + for (int i = 0; i < segments.length; ++i) { + if (segments[i].count != 0) { + return false; + } else { + mcsum += mc[i] = segments[i].modCount; + } + } + // If mcsum happens to be zero, then we know we got a snapshot + // before any modifications at all were made. This is + // probably common enough to bother tracking. + if (mcsum != 0) { + for (int i = 0; i < segments.length; ++i) { + if (segments[i].count != 0 || mc[i] != segments[i].modCount) { + return false; + } + } + } + return true; + } + + /** + * Returns the number of key-value mappings in this map. If the + * map contains more than <tt>Integer.MAX_VALUE</tt> elements, returns + * <tt>Integer.MAX_VALUE</tt>. + * + * @return the number of key-value mappings in this map + */ + public int size() { + final Segment<K, V>[] segments = this.segments; + long sum = 0; + long check = 0; + int[] mc = new int[segments.length]; + // Try a few times to get accurate count. On failure due to + // continuous async changes in table, resort to locking. + for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) { + check = 0; + sum = 0; + int mcsum = 0; + for (int i = 0; i < segments.length; ++i) { + sum += segments[i].count; + mcsum += mc[i] = segments[i].modCount; + } + if (mcsum != 0) { + for (int i = 0; i < segments.length; ++i) { + check += segments[i].count; + if (mc[i] != segments[i].modCount) { + // force retry + check = -1; + break; + } + } + } + if (check == sum) { + break; + } + } + if (check != sum) { + // Resort to locking all segments + sum = 0; + for (int i = 0; i < segments.length; ++i) { + segments[i].lock(); + } + for (int i = 0; i < segments.length; ++i) { + sum += segments[i].count; + } + for (int i = 0; i < segments.length; ++i) { + segments[i].unlock(); + } + } + return sum > Integer.MAX_VALUE ? Integer.MAX_VALUE : (int) sum; + } + + /** + * Returns the value to which the specified key is mapped, + * or {@code null} if this map contains no mapping for the key. + * <p> + * <p>If this map contains a mapping from a key + * {@code k} to a value {@code v} such that {@code key.equals(k)}, + * then this method returns {@code v}; otherwise it returns + * {@code null}. (There can be at most one such mapping.) + * + * @throws NullPointerException if the specified key is null + */ + public V get(Object key) { + int hash = hashOf(key); + return segmentFor(hash).get(key, hash); + } + + /** + * Tests if the specified object is a key in this table. + * + * @param key possible key + * @return <tt>true</tt> if and only if the specified object + * is a key in this table, as determined by the + * <tt>equals</tt> method; <tt>false</tt> otherwise. + * @throws NullPointerException if the specified key is null + */ + public boolean containsKey(Object key) { + int hash = hashOf(key); + return segmentFor(hash).containsKey(key, hash); + } + + /** + * Returns <tt>true</tt> if this map maps one or more keys to the + * specified value. Note: This method requires a full internal + * traversal of the hash table, therefore it is much slower than the + * method <tt>containsKey</tt>. + * + * @param value value whose presence in this map is to be tested + * @return <tt>true</tt> if this map maps one or more keys to the + * specified value + * @throws NullPointerException if the specified value is null + */ + public boolean containsValue(Object value) { + if (value == null) { + throw new NullPointerException(); + } + // See explanation of modCount use above + final Segment<K, V>[] segments = this.segments; + int[] mc = new int[segments.length]; + // Try a few times without locking + for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) { + int sum = 0; + int mcsum = 0; + for (int i = 0; i < segments.length; ++i) { + int c = segments[i].count; + mcsum += mc[i] = segments[i].modCount; + if (segments[i].containsValue(value)) { + return true; + } + } + boolean cleanSweep = true; + if (mcsum != 0) { + for (int i = 0; i < segments.length; ++i) { + int c = segments[i].count; + if (mc[i] != segments[i].modCount) { + cleanSweep = false; + break; + } + } + } + if (cleanSweep) { + return false; + } + } + // Resort to locking all segments + for (int i = 0; i < segments.length; ++i) { + segments[i].lock(); + } + boolean found = false; + try { + for (int i = 0; i < segments.length; ++i) { + if (segments[i].containsValue(value)) { + found = true; + break; + } + } + } finally { + for (int i = 0; i < segments.length; ++i) { + segments[i].unlock(); + } + } + return found; + } + + /** + * Legacy method testing if some key maps into the specified value + * in this table. This method is identical in functionality to + * {@link #containsValue}, and exists solely to ensure + * full compatibility with class {@link Hashtable}, + * which supported this method prior to introduction of the + * Java Collections framework. + * + * @param value a value to search for + * @return <tt>true</tt> if and only if some key maps to the + * <tt>value</tt> argument in this table as + * determined by the <tt>equals</tt> method; + * <tt>false</tt> otherwise + * @throws NullPointerException if the specified value is null + */ + public boolean contains(Object value) { + return containsValue(value); + } + + /** + * Maps the specified key to the specified value in this table. + * Neither the key nor the value can be null. + * <p> + * <p> The value can be retrieved by calling the <tt>get</tt> method + * with a key that is equal to the original key. + * + * @param key key with which the specified value is to be associated + * @param value value to be associated with the specified key + * @return the previous value associated with <tt>key</tt>, or + * <tt>null</tt> if there was no mapping for <tt>key</tt> + * @throws NullPointerException if the specified key or value is null + */ + public V put(K key, V value) { + if (value == null) { + throw new NullPointerException(); + } + int hash = hashOf(key); + return segmentFor(hash).put(key, hash, value, null, false); + } + + /** + * {@inheritDoc} + * + * @return the previous value associated with the specified key, + * or <tt>null</tt> if there was no mapping for the key + * @throws NullPointerException if the specified key or value is null + */ + public V putIfAbsent(K key, V value) { + if (value == null) { + throw new NullPointerException(); + } + int hash = hashOf(key); + return segmentFor(hash).put(key, hash, value, null, true); + } + + /*** + * {@inheritDoc} + * + * @throws UnsupportedOperationException {@inheritDoc} + * @throws ClassCastException {@inheritDoc} + * @throws NullPointerException {@inheritDoc} + * @implSpec The default implementation is equivalent to the following steps for this + * {@code map}, then returning the current value or {@code null} if now + * absent: + * <p> + * <pre> {@code + * if (map.get(key) == null) { + * V newValue = mappingFunction.apply(key); + * if (newValue != null) + * return map.putIfAbsent(key, newValue); + * } + * }</pre> + * <p> + * The default implementation may retry these steps when multiple + * threads attempt updates including potentially calling the mapping + * function multiple times. + * <p> + * <p>This implementation assumes that the ConcurrentMap cannot contain null + * values and {@code get()} returning null unambiguously means the key is + * absent. Implementations which support null values <strong>must</strong> + * override this default implementation. + */ + @Override + public V applyIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) { + checkNotNull(key); + checkNotNull(mappingFunction); + + int hash = hashOf(key); + Segment<K, V> segment = segmentFor(hash); + V v = segment.get(key, hash); + return v == null ? segment.put(key, hash, null, mappingFunction, true) : v; + } + + @Override + public V applyIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) { + checkNotNull(key); + checkNotNull(remappingFunction); + + int hash = hashOf(key); + Segment<K, V> segment = segmentFor(hash); + V v = segment.get(key, hash); + if (v == null) { + return null; + } + + return segmentFor(hash).applyIfPresent(key, hash, remappingFunction); + } + + @Override + public V apply(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) { + checkNotNull(key); + checkNotNull(remappingFunction); + + int hash = hashOf(key); + Segment<K, V> segment = segmentFor(hash); + return segment.apply(key, hash, remappingFunction); + } + + /** + * Copies all of the mappings from the specified map to this one. + * These mappings replace any mappings that this map had for any of the + * keys currently in the specified map. + * + * @param m mappings to be stored in this map + */ + public void putAll(Map<? extends K, ? extends V> m) { + for (Entry<? extends K, ? extends V> e : m.entrySet()) { + put(e.getKey(), e.getValue()); + } + } + + /** + * Removes the key (and its corresponding value) from this map. + * This method does nothing if the key is not in the map. + * + * @param key the key that needs to be removed + * @return the previous value associated with <tt>key</tt>, or + * <tt>null</tt> if there was no mapping for <tt>key</tt> + * @throws NullPointerException if the specified key is null + */ + public V remove(Object key) { + int hash = hashOf(key); + return segmentFor(hash).remove(key, hash, null, false); + } + + /** + * {@inheritDoc} + * + * @throws NullPointerException if the specified key is null + */ + public boolean remove(Object key, Object value) { + int hash = hashOf(key); + if (value == null) { + return false; + } + return segmentFor(hash).remove(key, hash, value, false) != null; + } + + /** + * {@inheritDoc} + * + * @throws NullPointerException if any of the arguments are null + */ + public boolean replace(K key, V oldValue, V newValue) { + if (oldValue == null || newValue == null) { + throw new NullPointerException(); + } + int hash = hashOf(key); + return segmentFor(hash).replace(key, hash, oldValue, newValue); + } + + /** + * {@inheritDoc} + * + * @return the previous value associated with the specified key, + * or <tt>null</tt> if there was no mapping for the key + * @throws NullPointerException if the specified key or value is null + */ + public V replace(K key, V value) { + if (value == null) { + throw new NullPointerException(); + } + int hash = hashOf(key); + return segmentFor(hash).replace(key, hash, value); + } + + /** + * Removes all of the mappings from this map. + */ + public void clear() { + for (int i = 0; i < segments.length; ++i) { + segments[i].clear(); + } + } + + /** + * Removes any stale entries whose keys have been finalized. Use of this + * method is normally not necessary since stale entries are automatically + * removed lazily, when blocking operations are required. However, there + * are some cases where this operation should be performed eagerly, such + * as cleaning up old references to a ClassLoader in a multi-classloader + * environment. + * <p> + * Note: this method will acquire locks one at a time across all segments + * of this table, so this method should be used sparingly. + */ + public void purgeStaleEntries() { + for (int i = 0; i < segments.length; ++i) { + segments[i].removeStale(); + } + } + + + /** + * Returns a {@link Set} view of the keys contained in this map. + * The set is backed by the map, so changes to the map are + * reflected in the set, and vice-versa. The set supports element + * removal, which removes the corresponding mapping from this map, + * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>, + * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt> + * operations. It does not support the <tt>add</tt> or + * <tt>addAll</tt> operations. + * <p> + * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator + * that will never throw {@link ConcurrentModificationException}, + * and guarantees to traverse elements as they existed upon + * construction of the iterator, and may (but is not guaranteed to) + * reflect any modifications subsequent to construction. + */ + public Set<K> keySet() { + Set<K> ks = keySet; + return (ks != null) ? ks : (keySet = new KeySet()); + } + + /** + * Returns a {@link Collection} view of the values contained in this map. + * The collection is backed by the map, so changes to the map are + * reflected in the collection, and vice-versa. The collection + * supports element removal, which removes the corresponding + * mapping from this map, via the <tt>Iterator.remove</tt>, + * <tt>Collection.remove</tt>, <tt>removeAll</tt>, + * <tt>retainAll</tt>, and <tt>clear</tt> operations. It does not + * support the <tt>add</tt> or <tt>addAll</tt> operations. + * <p> + * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator + * that will never throw {@link ConcurrentModificationException}, + * and guarantees to traverse elements as they existed upon + * construction of the iterator, and may (but is not guaranteed to) + * reflect any modifications subsequent to construction. + */ + public Collection<V> values() { + Collection<V> vs = values; + return (vs != null) ? vs : (values = new Values()); + } + + /** + * Returns a {@link Set} view of the mappings contained in this map. + * The set is backed by the map, so changes to the map are + * reflected in the set, and vice-versa. The set supports element + * removal, which removes the corresponding mapping from the map, + * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>, + * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt> + * operations. It does not support the <tt>add</tt> or + * <tt>addAll</tt> operations. + * <p> + * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator + * that will never throw {@link ConcurrentModificationException}, + * and is guaranteed to traverse elements as they existed upon + * construction of the iterator, and may (but is not guaranteed to) + * reflect any modifications subsequent to construction. + */ + public Set<Entry<K, V>> entrySet() { + Set<Entry<K, V>> es = entrySet; + return (es != null) ? es : (entrySet = new EntrySet(false)); + } + + public Set<Entry<K, V>> cachedEntrySet() { + Set<Entry<K, V>> es = entrySet; + return (es != null) ? es : (entrySet = new EntrySet(true)); + } + + /** + * Returns an enumeration of the keys in this table. + * + * @return an enumeration of the keys in this table + * @see #keySet() + */ + public Enumeration<K> keys() { + return new KeyIterator(); + } + + /** + * Returns an enumeration of the values in this table. + * + * @return an enumeration of the values in this table + * @see #values() + */ + public Enumeration<V> elements() { + return new ValueIterator(); + } + + /* ---------------- Iterator Support -------------- */ + + protected abstract class HashIterator { + int nextSegmentIndex; + int nextTableIndex; + HashEntry<K, V>[] currentTable; + HashEntry<K, V> nextEntry; + HashEntry<K, V> lastReturned; + // Strong reference to weak key (prevents gc) + K currentKey; + + HashIterator() { + nextSegmentIndex = segments.length - 1; + nextTableIndex = -1; + advance(); + } + + public boolean hasMoreElements() { + return hasNext(); + } + + final void advance() { + if (nextEntry != null && (nextEntry = nextEntry.next) != null) { + return; + } + while (nextTableIndex >= 0) { + if ((nextEntry = currentTable[nextTableIndex--]) != null) { + return; + } + } + while (nextSegmentIndex >= 0) { + Segment<K, V> seg = segments[nextSegmentIndex--]; + if (seg.count != 0) { + currentTable = seg.table; + for (int j = currentTable.length - 1; j >= 0; --j) { + if ((nextEntry = currentTable[j]) != null) { + nextTableIndex = j - 1; + return; + } + } + } + } + } + + public boolean hasNext() { + while (nextEntry != null) { + if (nextEntry.key() != null) { + return true; + } + advance(); + } + return false; + } + + HashEntry<K, V> nextEntry() { + do { + if (nextEntry == null) { + throw new NoSuchElementException(); + } + lastReturned = nextEntry; + currentKey = lastReturned.key(); + advance(); + } while /* Skip GC'd keys */ (currentKey == null); + return lastReturned; + } + + public void remove() { + if (lastReturned == null) { + throw new IllegalStateException(); + } + ConcurrentReferenceHashMap.this.remove(currentKey); + lastReturned = null; + } + } + + final class KeyIterator extends HashIterator implements Iterator<K>, Enumeration<K> { + public K next() { + return super.nextEntry().key(); + } + + public K nextElement() { + return super.nextEntry().key(); + } + } + + final class ValueIterator extends HashIterator implements Iterator<V>, Enumeration<V> { + public V next() { + return super.nextEntry().value(); + } + + public V nextElement() { + return super.nextEntry().value(); + } + } + + /* + * This class is needed for JDK5 compatibility. + */ + @SerializableByConvention + protected static class SimpleEntry<K, V> implements Entry<K, V>, Serializable { + private static final long serialVersionUID = -8499721149061103585L; + + protected final K key; + protected V value; + + public SimpleEntry(K key, V value) { + this.key = key; + this.value = value; + } + + public SimpleEntry(Entry<? extends K, ? extends V> entry) { + this.key = entry.getKey(); + this.value = entry.getValue(); + } + + public K getKey() { + return key; + } + + public V getValue() { + return value; + } + + public V setValue(V value) { + V oldValue = this.value; + this.value = value; + return oldValue; + } + + public boolean equals(Object o) { + if (!(o instanceof Map.Entry)) { + return false; + } + @SuppressWarnings("unchecked") + Entry e = (Entry) o; + return eq(key, e.getKey()) && eq(value, e.getValue()); + } + + public int hashCode() { + return (key == null ? 0 : key.hashCode()) ^ (value == null ? 0 : value.hashCode()); + } + + public String toString() { + return key + "=" + value; + } + + private static boolean eq(Object o1, Object o2) { + return o1 == null ? o2 == null : o1.equals(o2); + } + } + + + /** + * Custom Entry class used by EntryIterator.next(), that relays setValue + * changes to the underlying map. + */ + @SerializableByConvention + protected class WriteThroughEntry extends SimpleEntry<K, V> { + private static final long serialVersionUID = -7900634345345313646L; + + protected WriteThroughEntry(K k, V v) { + super(k, v); + } + + /** + * Set our entry's value and writes it through to the map. The + * value to return is somewhat arbitrary: since a + * WriteThroughEntry does not necessarily track asynchronous + * changes, the most recent "previous" value could be + * different from what we return (or could even have been + * removed in which case the put will re-establish). We do not + * and cannot guarantee more. + */ + public V setValue(V value) { + if (value == null) { + throw new NullPointerException(); + } + V v = super.setValue(value); + ConcurrentReferenceHashMap.this.put(getKey(), value); + return v; + } + } + + final class EntryIterator extends HashIterator implements Iterator<Entry<K, V>> { + public Entry<K, V> next() { + HashEntry<K, V> e = super.nextEntry(); + return new WriteThroughEntry(e.key(), e.value()); + } + } + + final class CachedEntryIterator extends HashIterator implements Iterator<Entry<K, V>> { + private InitializableEntry entry = new InitializableEntry(); + + public Entry<K, V> next() { + HashEntry<K, V> e = super.nextEntry(); + return entry.init(e.key(), e.value()); + } + } + + protected static class InitializableEntry<K, V> implements Entry<K, V> { + private K key; + private V value; + + @Override + public K getKey() { + return key; + } + + @Override + public V getValue() { + return value; + } + + public Entry<K, V> init(K key, V value) { + this.key = key; + this.value = value; + return this; + } + + @Override + public V setValue(V value) { + throw new UnsupportedOperationException(); + } + } + + final class KeySet extends AbstractSet<K> { + public Iterator<K> iterator() { + return new KeyIterator(); + } + + public int size() { + return ConcurrentReferenceHashMap.this.size(); + } + + public boolean isEmpty() { + return ConcurrentReferenceHashMap.this.isEmpty(); + } + + public boolean contains(Object o) { + return ConcurrentReferenceHashMap.this.containsKey(o); + } + + public boolean remove(Object o) { + return ConcurrentReferenceHashMap.this.remove(o) != null; + } + + public void clear() { + ConcurrentReferenceHashMap.this.clear(); + } + } + + final class Values extends AbstractCollection<V> { + public Iterator<V> iterator() { + return new ValueIterator(); + } + + public int size() { + return ConcurrentReferenceHashMap.this.size(); + } + + public boolean isEmpty() { + return ConcurrentReferenceHashMap.this.isEmpty(); + } + + public boolean contains(Object o) { + return ConcurrentReferenceHashMap.this.containsValue(o); + } + + public void clear() { + ConcurrentReferenceHashMap.this.clear(); + } + } + + final class EntrySet extends AbstractSet<Entry<K, V>> { + private final boolean cached; + + public EntrySet(boolean cached) { + this.cached = cached; + } + + public Iterator<Entry<K, V>> iterator() { + return cached ? new CachedEntryIterator() : new EntryIterator(); + } + + public boolean contains(Object o) { + if (!(o instanceof Map.Entry)) { + return false; + } + Entry<?, ?> e = (Entry<?, ?>) o; + V v = ConcurrentReferenceHashMap.this.get(e.getKey()); + return v != null && v.equals(e.getValue()); + } + + public boolean remove(Object o) { + if (!(o instanceof Map.Entry)) { + return false; + } + Entry<?, ?> e = (Entry<?, ?>) o; + return ConcurrentReferenceHashMap.this.remove(e.getKey(), e.getValue()); + } + + public int size() { + return ConcurrentReferenceHashMap.this.size(); + } + + public boolean isEmpty() { + return ConcurrentReferenceHashMap.this.isEmpty(); + } + + public void clear() { + ConcurrentReferenceHashMap.this.clear(); + } + } + + /* ---------------- Serialization Support -------------- */ + + /** + * Save the state of the <tt>ConcurrentReferenceHashMap</tt> instance to a + * stream (i.e., serialize it). + * + * @param s the stream + * @serialData the key (Object) and value (Object) + * for each key-value mapping, followed by a null pair. + * The key-value mappings are emitted in no particular order. + */ + private void writeObject(java.io.ObjectOutputStream s) throws IOException { + s.defaultWriteObject(); + + for (int k = 0; k < segments.length; ++k) { + Segment<K, V> seg = segments[k]; + seg.lock(); + try { + HashEntry<K, V>[] tab = seg.table; + for (int i = 0; i < tab.length; ++i) { + for (HashEntry<K, V> e = tab[i]; e != null; e = e.next) { + K key = e.key(); + // Skip GC'd keys + if (key == null) { + continue; + } + s.writeObject(key); + s.writeObject(e.value()); + } + } + } finally { + seg.unlock(); + } + } + s.writeObject(null); + s.writeObject(null); + } + + /** + * Reconstitute the <tt>ConcurrentReferenceHashMap</tt> instance from a + * stream (i.e., deserialize it). + * + * @param s the stream + */ + @SuppressWarnings("unchecked") + private void readObject(java.io.ObjectInputStream s) throws IOException, ClassNotFoundException { + s.defaultReadObject(); + + // Initialize each segment to be minimally sized, and let grow. + for (int i = 0; i < segments.length; ++i) { + segments[i].setTable(new HashEntry[1]); + } + + // Read the keys and values, and put the mappings in the table + while (true) { + K key = (K) s.readObject(); + V value = (V) s.readObject(); + if (key == null) { + break; + } + put(key, value); + } + } +}